

На допомогу педіатру / To Help the Pediatrician

УДК 616.21-022.6-036.11-053.2+61.331 АБАТУРОВ А.Е.

ГУ «Днепропетровская медицинская академия Министерства здравоохранения Украины»

ЗНАЧЕНИЕ БАКТЕРИАЛЬНЫХ ЛИЗАТОВ В ПРОФИЛАКТИКЕ ОСТРЫХ РЕСПИРАТОРНЫХ ИНФЕКЦИЙ У ДЕТЕЙ

Резюме. В статье рассматривается проблема острых респираторных инфекционно-воспалительных заболеваний у детей. Описаны функции системы неспецифической защиты, а также дана подробная характеристика препаратов, применяющихся для патогенетического лечения респираторных инфекций, — иммунотропных препаратов бактериальных лизатов, в частности препарата Бронхо-мунал[®]. **Ключевые слова:** острые респираторные инфекции, бактериальные лизаты, Бронхо-мунал[®].

Инфекционно-воспалительные заболевания органов дыхания, несмотря на достижения педиатрии, остаются самой распространенной патологией человека в детском возрасте. В структуре инфекционной заболеваемости детей удельный вес острых респираторных вирусных инфекций (ОРВИ) достигает 70 % [10]. В последнее время отмечается негативная тенденция патоморфоза острых респираторных инфекций к затяжному течению и развитию осложнений, которые являются ведущей причиной смертности детей в развитых странах, в том числе и в Украине [7, 11, 16]. В развивающихся странах причиной смерти у 2 млн детей (20 % всех случаев смерти) является пневмония [22]. Наблюдается увеличение контингента детей, часто болеющих острыми респираторными инфекциями. В связи с этим понимание клиницистами широкого профиля и пульмонологами механизмов неспецифической защиты респираторного тракта от инфекционных агентов приобретает особую актуальность.

Разнообразие и многочисленность возбудителей инфекционных заболеваний, с которыми перманентно сталкивается слизистая оболочка респираторного тракта (в среднем городской житель вдыхает не менее $10^4 - 10^5$ различных микроорганизмов), предполагает наличие сложной, мультифакториальной организации локальной защиты респираторного тракта [20]. Ее основными структурно-функциональными компонентами, выполняющими определенные задачи, считают механический барьер, системы врожденной неспецифической защиты и специфического иммунитета. Механизмы врожденной неспецифической защиты выполняют первичную и немедленную защиту

респираторного тракта от инфекционных агентов в отличие от специфического иммунитета, которому для реализации своего действия, учитывая время, требуемое для клональной генерации Т- и В-лимфоцитов с релевантными специфическими рецепторами, и продолжительность дифференцировки эффекторных клеток, необходимо от 4 до 7 суток [28]. Система врожденной неспецифической защиты предопределяет как выбор антигенов инфекционных агентов, на которые будет отвечать специфический иммунитет, так и характер этой реакции [19].

Кооперация барьерных механизмов эпителия, врожденной неспецифической защиты и специфического иммунного ответа направлена на рекогницию, локализацию, киллинг и элиминацию инфекционных агентов для поддержания относительной стерильности респираторного тракта. Нарушение функции любого компонента системы защиты органов дыхания может привести к возникновению повторных, частых острых респираторных инфекций, развитию хронических воспалительных форм заболевания органов дыхания, сопровождающихся формированием деформаций бронхиального дерева, пневмосклероза, эмфиземы легкого [2, 30].

Основополагающим структурно-молекулярным компонентом врожденной системы неспецифической защиты являются образ-распознающие рецепторы (pattern recognition receptors — PRR). PRR распознают уникальные, не имеющие аналогов в

[©] Абатуров А.Е., 2013

^{© «}Здоровье ребенка», 2013

[©] Заславский А.Ю., 2013

макроорганизме, консервативные молекулярные структуры, которые были названы патоген-ассоциированными молекулярными структурами (pathogen-associated molecular patterns — PAMP) [24].

