САМОХВАЛОВ С.Є., д.т.н., професор НАДРИГАЙЛО Т.Ж., к.т.н., доцент ПОБЕГУЦА А.В., магістр

Дніпродзержинський державній технічний університет

МАТЕМАТИЧНА МОДЕЛЬ ФІЛЬТРАЦІЇ ДОМІШОК У ДЕНДРИТНОМУ КАРКАСІ ЗЛИВКА, ЩО ТВЕРДНЕ

Вступ. Розплав, який кристалізується, – це багатофазне середовище с фазовими перетвореннями. Область тверднення можна поділити на п'ять зон, які якісно відрізняються між собою за характером теплофізичних процесів, які в них відбуваються: рідинну зону, зону рухомих кристалів, зону живлення, зону вкрапленого розплаву, тверду зону [1]. На процеси формування структури зливка і перерозподілу в ньому домішок великий вплив має характер руху кристалів та домішкових фаз в рідинній зоні.

У результаті вивчення кристалізації зливка доводиться стикатися з достатньо широким комплексом запитань [2]. У більшості практичних випадків фронт кристалізації нестійкий, тобто можливий ріст дендритів або хаотичне зародження кристалів. В цьому випадку виникає двохфазна зона кристалізації, в якій матеріал, що кристалізується, існує в рідкому та твердому станах.

Вважається, що в рівноважній моделі двохфазної зони дифузійні процеси в рідкій та твердій фазах проходять повністю. Тоді справедливо правило важеля для визначення густини фази домішок через її густину в рідкій та твердій фазах [3].

Аналіз фільтраційного руху розплаву в дендритному каркасі є важливим з точки зору практичних задач, так як він впливає на структурну та хімічну неоднорідності у зливку, які утворюються завдяки механізму сегрегації [4, 5].

Вважається, що домішки крізь дендритний каркас рухаються з фільтраційною швидкістю розплаву. На підставі аналізу експериментальних даних роботи [6] випливає висновок, що сегреганти, в яких кут змочування дендритних кристалів більший, ніж в чистому розплаві, капілярними силами виштовхуються з дендритного каналу у напрямку рідкої зони, тобто рухається в бік, протилежний руху розплаву, і цей рух є визначаючим при утворенні хімічної неоднорідності зливка.

Постановка задачі. Задачею даної роботи є створення двовимірної математичної моделі згаданого вище процесу та застосування одного із варіантів методів розщеплення за фізичними факторами для цієї моделі.

Результати роботи. Основні вихідні припущення:

- розрахункова область представляє собою половину осьового перерізу зливка;

 – з бічної поверхні та дна зливка відбувається віддача тепла за рахунок конвективного теплообміну з відповідним коефіцієнтом тепловіддачі;

- при кристалізації відбувається перенос домішок.

Розглянемо випадок наявності лише однієї домішкової фази b.

В основу моделі покладено наступні рівняння, які відносяться до окремих зон зливка, що твердне [7]:

$$\vec{\nabla} \cdot \vec{v} = -\left(\delta_f - \varepsilon\right) \left[\Phi_s - \vec{\nabla} \cdot \left(\zeta \vec{v}_{SI}^c - D_s \vec{\nabla} \zeta\right) \right] - (1 - \zeta) \frac{d\varepsilon}{dt},\tag{1}$$

$$\frac{\partial \vec{v}}{\partial t} = -\left(\vec{v} \cdot \vec{\nabla}\right)\vec{v} + v_e \Delta \vec{v} + \left[\zeta \delta_f + (l - \zeta)\varepsilon\right]\vec{g} - \vec{\nabla}\widetilde{p},\tag{2}$$

$$\frac{\partial \zeta}{\partial t} = -\vec{\nabla} \cdot \left[\zeta \left(\vec{v} + \vec{v}_{SI}^{c} \right) \right] + \vec{\nabla} \cdot \left(D_{S} \vec{\nabla} \zeta \right) + \Phi_{S}, \tag{3}$$

$$\frac{\partial \beta_b}{\partial t} = -\vec{\nabla} \cdot \left(\beta_b \ \vec{v}_b^c\right) + \vec{\nabla} \cdot \left[(1-\zeta) D_b \vec{\nabla} \frac{\beta_b}{(1-\zeta)}\right] - \frac{k_b \beta_b}{(1-\zeta)} \Phi_s, \tag{4}$$

$$\vec{v}_{SI}^{c} = -\frac{d_{S}^{2}}{C_{ID}v_{L}} \left(\varepsilon - \delta_{f}\right)\vec{g} , \qquad (5)$$

$$\vec{v}_{b}^{c} = -\frac{K_{b}\zeta}{R_{b}(l-\zeta) + \upsilon_{L}x_{b}\zeta} \left(\frac{2-\zeta}{l-\zeta}\vec{\nabla}\zeta + \zeta\vec{\nabla}ln\beta_{b}\right), \tag{6}$$

$$\frac{\partial T}{\partial t} = -\frac{C_L(1-\zeta)}{C}\vec{v}_L \cdot \vec{\nabla}T - \frac{C_S\zeta}{C}\vec{v}_S \cdot \vec{\nabla}T + \\
+ \frac{1}{C}\vec{\nabla} \cdot \left\{ \left[\lambda'_L(1-\zeta) + \lambda'_S\zeta \right]\vec{\nabla}T \right\} + \frac{L_e}{C}\Phi_S,$$
(7)

