Сосудорасширяющее действие альфузозина и тамсулозина при пассивном ортостазе: рандомизированное двойное слепое плацебо-контролируемое исследование

Tuomo Nieminena^a, Ritva Ylitalo^a, Tiit Kööbi^{b,c}, Pauli Ylitalo^{a,c}, Mika Kähönen^{b,c}
^aDepartment of Pharmacological Sciences, Medical School, FIN-33014 University of Tampere, Finland
^bDepartment of Clinical Physiology, Medical School, FIN-33014 University of Tampere, Finland
^cTampere University Hospital, P.O. Box 2000, FIN-33521 Tampere, Finland

Цель: детальное сравнение влияния на сердечно-сосудистую систему при пассивном ортостазе использования α_1 -блокаторов альфузозина и тамсулозина в урологии.

Методы: ответ на пассивный ортостаз (наклон провокации на 60° в течение 8 мин) был изучен у нормотензивных здоровых добровольцев с помощью измерения артериального давления (АД) на пальце и импедансной кардиографии до введения препаратов, а также через три дня после начала двойной слепой рандомизации. Были использованы стандартные клинические дозы α₁-блокаторов альфузозина (5 мг дважды в день, n=10), тамсулозина (0,4 мг один раз в день, n=10) или плацебо (n=11).

Результаты: при измерении до ортостатического испытания в положении лежа на спине ни альфузозин, ни тамсулозин существенно не изменили никакие параметры сердечнососудистой системы. Однако при проведении пассивного ортостаза как тамсулозин, так и альфузозин, уменьшали индекс системного сосудистого сопротивления по сравнению с результатами исследования до лечения (-540 и -462 dyn s/cм⁵×m², соответственно, р<0,05). Оба препарата вызвали усиление ортостатической реакции: частоты сердечных сокращений (11 и 9 в 1 мин соответственно, р<0,05) и сердечного индекса (0,50 и 0,40 л/мин/м² соответственно, р<0,05), но не оказали влияния на ударный индекс по сравнению с группой плацебо или с исходными данными до введения препаратов. Группы альфузозина и тамсулозина существенно не отличались друг от друга с точки зрения любого параметра.

Выводы: альфузозин и тамсулозин проявляют четкие сердечно-сосудистые эффекты, которые наиболее ярко выражены в действии на системное сосудистое сопротивление и сердечный выброс.

1. Введение

 α_1 -Адреноблокаторы (α_1 -блокаторы) эффективны в лечении симптомов нижних мочевых путей (СНМП), вызванных доброкачественной обструкцией предстательной железы. Классические α_1 -блокаторы, такие, как празозин, доксазозин и теразозин, являются антагонистами α_1 -рецепторов не только в нижних мочевых путях, но и в кровеносных сосудах. Основными побочными эффектами этих α_1 -блокаторов являются головокружение и ортостатическая гипотензия, особенно, когда лечение проводят у больных с сопутствующей интенсивной антигипертензивной терапией [1, 2].

Альфузозин и тамсулозин являются новыми препаратами, которые устраняют СНМП так же эффективно, как празозин, доксазозин или теразозин, но имеют меньше побочных эффектов в отношении кровообращения [3–5]. Концепция уроселективных α_1 -блокаторов была разработана для описания соотношения положительных мочевых эффектов по сравнению с сердечно-сосудистыми побочными эффекта-

ми. [6]. Физиологическое и фармакологическое подспорье уроселективности было широко исследовано, но все еще существует много нерешенных вопросов [7–10].

С точки зрения фармакологических рецепторов, классические α₁-блокаторы и альфузозин не являются подтипселективными α_1 -антагонистами, то есть они блокируют все три подтипа α_1 -рецепторов, α_{1A} , α_{1B} и α_{1D} в одинаковой степени [8, 10, 11]. В нижних мочевых путях преобладают рецепторы α_{1A} и α_{1D} , тогда как в стенках сосудов присутствуют все три подтипа в различных пропорциях [8]. Тамсулозин является первым α_1 -блокатором с выраженной селективностью к подтипам рецепторов: он обладает более сильным сродством к α_{1A} по сравнению с α_{1B} и промежуточным α_{1D} [12]. Это сродство является основным фактором, объясняющим селективность тамсулозина в отношении предстательной железы [10], вместе с фармакокинетический моделью препарата [8]. Между тем, относительно мягкое действие на сердечно-сосудистую систему и функциональная уроселективность альфузозина объясняются исключительно его фармакокинетическим шаблоном [9].