Наиболее известными РАМР являются липополисахариды, представляющие структурные компоненты внешней мембраны грамотрицательных бактерий; тейхоевые и липотейхоевые кислоты, которые являются мембранными компонентами преимущественно грамположительных бактерий; пептидогликаны грамположительных и грамотрицательных бактерий; липоарабиноманноза микобактерий; зимозан грибов; одно- и двуспиральные РНК вирусов; ДНК вирусов и бактерий [26, 34].

Каждая патоген-ассоциированная молекулярная структура является маркером достаточно больших кластеров микроорганизмов, поэтому процесс их распознавания PRR носит неспецифический характер [20].

PRR принадлежат к различным белковым семействам и отличаются от антигенных рецепторов неклональным характером экспрессии [18]. В зависимости от формы функционирования можно выделить несколько групп PRR — группу секретируемых внеклеточных рецепторов, присутствующих как свободные компоненты в бронхоальвеолярном секрете; группу мембранных рецепторов, участвующих в эндоцитозе; группу сигнальных трансмембранных Toll-подобных рецепторов (Toll-like receptors — TLR) и группу внутриклеточных цитозольных рецепторов. Необходимо отметить, что TLR могут иметь и внутриклеточное расположение [2].

Различные PRR взаимодействуют с определенным PAMP инфекционных агентов. Лиганд-зависимая активация PRR индуцирует специфические внутриклеточные сигнальные пути, возбуждающие такие факторы транскрипции, как NF-кВ, AP-1, IRF, транслокация которых в ядро клетки и взаимодействие со специфическими элементами ДНК обусловливают усиление активности экспрессии большой совокупности генов, участвующих в организации воспалительного ответа. Эти гены коди-

руют провоспалительные цитокины, интерфероны, хемокины, антибактериальные пептиды, протеины сигнальных внутриклеточных путей [1].

Целевое изменение PRR-ассоциированной генной экспрессии стратегически направлено на поддержание и усиление активности механизмов: 1) элиминации инфекционных агентов (индуцируется продукция антимикробных пептидов, медиаторов, обусловливающих синтез противовирусных и противомикробных пептидов, мобилизуются и активируются макрофаги и нейтрофилы), 2) адаптивного иммунного ответа и 3) репарации поврежденных тканей. В частности, Е.А. Лебединская и соавт. [14] на основании изучения изменений иммунофенотипа спленоцитов мышей под действием бактериальных иммуномодуляторов, несущих лиганды к TLR, установили, что введение PAMP способствует увеличению представительства CD3+/NK+-клеток, активированных лимфоцитов (CD4+/CD25+) и почти в два раза повышает уровень экспрессии молекул CD8a, I-AK, H-2Db, CD19, CD5.2, CD40 и CD5.2/ CD40.

Таким образом, одним из важнейших медикаментозных инструментов управления системой врожденного иммунитета являются иммуномодуляторы микробного происхождения и их синтетические аналоги как препараты, содержащие патоген-ассоциированные молекулярные структуры инфекционных агентов.

Базируясь на современном представлении о механизмах распознавания патогенов врожденной иммунной системой человека, И.Г. Козлов [8, 9] предложил новый вариант классификации иммунотропных препаратов, влияющих на активность врожденного иммунитета (табл. 1).

Бактериальные лизаты отнесены к группе иммунотропных препаратов и в современной классификации [15] составляют отдельную подгруппу — иммуномодуляторы микробного происхождения. Данные препараты — это комплексные PAMP-содержащие препараты, оказывающие влияние на врожденную иммунную систему преимущественно через сигнальные образ-распознающие рецепторы,

Таблица 1. Классификация иммунотропных препаратов, распознаваемых рецепторами врожденной иммунной системы

Агонисты рецепторов врожденной иммунной системы	
Агонисты сигнальных PRR	Агонисты эндоцитозных PRR
Механизм действия: преимущественная стимуляция продукции провоспалительных цитокинов и антиген-неспецифическая активация иммунитета	Механизм действия: преимущественная стимуляция антиген-специфического адаптивного иммунного ответа на компоненты препарата
Представители: — Паттерн-содержащие препараты — I поколения — лизаты патогенов — II поколения — паттерны — III поколения — МБАФ — Химические агонисты — Индукторы интерферона	Представители: — Вакцины I, II и III поколения

Примечание: МБАФ — минимально биологически активные фрагменты.