де \vec{v} – середньомасова (барицентрична) швидкість, \vec{v}_{S1}^{c} – колективна складова відносної швидкості дрібнокристалічної фази, \vec{v}_{b}^{c} – колективна швидкість домішок, \vec{v}_{L} – швидкість розплаву, \vec{v}_{S} – швидкість твердої фази, δ_{f} – об'ємний коефіцієнт фазової усадки, ε – температурна усадка, $\tilde{\rho}$ – тиск, нормований на густину, T – температура, t – час, C – питома теплоємність, C_{S} – питома теплоємність твердої фази, C_{L} – питома теплоємність розплаву, причому $C = C_{L}(1-\zeta) + C_{S}\zeta$, ζ – об'ємна густина кристалічної фази, C_{ID} – коефіцієнт опору руху кристалів, Φ_{S} – джерело твердої фази, D_{S} – коефіцієнт ефективної турбулентної дифузії дрібнокристалічної фази, L_{e} – ефективна питома енергія фазового перетворення, λ'_{S} , λ'_{L} – нормовані на густину розплаву коефіцієнти теплопровідності твердої та рідкої фаз відповідно, β_{b} – об'ємна густина домішкової фази, D_{b} – коефіцієнт дифузії домішок, k_{b} , – коефіцієнт рівноважного розподілу домішок, v_{e} – ефективний коефіцієнт кінематичної в'язкості, $v_{L} = \frac{\mu}{\rho_{0}}$ – в'язкість рідкої компоненти середовища, g – прискорення вільного падіння, R_{b} , та K_{b} – феноменологічні параметри, які характеризують зону дендритного каркасу, $x_{b} = \frac{\rho_{b}^{0}}{\rho_{0}}$, ρ_{0} – істинна густина домішкової фази.

В плинній зоні швидкості \vec{v}_L та \vec{v}_S можуть бути знайдені за формулами:

$$\vec{v}_L = \vec{v} - \zeta \, \vec{v}_{S1}^c, \quad \vec{v}_S = \vec{v} + \vec{v}_{S1}^c.$$

Формула (5) відноситься до плинної зони. Вона використовується один раз на початку розрахунку, оскільки швидкість \vec{v}_{S1}^{C} в моделі, що розглядається, не змінюється. Формули (1) та (2) відносяться виключно до плинної зони, а (6) – до зони живлення. Формула (3) формально справедлива в усьому об'ємі зливка, але в твердій зоні вироджується до тривіального виразу $\frac{\partial \zeta}{\partial t} = 0$. В зоні живлення прийнято, що $\vec{v}_{S} = 0$, тому

конвективний та дифузійний доданки в (3) будуть відсутні, тобто $\frac{\partial \zeta}{\partial t} = \Phi_S$. В повному

обсязі рівняння (3) використовується лише в плинній зоні.

Рівняння сегрегації (4) в повному обсязі справедливе аж до зони вкрапленого розплаву, оскільки в зоні живлення, як і в плинній зоні, активно ідуть процеси конвективного переносу та дифузії домішок. В зоні живлення конвективна швидкість домішок визначається формулою (6), а в плинній зоні у вибраному наближенні слід покладати $\vec{v}_b^c = \vec{v}$. В зоні вкрапленого розплаву через сегрегаційний механізм виділення домішки, хоч процес виділення і продовжується, середня густина домішки по всіх фазах не змінюється, оскільки перенос її припиняється, що дозволяє в зоні вкрапленого розплаву, як і в твердій зоні, рівняння (4) не розглядати. Рівняння теплопереносу (7) слід розв'язувати в усіх зонах зливка. Треба враховувати, що конвективний перенос тепла має місце тільки в плинній зоні. В усіх інших $\vec{v}_L = \vec{v}_S = 0$.

Ці рівняння доповнюються граничними умовами:

 на твердих поверхнях та осі симетрії на перпендикулярну складову вектора швидкості накладається умова непротікання

$$\vec{n} \cdot V_{\perp} = 0, \tag{8}$$

на швидкості паралельні поверхні – умова вільного ковзання

$$\frac{\partial V_{\parallel}}{\partial \vec{n}}\Big|_{S} = 0; \qquad (9)$$

2) для тиску на усіх границях задається гранична умова другого роду

$$\vec{n} \cdot \vec{\nabla} \widetilde{p} = 0; \tag{10}$$

3) для температури на осі симетрії та верхній поверхні форми – умова теплоізоляції

$$\left. \frac{\partial T}{\partial \vec{n}} \right|_{S} = 0, \tag{11}$$

на бічній поверхні та дні форми – умова конвективного теплообміну

$$\left. \frac{\partial T}{\partial \vec{n}} \right|_{S} = \alpha (T - T_{cp}) , \qquad (12)$$

де α – коефіцієнт теплопередачі;

4) на осі симетрії і твердих поверхнях форми для домішкової та твердої фази – умова непротікання:

$$\vec{n} \cdot \vec{\nabla} \beta = 0, \ \vec{n} \cdot \vec{\nabla} \zeta = 0 \tag{13}$$

Застосуємо метод розщеплення за фізичними факторами для розв'язання системи рівнянь (1)-(7).