Влияние тамсулозина и альфузозина на частоту сердечных сокращений (ЧСС), а также на диастолическое (ДАД) и систолическое (САД) АД в вертикальном и наклонном положениях было изучено в ряде безопасных и достоверных исследований [3, 4], но данных о влиянии этих препаратов на другие показатели сердечно-сосудистой системы недостаточно. Что касается альфузозина, нет отчетов о его влиянии на сердечный выброс, ударный объем и системное сосудистое сопротивление или соответствующие индексы. О параметрах влияния на скорость пульсовой волны или артериального соответствия не сообщалось, так же как и о последствиях применения альфузозина при пробах с наклонами неизвестны.

Влияние тамсулозина на сердечный выброс и ударный объем изучали в исследовании, целью которого была оценка степени α_1 -блокады [13]. В этом исследовании, однако, гомеостаз гемодинамики не был подвержен физиологическому контролю, так как субъектам предварительно вводили α -агонисты фенилэфрина.

Это исследование было разработано для детального изучения и сравнения сердечно-сосудистых эффектов при применении стандартных клинических доз тамсулозина и альфузозина друг с другом и с плацебо путем постоянного контроля за изменениями сердечно-сосудистых параметров у добровольцев, которые подвергались ортостазу.

2. Материалы и методы

2.1. Субъекты и препараты

Тридцать один здоровый некурящий доброволец (17 женщин, 14 мужчин) из когорты студентов-медиков в возрасте 21–29 лет и массой тела 53–88 кг были рандомизированы на

ЗДОРОВЬЕ МУЖЧИНЫ №3 (46) 2013 ISSN 2307-5090

Данные экспериментальной группы (±стандартная ошибка значения) до назначения препаратов и влияние препаратов на сердечно-сосудистую систему в положении на спине перед пассивным ортостазом через 3,5-4 ч после приема препарата

Количество пациентов	11	10	10
Возраст (годы)	23,8 (0,6)	23,3 (0,4)	23,6 (0,4)
Рост (см)	174 (2)	178 (3)	175 (3)
Масса тела (кг)	71 (3)	72 (3)	68 (3)
Индекс массы тела (кг/м²)	24 (1)	23 (1)	22 (1)
САД (мм рт.ст)			
До приема	114 (2)	115(3)	111 (4)
Изменения при приеме	3 (2)	-1(2)	0 (3)
ДАД (мм рт.ст)			
До приема	67 (2)	64 (2)	63 (2)
Изменения при приеме	-1 (2)	1 (2)	-1 (3)
ЧСС (в 1 мин)			
До приема	62 (1)	61 (2)	61 (2)
Изменения при приеме	2 (2)	3 (3)	0 (2)
Ударный индекс (мл/м²)			
До приема	49 (2)	49 (1)	52 (2)
Изменения при приеме	1 (2)	-2(2)	-3 (2)
Сердечный индекс (мл/м²)			
До приема	3,1 (0,1)	3,0 (0,1)	3,1 (0,2)
Изменения при приеме	0,1 (0,1)	0,0 (0,2)	-0,2 (0,1)
ИССС (dyn s/см⁵×m²)			
До приема	2118 (105)	2097 (48)	1983 (92)
Изменения при приеме	-57 (102)	17 (124)	132 (108)
Скорость распространения пульсовой волны (м/с)			
До приема	8,0 (0,3)	8,0 (0,3)	7,6 (0,3)
Изменения при приеме	0,1 (0,2)	0,2 (0,2)	0,4 (0,2)

три группы исследования. Все субъекты были умеренно физически активны, имели нормальное АД в покое, при этом никто из них не имел сердечно-сосудистых и легочных заболеваний. Беременность была критерием исключения. Демографические данные групп приведены в таблице.