а эффективность использования данной группы препаратов связана не только с активацией эффекторов врожденного иммунитета, но и с инициацией формирования адаптивного иммунитета. Назначение иммуномодуляторов бактериального происхождения получило широкое распространение во многих странах: на сегодня во всем мире с момента их коммерциализации данными препаратами было пролечено около 150 млн пациентов [4, 5, 7].

Наиболее испытанным препаратом бактериального происхождения является препарат Бронхо-мунал® (ОМ 85). В настоящее время проведено около 300 научных исследований, которые были посвящены изучению эффективности данного препарата в терапии, предупреждающей развитие острых респираторных инфекций у детей, из которых более 40 — контролируемые рандомизированные исследования. Согласно данным метаанализа, доказательства профилактической эффективности препарата Бронхо-мунал[®] (ОМ 85) у детей соответствуют уровню А. Препарат Бронхо-мунал® содержит лиофилизированный лизат бактерий Streptococcus pneumoniae, Streptococcus viridans, Streptococcus pyogenes, Haemophilus influenzae, Klebsiella pneumoniae, Klebsiella ozaenae, Staphylococcus aureus, Moraxella catarrhalis и выпускается в капсулах по 7 мг (детям старше 12 лет) и по 3,5 мг (детям от 6 месяцев до 12 лет) [21, 29, 32, 33].

Основными воротами для проникновения микроорганизмов в организм человека являются эпителиальные поверхности слизистых оболочек. В связи с этим более 50 % лимфоидной ткани ассоциировано со слизистыми оболочками, организуя MALT-систему (mucosal-associated lymphoid tissue). Система MALT условно состоит из лимфоидной ткани, ассоциированной со слизистой носоглотки (nasal-associated lymphoid tissue — NALT), лимфоидной ткани, ассоциированной со слизистой бронхов (bronchus-associated lymphoid tissue — BALT), лимфоидной ткани, ассоциированной со слизистой кишечника (gut-associated lymphoid tissue — GALT), лимфоидной ткани, ассоциированной со слизистой мочеполовой системы [23].

Препарат Бронхо-мунал® предназначен для перорального применения. Устойчивость компонентов препарата Бронхо-мунал® к действию соляной кислоты позволяет им достичь пейеровых бляшек кишечника, которые участвуют в активации В-лимфоцитов, их дифференцировке в плазматические клетки, продуцирующие специфические антитела, принадлежацие к иммуноглобулиновым классам А и Е. Различают три морфофункциональные зоны пейеровых бляшек: В-клеточный фолликул с зародышевым центром посередине, окружающие этот фолликул Т-клеточные зоны и куполообразные структуры, состоящие из М-клеток и фолликул-ассоциированных эпителиоцитов [31] (рис. 1).

Впервые М-клетки были идентифицированы в 1965 году John F. Schmedtje как лимфоэпителиальные клетки, но в последующем в 1974 году

R.L. Owen, A.L. Jones, при электронно-микроскопическом изучении морфологии этих клеток обнаружив наличие «микроскладок» на их апикальной поверхности, переименовали лимфоэпителиальные клетки в М-клетки. Основными функциями М-клеток является захват макромолекулярных соединений из просвета кишечника и транслокация их в субэпителиальные области, где они обрабатываются макрофагами и дендритными клетками (DC) слизистой оболочки и презентируются лимфопитам.