У результаті для визначення теплофізичних характеристик затверділого зливка бінарного сплаву в квазідвофазному наближенні нерівноважної моделі кристалізації приходимо до наступної схеми розщеплення [7]: 0

2
$$\vec{v}_{S1}^c = -\frac{d_S^2}{C_{1D} v_L} \left(\varepsilon - \delta_f\right) \vec{g} , \qquad (14)$$

I

1, 2
$$\vec{\tilde{v}} = \vec{v}^n + \tau \left\{ -\left(\vec{v}^n \cdot \vec{\nabla}\right) \vec{v}^n + v_e \Delta \vec{v}^n + \left| \zeta^n \delta_f + \left(1 - \zeta^n\right) \varepsilon^n \right| \vec{g} \right\},$$
 (15)

$$1-5 \qquad \lambda'^{n} = \lambda'_{L} \left(1 - \zeta^{n} \right) + \lambda'_{S} \zeta^{n}, \tag{16}$$

$$1-5 \qquad C^n = C_L \left(1 - \zeta^n \right) + C_S \zeta^n, \tag{17}$$

$$1-5 \qquad \widetilde{T} = T^n + \frac{\tau}{C_{e}^n} \left[\vec{\nabla} \cdot \left(\lambda^n \vec{\nabla} T^n \right) + L_e \Phi_S^n \right], \tag{18}$$

1, 2
$$\tilde{\zeta} = \zeta^n + \tau \left[\vec{\nabla} \cdot \left(D_S \vec{\nabla} \zeta^n \right) + \Phi_S^n \right],$$
 (19)

1-3
$$\widetilde{\beta} = \beta^{n} + \tau \left\{ \vec{\nabla} \cdot \left[\left(1 - \zeta^{n} \right) D_{b} \vec{\nabla} \frac{\beta^{n}}{\left(1 - \zeta^{n} \right)} \right] - \frac{k_{b} \beta^{n}}{\left(1 - \zeta^{n} \right)} \Phi_{S}^{n} \right\},$$
(20)

Π

3

1, 2
$$T^{n+1} = \widetilde{T} - \tau \vec{v}^n \cdot \vec{\nabla} T^n, \qquad (21)$$

1, 2
$$\zeta^{n+1} = \tilde{\zeta} - \tau \vec{\nabla} \cdot \left[\zeta^n \left(\vec{v}^n + \vec{v}_{S1}^c \right) \right], \qquad (22)$$

$$A^{n+1} = -\frac{K_b \zeta^{n+1}}{R_b (1 - \zeta^{n+1}) + v_L x_b \zeta^{n+1}},$$
(23)

3
$$B^{n+1} = \frac{2-\zeta^{n+1}}{1-\zeta^{n+1}} \vec{\nabla} \zeta^{n+1},$$
 (24)

1-3
$$\beta^{n+1,0} = \tilde{\beta}, \quad p^{n+1,0} = p^n, \quad \vec{v}^{n+1,0} = \vec{v}^n,$$
 (25)

III

1, 2
$$\tilde{p}^{n+1,k+1} = \tilde{p}^{n+1,k} + \omega \left[\Delta \tilde{p}^{n+1,k} - \left(\vec{\nabla} \cdot \vec{\tilde{v}} + \Phi_S^{n+1,k} \right) / \tau \right],$$
 (26)

IV

3
$$\vec{v}_b^{c\ n+1,\,k} = A^{n+1}(B^{n+1} + \zeta^{n+1}\vec{\nabla}\ln\beta_b^{n+1,\,k}),$$
 (27)

$$1-3 \qquad \beta^{n+1,k+1} = \tilde{\beta} - \tau \vec{\nabla} \cdot \left(\beta^{n+1,k} \vec{v}_b^{c\,n+1,k} \right), \tag{28}$$

1, 2
$$\vec{v}^{n+1} = \vec{\tilde{v}} - \tau \Delta \tilde{p}^{n+1}$$
 (29)

Тут *n* – номер часового шару, *k* – номер ітерації.

Ліворуч кожної з формул наведені номери зон, в яких ці формули справедливі. Номери відповідають значенням: 1 – рідинна зона; 2 – зона рухомих кристалів; 3 – зона живлення; 4 – зона вкрапленого розплаву; 5 – тверда зона.

