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ENTROPY ANALYSIS FOR LOCAL STRUCTURE OF GRANULAR MATTER
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We apply phenomenological approach based on statistical mechanical concept in the form of
Kirkwood-Buff arguments to describe the structural parameters of 2D binary granular mixture. By
use of the scale-invariant model for radial distribution function first introduced in [1], we derive
expression for correlational integrals which necessarily include geometrical parameters which
characterize the properties of the local structure. In particular, expression for the packing fraction
has been obtained analytically. We have also obtained the relation between macroscopic proper-
ties, such as entropy excess, and parameters of local structure, namely the packing fraction. En-
tropy excess and entropy difference for states spanning an interval of # = [0.8175 - 0.8380] has
been performed and analyzed by means of contrast mapping. Calculations demonstrate non-
monotonic behavior of the entropy excess and, in particular, shows presence of the minimum of
S at n=0.8209. From the excess entropy difference we estimate the entropy production, asso-
ciated with the transition between different configurational states with an individual local symme-
tries. Developed approach (because of the scale invariant character of the model measure of state)
has been proposed for use with systems that have an isomorphic morphology of the local structure.
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1. INTRODUCTION

The study of local structure of granular materials
(GM) and its transformations under the external
perturbations has attracted a lot of attention over the
last decades [2]. A variety of local arrangements
have been observed in experimental and numerical
studies including symmetric and asymmetric me-
chanically stable mono- and bi-disperse packings
with different probabilities of occurrence. Under-
standing the influence of geometry of small clusters
of particles (i.e. local structure) onto the properties
of GM is one of the key issues in the study of static
and dynamical properties of GM.

Of particular interest in the study of structural
properties and dynamical behaviour of granular
materials is the possibility of employing methods of
statistical mechanics to describe these fully ather-
mal, dissipative, nonlinear many-particle systems.
However, despite recent achievements in this field,
this possibility has not yet been adequately devel-
oped.

Difficulties in description of granular matter owe
much to the lack of rigorous physical arguments (or
properly specified constraints) on which a statistical
description of the system can be based. We suggest
that these abovementioned specific constraints be
satisfied when outcoming energy flux (due to dissi-
pative nature of GM) and incoming energy flux
(implemented by external perturbation) are com-
pletely compensated.

The main difference between statistical systems

and granular materials is that energy is no longer
state variable, because of the non-equilibrium, dissi-
pative and athermal nature of GM. There are a lot of
attempts toward the incorporation of methods of
statistical mechanics into the study of GM [3-5]
based on the Edwards approach [6,7]. A key points
in this approach is that the volume of the system is
the analogue of system energy in equilibrium ther-
mal systems, and entropy of the system must be the
function of volume. In this respect, an open issue
regards the possibility of determination macroscopic
thermodynamic parameters (i.e. entropy or it’s ex-
cess) as functions of local structure parameters.
Previous works have proposed several different
methods of entropy calculation [8]. It is important to
stress, that conceptual issue in validating of the ap-
plication of statistical mechanics methods in the
description of granular matter involves probing their
ergodicity under the different external conditions
[9,10,12].

In this study, we present an extension of pro-
posed earlier approach which employs Kirkwood-
Buff [11] theory supplemented by incorporation of
the model of radial distribution function (RDF) [1].
This approach permits us to derive analytical
expression for the entropy excess S in terms of
parameters of local structure. We ask how the en-
tropy excess and its difference change in the interval
of packing fraction 1 & [0.8175 - 0.8380] i.e. in the
vicinity of Random Close Packing (RCP) point, and
then we find out the minimum of $**“ at # = 0.8209.
The approach thus developed can also be effectively
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applied to quantify local structure of other objects of
soft matter whose structure developed in meso- and
macroscale.

2. KIRKWOOD-BUFF THEORY

Kirkwood-Buff (KB) theory, which is widely
used as familiar theoretical tool in the studying lig-
uid mixtures, relates macroscopic properties of sys-
tems (compressibility, entropy, etc) to the integrals
of the radial distribution functions (RDF) G;

Gj = T(gz(r)—1)47zR2dr. €))
0

In the case of GM, in which particles are large
and could be observed by the naked eye, we have
possibility to use approximation for RDF in form [1]

gi(r) = O(r—d;" )+ 4,6(r—d") )

where: r = [r] - r2| ; rl and 12 are the coordinates
of the specified pair of particles; ® (z) and o (z) are
the generalized Heaviside and Dirac functions, re-

spectively. Parameter d(()ij) may be considered as a

diameter of a single particle (treated as a hard
sphere). Model expression (2) describes a short -
range order in the vicinity of selected particle. Pa-

d(ij)

rameter dl(ij) =b "0 could be interpreted as the

size of the first coordinate sphere or as characteristic
lengthscale on which structural and dynamical het-
erogeneities take place. Application of scale-
invariance model for RDF allows us to obtain
analytical expression for correlational integrals G,
which for 3D system has the following form