Отличительными признаками М-клеток являются плоская апикальная поверхность, малое количество цитоплазматических лизосом, большее количество митохондрий и отсутствие гликокаликса, покрывающего поверхность клетки. В отличие от энтероцитов на поверхности цитоплазматической мембраны М-клетки представлены β1 интегрин или лектины α-L-фукозы. М-клетки при помощи фаго-, эндо- или пиноцитоза захватывают антигены или микроорганизмы из просвета кишечника и доставляют их к основным клеточным компонентам иммунной системы слизистых оболочек. Присутствие М-клеток не ограничивается регионами GALT, они также находятся и в других местных системах защиты: NALT, BALT и миндалинах. Было показано, что М-клетки являются основным местом проникновения вирусов, а также антигенов, в том числе инфекционных возбудителей и вакцин [17]. Антигены в пищеварительном тракте могут проникать во внутреннее пространство организма через энтероциты и М-клетки (microfold) (рис. 2). Проникая через энтероцит, антигены могут взаимодействовать с CD4+T-клетками, дендритными клетками и в свободном виде транспортироваться в периферические лимфатические узлы, где антигены погло-

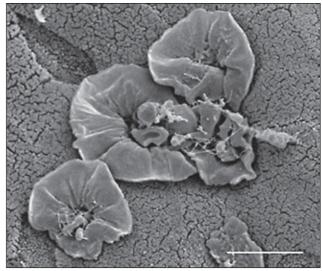


Рисунок 1. Микрофотография мышиной пейеровой бляшки [27]
Примечание: в центре фотографии — индуцированные S.typhimurium М-клетки, апикальная мембрана которых образует большие мембранные складки.

щаются DC, которые презентируют его Т-клеткам. Основной объем антигенов поступает в организм с участием М-клеток. Антигены, проникая через М-клетки, передаются DC, которые презентируют его Т-клеткам как непосредственно в пейеровых бляшках, так и, после транслокации, в мезентериальных лимфатических узлах, обусловливая развитие специфического иммунного ответа [25].

Также находящиеся в бактериальных лизатах патоген-ассоциированные молекулярные структуры микроорганизмов активируют TLR эпителиоцитов, иммуноцитов и М-клеток. Активация TLR эпителиоцитов респираторного тракта способствует более быстрой реакции неспецифических механизмов защиты и предупреждению развития инфекционного процесса. PAMP, взаимодействуя с TLR М-клеток, активируют их и способствуют усилению поглощения антигенов. Таким образом, бактериальные лизаты оказывают как неспецифическое, так и системное специфическое действие на иммунную систему, вызывая антительный ответ на антигены инфекционного агента. Так, согласно данным Т.П. Марковой и соавт. [12, 13], механизм действия препарата Бронхо-мунал® в группе часто болеющих детей имеет как специфическую, так и неспецифическую сторону. Показано, что на фоне терапии препаратом Бронхо-мунал® происходит увеличение титра специфических антител класса IgA, которые, взаимодействуя с антигенами определенных бактерий, пространственно разобщают патогены и слизистую оболочку респираторного тракта. Неспецифическое действие связано с активацией клеточного иммунитета — функциональной активностью макрофагов и выработкой ряда провоспалительных цитокинов (IL-6, IL-8, IL- 2, TNF- α , IFN- γ).

Способность очищенных бактериальных лизатов не только активировать неспецифическую защиту организма, но и повышать эффективность специфического иммунного ответа позволяет успешно применять их у часто болеющих острыми респираторными инфекциями детей, у которых инфекционные агенты, особенно вирусно-бактериальные ассоциации, часто приводят к затяжному рецидивному течению инфекций с чередованием поражений верхних дыхательных путей, нижних отделов дыхательной системы.

Согласно нашим данным, у длительно и часто болеющих детей терапия препаратом Бронхо-му-