Исследуемые препараты: α₁-блокатор тамсулозин (капсулы Omnic 0,4 мг, Yamanouchi Pharmaceutical, Japan), α₁-блокатор альфузозин (таблетки, Xatral 5 мг, Sanofi-Synthelabo, France) и плацебо (таблетки/капсули лактозы, University Pharmacy of Helsinki, Finland). В исследовании использовали двойной имитационный дизайн, пациенты принимали плацебо и/или лекарственное средство дважды в день с 200 мл воды в течение трех дней следующим образом: 1) плацебо 8 часов утра + 8 часов вечера (n=11), 2) тамсулозин 0,4 мг 8 часов утра + плацебо 8 часов вечера (n=10), 3) альфузозин 5 мг 8 часов утра + 8 часов вечера (n=10). Утром (8 утра) четвертого дня лечения пациенты принимали последнюю дозу препарата за 3,5 ч до начала записи сердечно-сосудистых показателей в положении лежа с наклоном. Никакие другие препараты или алкогольные напитки не были разрешены во время лечения, пациенты не принимали пищу ночью и утром до проведения исследования. Опытно-конструкторское исследования было одобрено Комитетом по этике ampere University Hospital District, Finland и письменное информированное согласие было получено от каждого субъекта до начала исследования, как это предусмотрено в Хельсинской Декларации.

2.2. Экспериментальная методика

Исследование проводили в двойном слепом рандомизированном плацебо-контролируемом дизайне. Перед началом приема препарата изучали исходную импедансную кардиографию и кардиографию после того, как пациент находился в положении лежа на спине в течение 20-30 мин. Проведено измерение: АД (САД, ДАД, среднее – СрАД), ударного объема (УО), артериальной скорости распространения пульсовой волны (СРПВ), электрокардиограммы (ЭКГ), системного сосудистого сопротивления (ССС) и частоты сердечных сокращений (ЧСС). После исходной записи добровольцы подвергались пассивному ортостатическому тесту: стол был поднят из горизонтального положения в вертикальное на 60° $(2,3^{\circ}/c)$ на 8 мин, после чего возвращался в исходное положение $(2,3^{\circ}/c)$. После того как испытуемые проводили в горизонтальном положении 6 мин, записывали данные. На четвертый день лечения, через 3,5-4 ч после приема последней дозы препарата, во время наибольшей эффективной концентрации в сыворотке крови (документы производителей [14]), гемодинамические показатели (САД, ДАД, СрАД, УО, СРПВ, ЭКГ, ССС и ЧСС) снова измеряли до, во время и после ортостатического теста, как описано выше.

2.3. Методы измерения

Измерение АД проводила опытная медсестра с использованиям плечевой манжетки по методу Рива-Роччи. Сердечный выброс (СВ=ЧСС×УО) измеряли с помощью импедансной кардиографии (CircMon™, модель B202, JR Medical, Tallinn, Estonia). Этот метод подробно описан в некоторых работах [15, 17]. Вкратце, импедансная кардиография CircMonTM B202 основана на УО уравнения Тищенко (1973) с поправочным коэффициентом для тетраполярной записи, а также включающей в себя коррекцию УО по гематокриту и индексу массы тела [17].

32 3ДОРОВЬЕ МУЖЧИНЫ №3 (46) 2013 ISSN 2307-5090

Для ЭКГ были использованы одноразовые электроды (синий тип датчика R-00-S, Medicotest A/S, Ølstykke, Denmark). Пара электрических соединений токовых электродов была наложена на конечности, сразу над запястьем и лодыжкой. Электроды помещали проксимально по отношению к токовым электродам на расстоянии 5 см между центрами электродов. С помощью импедансной кардиографии надежно измеряют сердечный выброс и она прекрасно согласуется с инвазивной термодилюцией и прямым методом Фика для измерения СВ у пациентов с сердечными шунтами и поражениями клапанов сердца [15, 16]. Таким образом, этот метод является удобным для неинвазивного и непрерывного анализа СВ и его изменений в различных условиях. ССС был рассчитан из СВ и СрАД по формуле: ССС=СрАД/СВ×80. Артериальная СРПВ была рассчитана по времени задержки между одновременно записанным потоком импульсов и расстоянием между местами записи, то есть между корнем аорты и подколенной артерии, метод хорошо согласуется с измерениями импульса перехода в артериальном дереве с помощью допплеровского исследования [18]. Артериальные пульсовые волны были записаны с помощью каналов измерения напряжения Cir-cMonTM B202 и проанализированы автоматически на том же устройстве. Импульсный переход в корень аорты оценивали по импедансной кардиограмме в точке, где начиналось резкое движение вверх систолического компонента. Прибытие пульсовой волны к подколенной артерии оценивают так, как при резком систолическом компоненте второго канала с активным электродом, лежащим на уровне коленного сустава. Расстояние между корнем аорты и коленным суставом рассчитывали с учетом роста пациента (Р) при соотношении Р/1,61.