Весь процес розрахунку умовно розбивається на чотири етапи. Спочатку (нульовий етап), поза циклом за часом, знаходиться швидкість кристалів відносно розплаву в зоні рухомих кристалів (14). Всі наступні етапи виконуються в циклі за часом.

На першому етапі проводяться попередні підрахунки всіх основних теплофізичних величин (15)-(20) і враховується, переважно, дифузійний компонент всіх процесів. Оскільки дифузією в усіх процесах охоплена найбільша частина розрахункової області, то на другому етапі розраховується найбільша кількість зон. Для швидкості враховується ще конвективна складова і не враховується лише поле тиску, тобто знаходиться допоміжне поле швидкості, що відповідає першому етапу звичайної схеми розщеплення.

На другому етапі, по-перше, завершуються обчислення величин (T та ζ), для яких прийнята явна схема (21)-(22). При цьому враховуються переносні процеси для

цих величин у зонах, де вони відбуваються. По-друге, виконуються попередні ототожнення (25), які необхідні для проведення розрахунків в ітераційному циклі (останні два етапи), а також розрахунки (23), (24), які можна винести за ітераційний цикл, щоб його максимально полегшити.

На третьому етапі знаходиться поле тиску в плинній зоні (26).

I, нарешті, на останньому, четвертому, етапі знаходяться остаточні значення домішки в зоні живлення (28) і швидкостей середовища в плинній зоні (29), а також густини домішки в усіх цих зонах. Обчислення на третьому і четвертому етапах незалежні і можуть проводиться в будь-якому порядку.

Тепер зробимо покоординатний запис математичної моделі для двовимірного випадку рівнянь (14)-(29): 0

2
$$u_{S1}^{c} = 0;$$
 $w_{S1}^{c} = -\frac{d_{S}^{2}}{C_{1D}v_{L}} (\varepsilon - \delta_{f})g$ (30)

Ι

1, 2
$$\tilde{u} = u^n + \tau \left[-u^n \frac{\partial u^n}{\partial r} - w^n \frac{\partial u^n}{\partial z} + \frac{\partial}{\partial r} \left(\frac{v_e^r}{r} \frac{\partial \left(ru^n \right)}{\partial r} \right) + \frac{\partial}{\partial z} \left(v_e^z \frac{\partial u^n}{\partial z} \right) \right],$$
 (31)

$$\widetilde{w} = w^{n} + \tau \left[-u^{n} \frac{\partial w^{n}}{\partial r} - w^{n} \frac{\partial w^{n}}{\partial z} + \frac{1}{r} \frac{\partial}{\partial r} \left(v_{e}^{r} r \frac{\partial w^{n}}{\partial r} \right) + \frac{\partial}{\partial z} \left(v_{e}^{z} \frac{\partial w^{n}}{\partial z} \right) + \left[\zeta^{n} \delta_{f} + \left(1 - \zeta^{n} \right) \varepsilon^{n} \right] g \right], \qquad (32)$$

$$1-5 \quad \lambda^{n} = \lambda'_{L} \left(1 - \zeta^{n} \right) + \lambda'_{S} \zeta^{n}, \tag{33}$$

$$1-5 \quad C^{n} = C_{L} \left(1 - \zeta^{n} \right) + C_{S} \zeta^{n}, \tag{34}$$

1-5
$$\widetilde{T} = T^n + \frac{\tau}{C^n} \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \lambda^n \left(\frac{\partial T^n}{\partial r} \right) \right) + \frac{\partial^2}{\partial z^2} \left(\lambda^n T^n \right) + L_e \Phi_S^n \right],$$
 (35)

1, 2
$$\tilde{\zeta} = \zeta^n + \tau \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r D_S \frac{\partial \zeta^n}{\partial r} \right) + \frac{\partial}{\partial z} \left(D_S \frac{\partial \zeta^n}{\partial z} \right) + \Phi_S^n \right],$$
 (36)

1 - 3

$$\widetilde{\beta} = \beta^{n} + \tau \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \left(1 - \zeta^{n} \right) D_{b} \frac{\partial}{\partial r} \left(\frac{\beta^{n}}{1 - \zeta^{n}} \right) \right) + \frac{\partial}{\partial z} \left(\left(1 - \zeta^{n} \right) D_{b} \frac{\partial}{\partial z} \left(\frac{\beta^{n}}{1 - \zeta^{n}} \right) \right) - \frac{k_{b} \beta^{n}}{\left(1 - \zeta^{n} \right)} \Phi_{S}^{n} \right],$$
(37)

Π

1, 2
$$T^{n+1} = \tilde{T} - \tau \left(u^n \frac{\partial T^n}{\partial r} + w^n \frac{\partial T^n}{\partial z} \right),$$
 (38)

1, 2
$$\zeta^{n+1} = \tilde{\zeta} - \tau \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \zeta^n \left(u^n + u^c_{S1} \right) \right) + \frac{\partial}{\partial z} \left(\zeta^n \left(w^n + w^c_{S1} \right) \right) \right],$$
 (39)