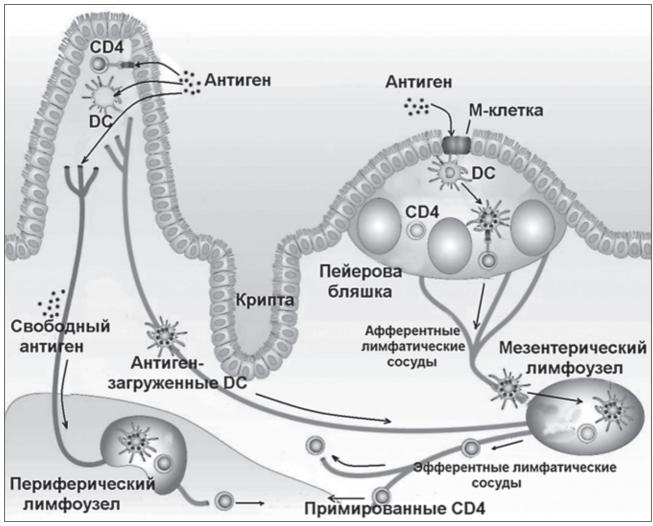


Рисунок 2. Пути перемещения антигена в пищеварительном тракте [25]

нал[®] (ОМ 85) способствует снижению в 2–2,5 раза частоты острых респираторных инфекций, уменьшению вероятности развития осложненного течения острых респираторных инфекций и восстановлению эубиоза слизистых верхних дыхательных путей [3, 6].

Лонгитюдное исследование, проведенное нами в течение 2001-2010 гг., показало достаточно высокую клинико-иммунологическую эффективность препарата Бронхо-мунал® в схеме профилактики острых респираторых инфекций у часто болеющих детей в возрасте от 3 до 14 лет.

Клиническая эффективность терапии препаратом Бронхо-мунал® (ОМ 85) характеризовалась уменьшением продолжительности острого респираторного эпизода на 1.8 ± 0.2 дня, снижением в $1,2\pm0,1$ раза кратности эпизодов ОРВИ и уменьшением на 45 % количества случаев ОРВИ с осложненным течением. Надо отметить, что в 75,6 % случаев при проведении контрольных посевов со слизистых зева и носа после окончания курса терапии препаратом Бронхо-мунал® восстанавливалось эубиотическое состояние микрофлоры слизистой оболочки зева и полости носа. Также после проведения профилактического курса препаратом Бронхо-мунал® наблюдалось существенное повышение как относительного, так и абсолютного содержания CD3+, CD4+ на фоне нормализации иммунорегуляторного индекса, которое сочеталось с достоверным повышением концентрации IgA и IgG. Отмечалось достоверное перераспределение содержания субклассов иммуноглобулина G увеличение содержания G_1 и уменьшения G_3 , G_4 в сыворотке крови. Регистрировалось достоверное повышение концентрации противовоспалительного IL-10 и достоверное снижение концентраций провоспалительных цитокинов (IL-12p70 и IL-1в) в сыворотке крови.

Таким образом, применение бактериальных лизатов, в частности препарата Бронхо-мунал®, является патогенетически обоснованным и эффективным методом профилактики острых респираторных инфекций у детей, в том числе и у часто болеющих ими.

Список литературы

- 1. Абатуров А.Е. Молекулярные механизмы неспецифической защиты респираторного тракта: распознавание патоген-ассоциированных молекулярных структур // Здоровье ребенка. 2006. $N \ge 2(2).$ C. 87-92.
- 2. Абатуров А.Е., Волосовец А.П., Юлиш Е.И. Инициация воспалительного процесса при вирусных и бактериальных заболеваниях, возможности и перспективы медикаментозного управления. Харьков: ООО «С.А.М.», 2011. 392 с.
- 3. Абатуров О.Є., Височина І.Л. Вплив бронхомуналу на вміст субкласів імуноглобуліну G у сироватці крові дітей, які часто хворіють на гострі респіраторні інфекції (ЧХД) // Перинатологія та педіатрія. 2003. N2 3. C. 85.
- 4. Ахматова Н.К. Молекулярные и клеточные механизмы действия иммуномодуляторов микробного происхождения на функциональную активность эффекторов врожденного иммунитета: Дис... д-ра мед. наук. 2006. 226 с.
- 5. Бережной В.В. Иммунокоррекция в педиатрии // Здоровье Украины. 2004. N2 108. C. 25.