УО, СВ и СРПВ были преобразованы в соответствующие показатели: ударный индекс (УИ=УО/ m^2), сердечный индекс (СИ=СВ/ m^2) и индекс системного сосудистого сопротивления (ИССС=СВР $\times m^2$).

2.4. Анализ результатов

Значения ± стандартная ошибка значения (СОЗ). Изменения, связанные с препаратами в начале исследования, то есть до наклона провокации, были проанализированы по тесту Стьюдента для парных значений, с проведением постфактум теста Бонферрони (таблица). Кроме того, изменения по сравнению с исходными данными уровня вызванного ответа при пассивном ортостазе в исследуемой группе были протестированы с использованием парного Т-теста Бонферрони. Различия между группами оценивали повторным дисперсионным анализом, с использованием метода Бонферрони при проведении парных сравнений группами (рис. 1–3). Различия считали статистически значимым при р<0,05.

3. Результаты

3.1. Эффекты лекарственных препаратов на параметры сердечно-сосудистой системы в положении лежа на спине

Участвующие добровольцы были рандомизированы на три группы: плацебо, альфузозин, тамсулозин. Ни один из добровольцев не сообщил о каких-либо выраженных побочных эффектах препарата во время лечения. Три группы не отличались друг от друга в отношении демографических или гемодинамических показателей в начале исследования перед приемом препаратов (см. таблицу).

Препараты или плацебо существенно не изменили (р≥0,11) любые сердечно-сосудистые показатели в лежачем положении перед пассивным ортостазом.

3.2. Эффекты лекарственных препаратов на сердечно-сосудистый ответ при пассивном ортостазе.

Единственные статистически значимые изменения САД и ДАД (рис. 1) произошли в группе тамсулозина: САД было снижено в начале (2 мин) ортостатического положения по сравнению с данными до лечения (р<0,05). Кривые САД и ДАД из трех групп лечения не отличались друг от друга.

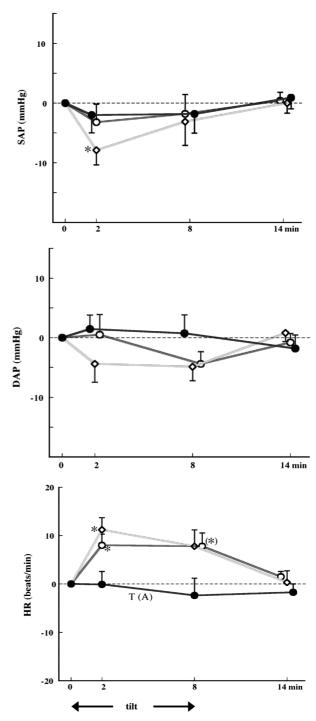


Рис. 1. Изменения, индуцированные препаратами (значение \pm CO3 n - 10-11). Значения до лечения приняты за линию 0 в отношении САД (SAP), ДАД (DAP) и ЧСС (HR)

Символы: черный круг — плацебо, белый круг — альфузозин, ромбы — тамсулозин.

(A)p<0,1 в сравнении с кривой альфузозина, Tp<0,05 в сравнении с кривой тамсулозина, *p<0,05 и *p<0,1 в сравнении с исходными значениями

ЧСС была повышена как в группе тамсулозина, так и в группе альфузозина, по сравнению с исходными данными (p<0,05). Кривая ЧСС в группе плацебо отличалась от кривой в группе тамсулозина (p<0,05) и, как правило, отличалась от группы альфузозина (p<0,10).

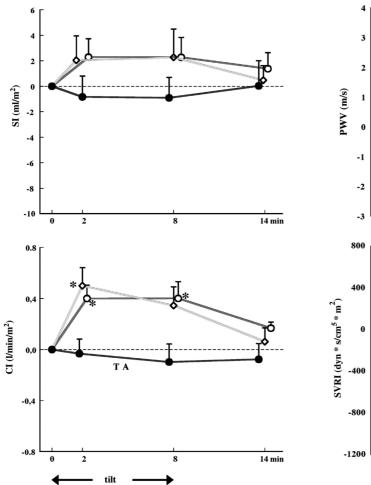


Рис. 2. Изменения, индуцированные препаратами (значение \pm CO3 n 10-11). Значения до лечения приняты за линию 0 в отношении УИ (SI), СИ (CI).