3
$$A^{n+1} = -\frac{k_b \zeta^{n+1}}{R_b (1 - \zeta^{n+1}) + v_L x_b \zeta^{n+1}},$$
 (40)

3
$$B^{n+1} = \frac{2-\zeta^{n+1}}{1-\zeta^{n+1}} \left(\frac{\partial \zeta^{n+1}}{\partial r} + \frac{\partial \zeta^{n+1}}{\partial z} \right), \tag{41}$$

1-3
$$\beta^{n+1,0} = \tilde{\beta}$$
, $p^{n+1,0} = p^n$, $u^{n+1,0} = u^n$, $w^{n+1,0} = w^n$, (42)
1, 2

III

$$\widetilde{p}^{n+1,k+1} = \widetilde{p}^{n+1,k} + \omega \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \widetilde{p}^{n+1,k}}{\partial r} \right) + \frac{\partial^2 \widetilde{p}^{n+1,k}}{\partial z^2} - \left(\frac{1}{r} \frac{\partial (r\widetilde{u})}{\partial r} + \frac{\partial \widetilde{w}}{\partial z} + \Phi_S^{n+1,k} \right) / \tau \right],$$
(43)

IV

3

$$u_{b}^{c n+1,k} = \mathbf{A}^{n+1} \left(\mathbf{B}^{n+1} + \zeta^{n+1} \frac{\partial \left(\ln \beta^{n+1,k} \right)}{\partial r} \right),$$

$$w_{b}^{c n+1,k} = \mathbf{A}^{n+1} \left(\mathbf{B}^{n+1} + \zeta^{n+1} \frac{\partial \left(\ln \beta^{n+1,k} \right)}{\partial r} \right).$$
(44)

$$1-3 \quad \beta^{n+1,k+1} = \tilde{\beta} - \tau \left[\frac{1}{r} \left(\frac{\partial \left(r \beta^{n+1,k} u_b^c n+1,k \right)}{\partial r} \right) + \left(\frac{\partial \left(\beta^{n+1,k} w_b^c n+1,k \right)}{\partial z} \right) \right]. \quad (45)$$

$$u^{n+1} = \widetilde{u} - \tau \frac{\partial \widetilde{p}^{n+1}}{\partial r},$$

$$1, 2 \qquad (46)$$

$$w^{n+1} = \widetilde{w} - \tau \frac{\partial \widetilde{p}^{n+1}}{\partial z}.$$

dz Розрахункову область розіб'ємо рівномірною шаховою сіткою на комірки. Тоді кінцево-різницева апроксимація схеми (30)-(46) на рівномірній сітці має вигляд: 0

2
$$u_{S1_{i,j}}^{c} = 0;$$
 $w_{S1_{i,j}}^{c} = -\frac{d_{S}^{2}}{C_{1D} v_{L_{i,j}}} (\varepsilon - \delta_{f}) g,$

I

$$\begin{split} &1,2\\ &\widetilde{u}_{i',j} = u_{i',j}^{n} - \tau \frac{u_{i',j}^{n}}{2\Delta r} \Big[u_{i'+1,j}^{n} - u_{i'-1,j}^{n} \Big] - \tau \frac{\left(w_{i,j'}^{n} + w_{i+1,j'}^{n} + w_{i,j'-1}^{n} + w_{i+1,j'-1}^{n} \right) \cdot \frac{\left(u_{i',j+1}^{n} - u_{i',j-1}^{n} \right)}{2\Delta z} + \\ &+ \tau \Big\{ \Big[v_{i',j}^{r} \Big[\frac{1}{(i-0,5)} \Big(i u_{i'+1,j}^{n} - (i-1) u_{i',j}^{n} \Big) - \frac{1}{(i-1,5)} \Big((i-1) u_{i',j}^{n} - (i-2) u_{i'-1,j}^{n} \Big) \Big] / \Delta r^{2} + \\ &+ \frac{\Big[v_{i',j'}^{z} \Big(u_{i',j+1}^{n} - u_{i',j}^{n} \Big) - v_{i',j'-1}^{z} \Big(u_{i',j}^{n} - u_{i',j-1}^{n} \Big) \Big] \Big\}, \end{split}$$