- 6. Височина І.Л. Санація слизових зіва часто хворіючих дітей (ЧХД) за допомогою використання бронхомуналу // Перинатологія та педіатрія. 2003. № 3. С. 84.
- 7. Клиническая эффективность антибактериального препарата аугментин при лечении пневмонии у детей в домашних условиях / В.В. Бережной, И.Б. Орлик, Р.Т. Вдовенко, Л.Г. Аносова, А.К. Романчук // Современная педиатрия. 2005. N = 3. N = 3. N = 3. N = 3. N = 3.
- 8. Козлов И.Г., Андронова Т.М. Лекарственные воздействия через рецепторы врожденного иммунитета // Современные представления о молекулярном механизме действия глюкозаминилмурамилдипептида (ГМДП). 2006. С. 27-37.
- 9. Козлов И.Г., Тимаков М.А. Иммунотерапия: вчера, сегодня, завтра // Педиатрия. 2009. Т. 87, № 4. С. 140-149.
- 10. Крамарев С.А., Костинская Н.Е. Профилактическая эффективность препарата «Анаферон детский» при ОРВИ и гриппе у детей // Современная педиатрия. 2005. N2 3. С. 119-121.
- 11. Майданник В.Г. Клинические рекомендации по диагностике и лечению острой пневмонии у детей. — К., 2002. — 106 с
- 12. Маркова Т.П. Бактериальные иммуномодуляторы // РМЖ. 2009. N2. C. 24-27.
- 13. Маркова Т.П., Чувиров Д.Г. Длительно и часто болеющие дети // РМЖ. 2002. N 10(3). С. 125-127.
- 14. Молекулярно-клеточные механизмы действия бактериальных иммуномодуляторов, несущих лиганды к TOLL-подобным рецепторам / E.A. Лебединская, O.B. Лебединская, H.K. Ахматова, $A.\Pi$. Годовалов // Фундаментальные исследования. 2010. N 12. C. 51-52.
- 15. Про затвердження Формулярного довідника з використання імуномодулюючих та протиалергічних лікарських засобів. Наказ MO3 України від 03.11.2008 № 629 // http://www. uazakon.com
- 16. Юлиш Е.И., Волосовец А.П. Клиника, диагностика и лечение внебольничных пневмоний у детей. Донецк: Регина, 2004. 215 с.
- 17. Azizi A., Kumar A., Diaz-Mitoma F., Mestecky J. Enhancing oral vaccine potency by targeting intestinal M cells // PLoS Pathog. 2010. Vol. 6, № 11. P. e1001147.
- 18. Beutler B. TLR4 as the mammalian endotoxin sensor // Curr. Top. Microbiol. Immunol. 2002. Vol. 270. P. 109-120.
- 19. Beutler B., Hoffmann J. Innate immunity // Curr. Opin. Immunol. 2004. Vol. 16. P. 1-3.
 20. Blach-Olszewska Z. Innate immunity: cells, receptors
- 20. Błach-Olszewska Z. Innate immunity: cells, receptors and signaling pathway // Arch. Immunol. Ther. Exp. 2005. Vol. 53. P. 245-253.
- 21. Clinical efficacy of OM-85 BV in COPD and chronic bronchitis: a systematic review / M.D. Sprenkle, D.E. Niewoehner, R. MacDonald, I. Rutks, T.J. Wilt // COPD. 2005. Vol. 2, N = 1. P. 167-175.
- 22. Estimates of world-wide distribution of child deaths from acute respiratory infections / B.G. Williams, E. Gouws, C. Boschi-Pinto, J. Bryce, C. Dye // Lancet Infect. Dis. 2002. Vol. 2, № 1. P. 25-32.
- 23. Examining the Role of Nasopharyngeal-associated Lymphoreticular Tissue (NALT) in Mouse Responses to Vaccines / E.D. Cisney, S. Fernandez, S.I. Hall, G.A. Krietz, R.G. Ulrich // J. Vis. Exp. 2012. Vol. 66. P. 3960.
- 24. Hippenstiel S., Opitz B., Schmeck B., Suttorp N. Lung epithelium as a sentinel and effector system in pneumonia molecular mechanisms of pathogen recognition and signal transduction // Respir. Res. 2006. Vol. 7. P. 97.
- 25. Intestinal M cells: the fallible sentinels? / H. Miller, J. Zhang, R. Kuolee, G.B. Patel, W. Chen // World J. Gastroenterol. 2007. Vol. 13, № 10. P. 1477-1486.
- 26. Janeway C.A. Jr., Medzhitov R. Innate immune recognition // Annu. Rev. Immunol. 2002. Vol. 20. P. 197-216.
- 27. Jepson M.A., Clark M.A. The role of M cells in Salmonella infection // Microbes Infect. 2001. Vol. 3, № 14–15. P. 1183-1190.