Символы: черный круг — плацебо, белый круг — альфузозин, ромбы — тамсулозин.

Ар<0,05 в сравнении с кривой альфузозина, Tp<0,05 в сравнении с кривой тамсулозина, *p<0,05 в сравнении с исходными значениями

УИ не был существенно зависим от любого из методов лечения (рис. 2). В группе плацебо в подъемно-поворотной позиции СИ значительно уменьшился, в то же время этому снижению препятствовали α_1 -блокаторы. Оба препарата существенно не влияли на СРПВ.

Наиболее выраженные изменения произошли в ИССС (рис. 3), который был значительно снижен в ортостатической позиции в группах тамсулозина и альфузозина по сравнению с исходными значениями (p<0,05). Данные группы плацебо отличались от группы тамсулозина (p<0,05) и, как правило, от группы альфузозина (p<0,10).

4. Обсуждение

Сердечно-сосудистые реакции в ортостатическом тесте оценивали на импедансной кардиографии и сравнивали между добровольцами, разделенными на три группы: альфузозина, тамсулозина и плацебо. Насколько нам известно, данное исследование является первым, в котором эффекты альфузозина на сердечно-сосудистую систему оценивают в деталях и сравнивают с эффектами тамсулозина и плацебо.

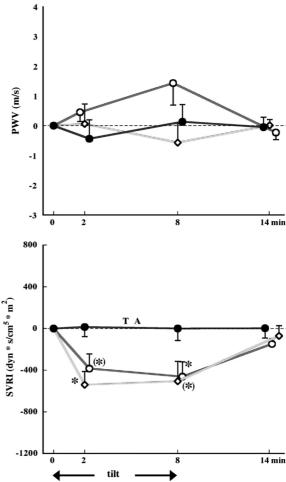


Рис. 3. Изменения, индуцированные препаратами (значение \pm CO3 n 10-11). Значения до лечения приняты за линию 0 в отношении СРПВ (PWV), ИССС (SVRI).

Символы: черный круг — плацебо, белый круг — альфузозин, ромбы — тамсулозин.

Ap<0.05 в сравнении с кривой альфузозина, Tp<0.05 в сравнении с кривой тамсулозина, *p<0.05 и *p<0.1 в сравнении с исходными значениями

4.1. Действие лекарственных препаратов на показатели сердечно-сосудистой системы в положении на спине

Альфузозин представлен на рынке в трех различных формах: оригинальная стандартная форма 2,5 мг три раза в день, форма с устойчивым высвобождением 5 мг дважды в день и форма с пролонгированным высвобождением 10 мг один раз в день. Снижение АД для всех этих форм было аналогично или сопоставимо друг с другом: в большинстве исследований изменения АД в положении на спине и вертикальной позиции были незначительными, максимальное среднее снижение 5 мм рт.ст [4]. Тамсулозин используют в дозах от 0,2 мг до 0,8 мг один раз в день. Тамсулозин 0,4 мг, очевидно, наиболее распространенная дозировка, так как более высокие дозы влекут за собой побочные реакции, такие, как головокружение или ринит у 75% пациентов [5]. Влияние тамсулозина 0,4 мг на САД и ДАД было незначительным, с колебанием 0-2 мм рт.ст [4, 19, 20]. Кроме того, в настоящем исследовании САД и ДАД в положении на спине осталось практически неизменным как в группе, принимавшей альфузозин по 5 мг дважды в день, так и в группе, принимавшей тамсулозин по 0,4 мг один раз в день.

3ДОРОВЬЕ МУЖЧИНЫ №3 (46) 2013 ISSN 2307-5090

На спине, а также в вертикальном положении симпатическая активация α_1 -адренорецепторов низка [19, 21]. Таким образом, даже полная блокада α_1 -рецепторов вызовет только незначительные сердечно-сосудистые эффекты. Напротив, вертикальное положение обычно вызывает заметную активацию симпатической нервной системы, вследствие чего классические α_1 -блокаторы, такие как празозин, доксазосин и теразозин часто вызывают побочные ортостатические реакции, включая обмороки [1, 10, 22].