Gij = %ﬂ'(déi”s _ dl(fi)3 + 3A[jdl(i/)2) (3)

By introducing the normalization condition for
RDF in form

V17£gij(r)dr =1 4)

one can write coefficient 4;; in form

Ay ="V =8N (5)
47Nb *d ("’
here : ¥ - is considered volume ; N - number of

particles in 17 Vi; - volume of particles with
diameter

W, 70
g _do +dy
0 2 H

Substitution (5) into (3) gives rise
to th:V,—,-(z—U,;,- _Sbj) (6)

where 7, is packing fraction. For 2D case applica-

tion of the appropriate normalization conditions
leads to following expression for G;;

G;’j: 2mi/'_ib2NijSij (7)

here Q) is square of local arrangement and N;;S;; is

square of all particles in given arrangement (See
Fig. 1).

Central
particle

Fig. 1 - Sketch of the local arrangement of appropriate parti-
cles.

3. ENTROPY EXCESS

Phenomenological description of local structure
and it’s anomalies often performed by the studying
the behavior of entropy excess. Such a study also
provides necessary information about the stability of
system and answers the question about the ability of
system to be in specific point on phase diagram. The
KB approach developed above can be used for de-
scription of entropy excess.

KB entropy excess S in case of athermal mix-
ture is defined as

§exe= - kgpglzxf (8)

where A, = G;; + G2, -2Gpy, p= My is number
12
density, x, is partial concentration of second com-
ponent and £ is Boltzmann constant.
Then, substituting (7) into (8), one can rewrite
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entropy excess in terms of parameters of local struc-
ture as follows

2
§=- —kB;)xz XA, )

2

_ b
Ap= 22(Q,+Q, +29,,) - ?(N2S2 +N,S,—2N,,S,,)-

Expression (9) necessarily includes parameters of
local structure. Information about the local structure
parameters in case of GM could be obtained directly
from phenomenological information or with the help
of numerical simulation.

One can see, that S consits from two parts, the
difference between which could be interpreted as
corresponding dimensionless free volume on the

local level. If we adopt, that @, =€, — NS, is the

portion of the free volume in local arrangement and

b _ > » then Eq.(9) directly demonstrates the

4

influence of the excluded volume onto the entropy
excess of local arrangement. By definition entropy
excess S“ reads as

S{ =S4~ S,

m,k
where S,,, 1s a measured value of entropy at given
state and S,; is a value which is defined for ideal
reference state (definition of which is a separate
task). Thus, one can derive entropy excess differ-

ence AS} between two states k and / as

ASGe =S¢~ 8 =8 S

m,l "
Thus entropy difference could be written as

Sm,k - Sm,l = _2kBN12x277(77k —1,)

where 7 is a packing fraction of given state. Ob-
tained relation permits to derive entropy production
St =St _ 2k, N,,x?

e =1
use Eq.(9) we quantify different states which were
observed in the experimental study [13]. We focus
on a local arrangement of particles which consists of
central one and its neighbours. We consider only
stroboscopic snapshot at the moment when system
reaches steady state. On Fig. 2 we capture values of
entropy excess for each particle configurated for
states with slightly different values of packing frac-

tion 7.

due to compactization. By

Fig. 2 - Entropy excess S per particle for sequence of states
observed in experimental study [13]. Particles are contrasted
according to their entropy excess values.

Fig. 3 shows the behavior of the mean entropy
excess S with localization of extremum at
n =0.8209.
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® Eq9)

= shape interpolation
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Fig. 3 - Mean value of entropy excess Sexc versus packing
fraction # for sequence of states observed in experimental study
performed in [13].

Fig. 4 displays an estimation of the entropy dif-
ference due to possible transitions between differ-
ently configurated states in the close vicinity of
RCP.

4. CONCLUSIONS

In this work we have studied the structure of 2D
binary granular materials with help of phenomenol-
ogical approach supplemented by certain statistical-

i ®) n=08175
T W g=0s183
& q=0.8209

sk O q=nmzry
Q n=EIaT

[] g=0s8358

P L y=0g368
B =0 &350

mechanical argumentation. Being based on scale-
invariant  direct analytical model for RDF [1],
adopted KB approach allows us to construct the
relevant expression for entropy excess S related
to a single particle.

Further, we define a measure of the mean en-
tropy excess and its change due to compactisation,
and find that in the interval of 77 € [0.8175-0.838]

there is an extremum of entropy excess S“°. In
some related papers entropy analysis has been
done by alternative methods and directed to
GM with a different levels of compactisa-
tion(see ,for instance [6,7,10]).