$$\begin{split} \widetilde{w}_{i',j} &= w_{i,j'}^{n} - \tau \frac{w_{i,j'}^{n}}{2\Delta z} \Big[w_{i,j'+1}^{n} - w_{i,j'-1}^{n} \Big] - \tau \frac{\left(u_{i',j}^{n} + u_{i',j+1}^{n} + u_{i'-1,j}^{n} + u_{i'-1,j+1}^{n} \right)}{4} \cdot \frac{\left(w_{i+1,j'}^{n} - w_{i-1,j'}^{n} \right)}{2\Delta r} + \\ &+ \tau \Big[\frac{1}{(i-1,5)} \Big[v_{i',j'}^{r} (i-1) \Big(w_{i+1,j'}^{n} - w_{i,j'}^{n} \Big) - v_{i'-1,j'}^{r} (i-2) \Big(w_{i,j'}^{n} - w_{i-1,j'}^{n} \Big) \Big] \Big] + \tau \Big(\zeta_{i,j'}^{n} \delta_{f} + \left(1 - \zeta_{i,j'}^{n} \right) \varepsilon^{n} \Big) g. \\ &+ \frac{v_{i,j'}^{z} \Big(w_{i,j'+1}^{n} - 2w_{i,j'}^{n} + w_{i,j'-1}^{n} \Big) \Big] \Big] + \tau \Big(\zeta_{i,j'}^{n} \delta_{f} + \left(1 - \zeta_{i,j'}^{n} \right) \varepsilon^{n} \Big) g. \\ &1 - 5 \quad \lambda_{i,j}^{n} = \lambda_{L}^{\prime} \Big(1 - \zeta_{i,j}^{n} \Big) \Big] + \lambda_{S}^{\prime} \zeta_{i,j}^{n} , \\ &1 - 5 \quad C_{i,j}^{n} = \delta_{L}^{\prime} \Big(1 - \zeta_{i,j}^{n} \Big) \Big) + C_{S}^{\prime} \zeta_{i,j}^{n} , \\ &1 - 5 \quad C_{i,j}^{n} = C_{L} \Big(1 - \zeta_{i,j}^{n} \Big) \Big) + C_{S}^{\prime} \zeta_{i,j}^{n} , \\ &1 - 5 \quad C_{i,j}^{n} = C_{L} \Big(1 - \zeta_{i,j}^{n} \Big) \Big] + C_{S}^{\prime} \zeta_{i,j}^{n} , \\ &1 - 5 \quad C_{i,j}^{n} = C_{L} \Big(1 - \zeta_{i,j}^{n} \Big) \Big) + C_{S}^{\prime} \zeta_{i,j}^{n} , \\ &1 - 5 \quad C_{i,j}^{n} = C_{L} \Big(1 - \zeta_{i,j}^{n} \Big) \Big) + C_{S}^{\prime} \zeta_{i,j}^{n} , \\ &1 - 5 \quad C_{i,j}^{n} = C_{L} \Big(1 - \zeta_{i,j}^{n} \Big) \Big) - \lambda_{i,j'-1}^{n} \Big(\tau_{i,j}^{n} - \tau_{i,j}^{n} \Big) \Big) + L_{e} \phi_{S}^{n} \Big] \\ &1 - 5 \quad \frac{\widetilde{\tau}_{i,j}}{i,j} = \overline{\tau}_{i,j}^{n} + \frac{\tau}{C_{i,j}^{n}} \Big[\frac{D_{S}}{(i-1,5)\Delta r^{2}} \Big((i-1) \Big(\zeta_{i+1,j}^{n} - \zeta_{i,j}^{n} \Big) - (i-1) \Big(\zeta_{i,j}^{n} - \zeta_{i-1,j}^{n} \Big) \Big) + \\ &+ \frac{D_{S}}{\Delta z^{2}} \Big(\zeta_{i,j+1}^{n} - 2\zeta_{i,j}^{n} + \zeta_{i,j-1}^{n} \Big) + \phi_{S}^{n} \Big] \\ &1 - 3 \quad \frac{\widetilde{\tau}_{i-1}^{n} - \varepsilon_{i,j}^{n} - \varepsilon_{i,j}^{n} + \varepsilon_{i,j-1}^{n} \Big) + \phi_{S}^{n} \Big] \\ &1 - 3 \quad \widetilde{\tau}_{i-1}^{n} - \varepsilon_{i,j}^{n} + \varepsilon_{i,j-1}^{n} \Big) \Big(1 - \frac{1}{(i-1,5)\Delta r^{2}} \Big((i-1) \Big(1 - \varepsilon_{i,j}^{n} \Big) \Big) \Big)$$

$$\begin{split} \widetilde{\beta}_{i,j} &= \beta_{i,j}^{n} + \tau \left[D_{b} \left[\frac{1}{(i-1,5)\Delta r^{2}} \left[(i-1)(1-\zeta_{i,j}^{n}) \left(\frac{\beta_{i+1,j}}{(I-\zeta_{i,j}^{n})} - \frac{\beta_{i,j}}{(I-\zeta_{i,j}^{n})} \right) \right] - (i-2)(1-\zeta_{i-1,j}^{n}) \left\{ \frac{\beta_{i,j}^{n}}{(I-\zeta_{i,j}^{n})} - \frac{\beta_{i-1,j}}{(I-\zeta_{i-1,j}^{n})} \right\} + \frac{1}{\Delta z^{2}} \left[\left(1-\zeta_{i,j}^{n} \left(\frac{\beta_{i,j+1}^{n}}{(I-\zeta_{i,j+1}^{n})} - \frac{\beta_{i,j}^{n}}{(I-\zeta_{i,j}^{n})} \right) - (1-\zeta_{i,j+1}^{n}) \left(\frac{\beta_{i,j}^{n}}{(I-\zeta_{i,j+1}^{n})} - \frac{\beta_{i,j}^{n}}{(I-\zeta_{i,j+1}^{n})} \right) \right] \right] - \frac{k_{b}\beta_{i,j}^{n}}{(I-\zeta_{i,j}^{n})} \Phi_{s}^{n} \right] \end{split}$$