4.2. Влияние лекарственных препаратов на сердечно-сосудистую систему при проведении пассивного ортостаза

Активация симпатических сердечно-сосудистых α_1 -адренорецепторов при пассивной провокации с наклоном успешно блокировалась альфузозином и тамсулозином. Действие препаратов было относительно равномерным и никаких существенных различий не было обнаружено между сердечнососудистыми ответами на препараты.

У добровольцев, принимавших альфузозин и тамсулозин, наблюдалось существенное снижение системного сосудистого сопротивления по сравнению с исходными данными. Ингибирование α₁-адренорецепторопосредованной вазоконстрикции реализовывалось снижением САД на 8 мм рт.ст. в группе тамсулозина и на 3 мм рт.ст. в группе альфузозина. Снижение САД в группе тамсулозина может быть клинически достаточно значимым, чтобы вызвать головокружение во время ортостаза, и это было отмечено как редкий неблагоприятный эффект у амбулаторных больных [10].

Снижение АД активирует симпатический барорефлекс, что приводит к компенсаторному повышению ЧСС посредством β_1 -адренорецепторов. Это повышение частоты ЧСС потенцировалось также альфузозином и тамсулозином, вероятно, из-за ингибирования сужения кровеносных сосудов и отсутствия негативных хронотропных последствий α_1 -блокады на сердце [23]. Пассивный ортостаз индуцирует снижение преднагрузки, что реализуется уменьшением УО [24], как наблюдалось в ходе иследованния (данные не представлены). Альфузозин и тамсулозин существенно не изменили УО по сравнению с исходными данными и группой плацебо,

однако, препараты значительно противодействуют снижению СИ при пассивном ортостазе в результате увеличением ЧСС.

Отношение между СрАД, СИ и ИССС представлено в уравнении - СрАД=ИССС×СИ×80. Таким образом, существенное снижение ИССС в данном исследовании было нейтрализовано увеличением СИ, что объясняет, почему изменения АД относительно невелики, несмотря на заметное ингибирование вазоконстрикции. Экстраполяцию наблюдаемого сосудорасширяющего эффекта для пожилых людей не просто провести из-за противоречивых механизмов: старение связано со снижением адренергические влияния на физиологические процессы и это ослабило бы наблюдаемые реакции [8]. Тем не менее, вегетативные компенсаторные механизмы у пожилых людей не так эффективны, как у молодых [20], что может привести к еще более выраженным гемодинамическим изменениям при наличии α₁-блокады у пожилых пациентов. Для определения действия альфузозина и тамсулозина на сердечно-сосудистую систему у пожилых пациентов с СНМП необходимо новое исследование.

Наши результаты свидетельствуют, что альфузозин и тамсулозин оказывают выраженное сердечно-сосудистое действие. Это наиболее ярко проявляется во влиянии на системное сосудистое сопротивление и сердечный выброс. Установленные эффекты альфузозина и тамсулозина значительно не отличались друг от друга. Опубликованные ранее работы по изучению влияния этих новых α_1 -блокаторов на сердечно-сосудистую систему были сосредоточены на АД и ЧСС, и, следовательно, в некоторых из них, возможно, переоценена их уроселективность.

Благодарность

Финансовую поддержку представил Фонд медицинского исследования университетской больницы Тампере. Медицинской сестре исследования Pirjo Järventausta выносится благодарность за профессиональную техническую помощь.

Конфликт интересов: ни один из авторов не имеет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Chrischilles E, Rubenstein L, Chao J, Kreder KJ, Gilden D, Shah H. Initiation of nonselective a1-antagonist therapy and occurrence of hypotension-related adverse events among men with benign prostatic hyperplasia: a retrospective cohort study. Clin Ther 2001:23:727–43.
- Tewari A, Narayan P. Alpha-adrenergic blocking drugs in the manage- ment of benign prostatic hyperplasia: interactions with antihyperten- sive therapy. Urology 1999;53(3 Suppl 3a):14–20.
- 3. Djavan B, Marberger M. A meta-analysis on the efficacy and toler-ability of alpha1-adrenoceptor antagonists in patients with lower urinary tract symptoms suggestive of benign prostatic obstruction. Eur Urol 1999;36:1–13.
- 4. Michel MC, Flannery MT, Narayan P. Worldwide experience with alfuzosin and tamsulosin. Urology 2001;58:508–16.
- Wilt TJ, Mac Donald R, Rutks I. Tamsulosin for benign prostatic hyperplasia. Cochrane Database Syst Rev. 2003;CD002081.
- Andersson KE. The concept of uroselectivity. Eur Urol 1998;33(Suppl 2):7–11.
 Debruyne FM. Alpha blockers: are all