The presence of a minimum in S at # = 0.8209
could possibly be explained by existence of some
intermediate metastable local states which happens
due to configurational rearrangements in binary
mixtures. Therefore the entropy excess analysis
permit us to analyze the strucuure of densily com-
pacted GM in more details. Due to scale invariance
of model for RDF, the entropy defined in this paper
offers the way to investigate the entropy difference
(excess) associated with local structures transforma-
tions in wide class of objects of the soft matter.
Also we would like to note that it could be interest-
ing to compare obtained results with entropy analy-
sis done by means of,say, Voronoy tesselations ap-
plied to isomorphic systems. This would be realised
in our next paper.
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Fig. 4 - Estimation of the entropy difference due to possible transitions between differently configurated states in the vicinity of RCP.
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EHTPOIIIMHUM AHAJII3 JTOKAJBHOI CTPYKTYPU TPAHYJIbOBAHOI MATEPII

O. L. 'epacumoB, a-p ¢i3.-Mat. HayK, Ipodecop

Ooecvruil 0eparcadnull eKoN02iuHULL YHIgepcumen,
Odeca,65016,J/Iv6iscoka, 15, gerasymovoleg@gmail.com

®denomMeHoorivHNK MiAXin po3BuHyTHH B pobotax KipkByna-badda zacrocoByerbes s
ONUCY MapaMeTpiB JIOKAJIBHOI CTPYKTYpHU Ta ONHUCY IEPeXOMiB MK PI3HUMH 32 CHMETpIEI0
CTaHaMH B OiHAPHUX TPaHyJILOBAaHUX MaTepiaiax. BUKOpHUCTaHHS aHAITUYHOT MOJEN JUIsl TapHOT
¢yskmii posmoniny,BBeaeHOi B [1] M03BONMIO OTpHMATH aHANITHYHI BHpa3d U HAIUTAIIKY
EHTpoTtIii Ta 11 3MiH BHACTIIOK CTPYKTYypH3allii. AHANITHYHUIN aHaJi3 Ta BiIMOBIIHI YHCEIbHI PO3-
PaxyHKH JO3BOJIMIIM BCTAaHOBUTH 3HAuUCHHs IapaMeTpy BIIAKyBaHHSA B OKOJI SIKOTO BiOyBalOTHCS
CTPYKTYpHI IIEPETBOPEHHS IpaHyIb0BaHMX MatepiaiiB. OTpuMaHi pe3ynpTaT 100pe KOpEelTorTh
13 JaHrMU Oe3nocepeHiX (Qi3NIHNX eKCIIEPUMEHTIB.

KarouoBi cioBa: rpaHynboBaHa MaTepisl, JIOKaJIbHAa CTPYKTYpa, CTATHCTHYHA MEXaHiKa, CHT-
porist

SHTPOIIUMHBINA AHAJIN3 JIOKAJIBHOM CTPYKTYPU TPAHYJIMPOBAHHON MATEPUUA

O. W. I'epacumoB, 1-p ¢us.-mar. HayK, Ipodeccop

O0eccruii cocyoapcmeentblii IKOIOSUYECKUL YHUBepCUmMen,
Ooecca,65016,JIbs0sckas, 15, gerasymovoleg@gmail.com

DeHOMEHOJIOTHYECKU TTOX0/ Pa3BUTHIM B pabortax Kupksynma-badda mcnonssyercs mis
ONKCaHMsI TapaMEeTPOB JIOKAJIBHOM CTPYKTYpBl U MEPEXOJ0B MEXKIY Pa3IUYHBIMU [0 CUMMETPHUHU
COCTOSIHMSIMHM B OMHapHBIX TPaHYJIMPOBaHHBIX MaTepuasax. Vcnonb3oBaHne aHAMTUYECKONH MO-
JeTH JUTA TapHON (YHKIMH pacIlpeAeieHus BBEJICHHON B [1] MO3BOIMIO MOMYydYUTh aHATUTHYE-
CKHE BBIPOKCHUS ST M30BITOYHON SHTPONUM U €€ M3MEHEHHH BCIICACTBHE CTPYKTYPH3ALHH.
AHanUTHYECKUH aHaJIW3 W COOTBETCTBYIOIINE YHCICHHBIE PACUETHI MO3BOJIMIN YCTAaHOBUTDH 3HA-
YEeHUs MapaMeTpa YHAKOBKH B OKPECTHOCTH KOTOPOTO MPOMUCXOIAT CTPYKTYpPHbIE M3MEHECHHUS B
rpaHyJIMPOBAHHBIX MaTepHuanax. [lomydeHHble pe3yabTaThl XOPOIIO COINACYIOTCS C JaHHBIMU He-
NIOCPENICTBEHHBIX (PU3NUECKUX IKCIIEPUMEHTOB.

KiroueBble ci1oBa: rpaHylTUpOBaHHAs MaTepus, JOKalbHAas CTPYKTypa, CTaTHCTHYECKas Me-
XaHHKA, EHTPOIHA
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