Π

$$1, 2 T_{i,j}^{n+1} = \widetilde{T}_{i,j} - \tau \left(\frac{u_{i',j}^n + u_{i'-1,j}^n}{2} \cdot \frac{T_{i+1,j}^n - T_{i-1,j}^n}{2\Delta r} + \frac{w_{i,j'}^n + w_{i,j'-1}^n}{2} \cdot \frac{T_{i,j+1}^n - T_{i,j-1}^n}{2\Delta z} \right)$$

$$\begin{split} \zeta_{i,j}^{n+1} &= \zeta_{i,j}^{n} - \tau \Bigg[\frac{1}{(i-1,5)\Delta r} \Bigg((i-1) \Bigg(\frac{\zeta_{i,j}^{n} + \zeta_{i+1,j}^{n}}{2} \Bigg) u_{i',j}^{n} - \\ 1,2 &- (i-2) \Bigg(\frac{\zeta_{i-1,j}^{n} + \zeta_{i,j}^{n}}{2} \Bigg) u_{i'-1,j}^{n} \Bigg) + \Bigg(\frac{\zeta_{i,j}^{n} + \zeta_{i,j+1}^{n}}{2} \Bigg) \times \\ &\times \Bigg(w_{i,j'}^{n} + w_{S1i,j'}^{c} \Bigg) \Bigg(\frac{\zeta_{i,j-1}^{n} + \zeta_{i,j}^{n}}{2} \Bigg) \Bigg(w_{i,j'-1}^{n} + w_{S1i,j'-1}^{c} \Bigg) / \Delta z \Bigg] \end{split}$$

29

$$\begin{aligned} 3 \qquad \mathbf{A}_{i,j}^{n+1} &= -\frac{k_b \zeta_{i,j}^{n+1}}{R_b \left(1 - \zeta_{i,j}^{n+1}\right) + v_L x_b \zeta_{i,j}^{n+1}}, \\ 3 \qquad \mathbf{B}_{i,j}^{n+1} &= \frac{2 - \zeta_{i,j}^{n+1}}{1 - \zeta_{i,j}^{n+1}} \left(\frac{\zeta_{i+1,j}^{n+1} - \zeta_{i-1,j}^{n+1}}{2\Delta r} + \frac{\zeta_{i,j+1}^{n+1} - \zeta_{i,j-1}^{n+1}}{2\Delta z} \right), \\ 1 - 3 \qquad \beta_{i,j}^{n+1,0} &= \widetilde{\beta}_{i,j}, \qquad p_{i,j}^{n+1,0} = p_{i,j}^{n}, \qquad u_{i,j}^{n+1,0} = u_{i,j}^{n}, \qquad w_{i,j}^{n+1,0} = w_{i,j}^{n}, \end{aligned}$$

III

$$\begin{array}{l} 1,2\\ \widetilde{p}_{i,j}^{n+1,k+1} = \widetilde{p}_{i,j}^{n+1,k} + \omega \Biggl[\frac{1}{(i-1,5)\Delta r^2} \Bigl((i-1) \Bigl(\widetilde{p}_{i+1,j}^{n+1,k} - \widetilde{p}_{i,j}^{n+1,k} \Bigr) - (i-2) \Bigl(\widetilde{p}_{i,j}^{n+1,k} - \widetilde{p}_{i-1,j}^{n+1,k} \Bigr) \Bigr) + \\ + \frac{\widetilde{p}_{i,j+1}^{n+1,k} - 2\widetilde{p}_{i,j}^{n+1,k} + \widetilde{p}_{i,j-1}^{n+1,k} - }{\Delta z^2} - \\ - \Bigl(\frac{1}{(i-1,5)\Delta r} \Bigl((i-1)\widetilde{u}_{i',j} - (i-2)\widetilde{u}_{i'-1,j} \Bigr) + \frac{\widetilde{w}_{i,j'} - \widetilde{w}_{i,j'-1}}{\Delta z} + \Phi_S^{n+1,k} \Bigr) / \tau \Biggr]$$

IV

$$3 \qquad u_{i',j}^{c n+I,k} = A_{i,j}^{n+I} \left[B_{i,j}^{n+I} + \frac{\zeta_{i',j}^{n+I}}{\beta_{i',j}^{n+I,k}} \cdot \frac{\beta_{i+I,j}^{n+I,k} - \beta_{i,j}^{n+I,k}}{\Delta r} \right],$$
$$w_{i,j'}^{c n+I,k} = A_{i,j}^{n+I} \left[B_{i,j}^{n+I} + \frac{\zeta_{i,j'}^{n+I}}{\beta_{i,j'}^{n+I,k}} \cdot \frac{\beta_{i,j+I}^{n+I,k} - \beta_{i,j}^{n+I,k}}{\Delta z} \right],$$