- created equal? Urology 2000;56(5 Suppl 1):20-2
- 8. Guimaraes S, Moura D. Vascular adrenoceptors: an update. Pharmacol Rev 2001;53:319–56.
- 9. Roehrborn CG. Alfuzosin: overview of pharmacokinetics, safety, and efficacy of a clinically uroselective alpha-blocker. Urology 2001;58(6 Suppl 1):55–63.
- 10. Roehrborn CG, Schwinn DA. a1-adrenergic receptors and their inhi-bitors in lower urinary tract symptoms and benign prostatic hyper- plasia. J Urol 2004:171:1029–35.
- 11. Langer SZ. History and nomenclature of alpha1-adrenoceptors. Eur Urol 1999;36(Suppl 1):2—6.
- 12. Michel MC, Grubbel B, Taguchi K, Verfurth F, Otto T, Kropfl D. Drugs for treatment of benign prostatic hyperplasia: affinity comparison at cloned alpha1-adrenoceptor subtypes and in human prostate. J Auton Pharmacol 1996;16:21–8.
- 13. Schafers RF, Fokuhl B, Wasmuth A, Schumacher H, Taguchi K, de Mey C, et al. Differential vascular alpha1-adrenoceptor antagonism by tamsulosin and terazosin. Br J Clin Pharmacol 1999;47:67–74.

- 14. Matsushima H, Kamimura H, Soeishi Y, Watanabe T, Higuchi S, Tsunoo M. Pharmacokinetics and plasma protein binding of tamsu- losin hydrochloride in rats, dogs, and humans. Drug Metab Dispos 1998;26:240–5.
- 15. Koobi T, Kaukinen S, Ahola T, Turjanmaa VM. Non-invasive mea- surement of cardiac output: whole-body impedance cardiography in simultaneous comparison with thermodilution and direct oxygen Fick methods. Intensive Care Med 1997;23:1132–7.
- Koobi T, Kaukinen S, Turjanmaa VM, Uusitalo AJ. Whole-body impedance cardiography in the measurement of cardiac output. Crit Care Med 1997;25:779–85.
 Tishchenko MI. Measurement of the stroke volume by integral rheogram of the
- stroke volume by integral rheogram of the human body. Sechenov Physiol J 1973;59:1216–24. 18. Koobi T, Kahonen M, livainen T, Turjanmaa V. Simultaneous non- invasive

assessment of arterial stiffness and

haemodynamics - avalidation study. Clin

Physiol Funct Imaging 2003;23:31–6.

19. Chapple CR, Wyndaele JJ, Nordling J, Boeminghaus F, Ypma AF, Abrams P. Tamsulosin, the first prostate-selective

- alpha 1A-adreno- ceptor antagonist. A meta-analysis of two randomized, place-bo-con- trolled, multicentre studies in patients with benign prostatic obstruction (symptomatic BPH). European Tamsulosin Study Group. Eur Urol 1996;29:155–67.? 20. de Mey C. Cardiovascular effects of alpha-blockers used for thetreatment of symptomatic BPH: impact on safety and well-bening. Eur Urol 1998;34(Suppl 2):18–28.
- 21. Lepor H, Kaplan SA, Klimberg I, Mobley DF, Fawzy A, Gaffney M, et al. Doxazosin for benign prostatic hyperplasia: long-term efficacy and safety in hypertensive and normotensive patients. The Multicenter Study Group. J Urol 1997;157:525–30.
- 22. Mets TF. Drug-induced orthostatic hypotension in older patients. Drugs Aging 1995;6:219–28.
- 23. Brodde OE, Michel MC. Adrenergic and muscarinic receptors in the human heart. Pharmacol Rev 1999;51:651-90.
- 24. Nieminen T, Koobi T, Turjanmaa V. Can stroke volume and cardiac output be determined reliably in a tilt-table test using the pulse contour method? Clin Physiol 2000;20:488–95.

Статья поступила в редакцию 24.09.2013