- 28. LeGrand E.K., Alcock J. Turning up the heat: immune brinksmanship in the acute-phase response //Q. Rev. Biol. 2012. Vol. 87, N 1. P. 3-18.
- 29. Oral purified bacterial extracts in acute respiratory tract infections in childhood: a systematic quantitative review / C. Steurer-Stey, L. Lagler, D.A. Straub, J. Steurer, L.M. Bachmann // Eur. J. Pediatr. 2007. Vol. 166, N 4. P. 365–376.
- 30. Parker D., Prince A. Innate immunity in the respiratory epithelium // Am. J. Respir. Cell. Mol. Biol. 2011. Vol. 45, $N \ge 2$. P. 189-201.
- 31. Rozy A., Chorostowska-Wynimko J. Bacterial immunostimulants mechanism of action and clinical application in respiratory diseases // Pneumonol. Alergol. Pol. 2008. Vol. 76, № 5. P. 353-359.
- 32. Schaad U.B. OM-85 BV, an immunostimulant in pediatric recurrent respiratory tract infections: a systematic review // World J. Pediatr. 2010. Vol. 6, № 1. P. 5-12.
- 33. The immunostimulant OM-85 BV prevents wheezing attacks in preschool children / C.H. Razi, K. Harmancı, A. Abacı, O. Özdemir, S. Hızlı, R. Renda, F. Keskin // J. Allergy Clin. Immunol. 2010. Vol. 126, № 4. P. 763-769.
- 34. Thompson M.R., Kaminski J.J., Kurt-Jones E.A., Fitzgerald K.A. Pattern recognition receptors and the innate immune response to viral infection // Viruses. 2011. Vol. 3, N_0 6. P. 920-940.

Получено 21.08.13 4-11-БРМ-РЕЦ-0813 🏻

Абатуров О.Е.

ДУ «Дніпропетровська медична академія Міністерства охорони здоров'я України»

ЗНАЧЕННЯ БАКТЕРІАЛЬНИХ ЛІЗАТІВ У ПРОФІЛАКТИЦІ ГОСТРИХ РЕСПІРАТОРНИХ ІНФЕКЦІЙ У ДІТЕЙ

Резюме. У статті розглядається проблема гострих респіраторних інфекційно-запальних захворювань у дітей. Описані функції системи неспецифічного захисту, а також дана детальна характеристика препаратів, що застосовуються для патогенетичного лікування респіраторних інфекцій, — імунотропних препаратів бактеріальних лізатів, зокрема препарату Бронхо-мунал®.

Ключові слова: гострі респіраторні інфекції, бактеріальні лізати, Бронхо-мунал[®].

Abaturov A.Ye.

State Institution «Dnipropetrovsk State Medical Academy of Ministry of Public Health of Ukraine», Dnipropetrovsk, Ukraine

VALUE OF BACTERIAL LYSATES IN PREVENTION OF ACUTE RESPIRATORY INFECTIONS IN CHILDREN

Summary. The problem of acute respiratory infectious and inflammatory diseases in children is considered in the article. The functions of nonspecific defense system are described, and there is also given a detailed description of drugs used for the pathogenic treatment of respiratory infections — immunotropic agents of bacterial lysates, particularly Broncho-munal®.

Key words: acute respiratory infections, bacterial lysates, Broncho-munal®.