1–3

$$\begin{split} \beta_{i,j}^{n+1,k+1} &= \tilde{\beta}_{i,j} - \tau \Bigg[\frac{1}{(i-1,5)\Delta r} \Bigg((i-1) \frac{\beta_{i+1,j}^{n+1,k} + \beta_{i,j}^{n+1,k}}{2} u_{i',j}^{c \ n+1,k} - (i-2) \frac{\beta_{i,j}^{n+1,k} + \beta_{i-1,j}^{n+1,k}}{2} u_{i'-1,j}^{c \ n+1,k} \Bigg) + \\ &+ \Bigg(\frac{\beta_{i,j}^{n+1,k} + \beta_{i,j+1}^{n+1,k}}{2} w_{i,j'}^{c \ n+1,k} - \frac{\beta_{i,j}^{n+1,k} + \beta_{i,j-1}^{n+1,k}}{2} w_{i,j'-1}^{c \ n+1,k} \Bigg) / \Delta z \Bigg] \\ &+ 1, 2 \quad u_{i',j}^{n+1} = \tilde{u}_{i,j} - \tau \Bigg(\frac{p_{i+1,j}^{n+1} - p_{i,j}^{n+1}}{\Delta r} \Bigg), \\ & w_{i,j}^{n+1} = \tilde{w}_{i,j} - \tau \Bigg(\frac{p_{i,j+1}^{n+1} - p_{i,j}^{n+1}}{\Delta r} \Bigg). \end{split}$$

Граничні умови в різницевому вигляді апроксимують рівняння (8)-(13).

Висновки. У роботі представлено нерівноважну теорію багатофазної зони кристалізації, яка враховує можливий рух кристалів та перерозподіл домішок завдяки конвективному переносу в рідинній зоні та зоні рухомих кристалів зливка, що твердне. Розглянуто процес кристалізації зливка з врахуванням переносу домішок у дендритному каркасі. Наведено двовимірну математичну модель кристалізації зливка з врахуванням переносу домішок. Надано різницеву схему рівнянь фільтраційного руху розплаву в дендритному каркасі.

Фільтраційний рух впливає на формування хімічних неоднорідностей у зливку, які утворюються завдяки механізму сегрегації, а також фізичній неоднорідності, що є важливим з точки зору практичних задач.

ЛІТЕРАТУРА

- 1. Гуляев Б.Б. Теория литейных процессов / Гуляев Б.Б. Ленинград: Машиностроение, 1976. 216с.
- 2. Авдонин Н.А. Математическое описание процессов кристаллизации / Авдонин Н.А. Рига: Знание, 1980. 189с.
- 3. Борисов В.Т. Теория двухфазной зоны металлического слитка / Борисов В.Т. М.: Металлургия, 1987. 232с.
- 4. Молекулярно-радиационная теория и методы расчета тепло- и массообмена / Никитенко Н.И., Снежкин Ю.Ф., Сороковая Н.Н., Кольчик Ю.Н. – К.: Наукова думка, 2014. – 743с.
- 5. Ефимов В.А. Разливка и кристаллизация стали / Ефимов В.А. М.: Металлургия, 1976. 552с.
- 6. Недопекин Ф.В. Процессы переноса импульса, энергии и массы в сплошных средах / Недопекин Φ.В. Донецк: ДонГУ, 2013. 422с.
- 7. Самохвалов С.Є. Теплофізичні процеси в багатофазних середовищах: Теоретичні основи комп'ютерного моделювання / Самохвалов С.Є. Дніпродзержинськ: ДДТУ, 1994. 172с.

Надійшла до редколегії 15.09.2014.

УДК 669.1.785

РУДЕНКО Н.Р., к.т.н., доцент МУСИЕНКО К.А., к.т.н., доцент РУДЕНКО Р.Н. аспирант

Днепродзержинский государственный технический университет

АНАЛИЗ КОНСТРУКЦИЙ КОЛОСНИКОВ АГЛОМЕРАЦИОННЫХ МАШИН

Введение. Одним из резервов повышения интенсивности доменной плавки и снижения расхода кокса является использование стабилизированного агломерата в узком диапазоне крупности с содержанием фракции 0÷5 мм менее 3÷5%. Для получения качественного агломерата на передовых агломерационных фабриках мира устанавливаются сверхмощные агломерационные машины с площадью спекания 400÷600 м². Для таких машин необходимо предъявлять более жесткие требования к конструктивным параметрам газораспределительной колосниковой решетки агломашины.

Главным из основных параметров ленточной агломерационной машины является площадь активного сечения колосниковой решетки. Для агломашин Украины она составляет 8÷12%. Это приводит к потере до 15% мощности тягодутьевых средств [1].

В работе [2] кафедры металлургии черных металлов Днепродзержинского государственного технического университета обоснована необходимость увеличения площади активного сечения колосниковой решетки до 25%. Однако из-за конструктивных