Applied Aspects of Information Technology
Models and Methods of Information Technology

2019; Vol.2 No.4: 260-270

UDC 004.042

Oleg N. Paulin®, Doctor of Technical Sciences, Associate Professor of the System Software Department,
E-mail: paolenic@yandex.ru, ORCID: https://orcid.org/0000-0002-2210-8317

Nataliia O. Komleva', Candidate of Technical Sciences, Associate Professor of the System Software
Department, E-mail: nkomlevaya@gmail.com, ORCID: https://orcid.org/0000-0001-9627-8530

Stanislav U. Marulin®, Candidate of Technical Sciences, Associate Professor of the System Software
Department, E-mail: stanislavmaru@gmail.com, ORCID: https://orcid.org/0000-0003-0755-0104
Anatolii O. Nikolenko®, Candidate of Technical Sciences, Associate Professor of the Information Systems
Department, E-mail: anatolyn@ukr.net, ORCID: http://orcid.org/0000-0002-9849-1797

'Odessa National Polytechnic University, Shevchenko Avenue, 1, Odessa, Ukraine, 65044

METHOD FOR CONSTRUCTING THE MODEL OF COMPUTING
PROCESS BASED ON PETRI NET

Abstract. The aim of the work is to improve the quality of the computational process that solves the problem, due to its

modeling and debugging based on the Petri net. The quality of the computational process is understood as the absence of errors
(looping, paralysis, unreliability of some fragment, etc.) and its optimization according to the criterion of minimum complexity.
The new approach to the analysis of the computational process, based on preliminary modeling by Petri nets of both fragments of
computational processes and complete computational processes, is proposed. This will reveal many errors at the stage of modeling
the computational process. The computational process is considered as a set of macrooperations, which are functionally, completed
operations of various hierarchical levels. To locate macrooperations in a computational process, it is decomposed into elementary
(basic) computational constructions. A statement that any computing process can be constructed on the basis of a relatively small
number of macrooperations is formulated. To implement the new approach, the task of developing a method for constructing a Petri
net according to a given computational process is formulated and solved. The essence of the proposed method consists in dividing
the computational process into macrooperations, building a Petri net fragment for each macrooperation, modeling all fragments,
assembling a complete Petri net from network fragments and modeling it. To implement the method, a procedure for constructing a
computational process model is being developed. The stages of this procedure are described: decomposition of the computational
process into macrooperations according to the proposed rules, translation of macrooperations into fragments of the Petri net and
their modeling, collection of the complete Petri net by the proposed rules, and modeling the resulting Petri net. The results of the
implementation of all stages of the procedure are recorded in the library, the aim of which is the accumulation of knowledge about
the computational processes corresponding to them Petri nets and modeling results. This allows us to simplify the process of
modeling a new computing process through the use of already debugged fragments. If the computational process contains errors or
is not optimal, it is corrected, which allows to improve its quality according to the above criteria. By the example of sorting by
inserts, the correctness of the operation of the constructed Petri net using the declared method is experimentally confirmed.

Keywords: computational process; macrooperation; method; procedure; Petri net; modeling; library

Introduction

In general terms, a computing process is a
sequence of time-ordered operations and procedures
of varying degrees of complexity. The
computational process (CP) should underlie the
software and largely determine its quality, while for
one CP, you can consider many software
implementations, taking into account different
technologies and programming languages.
To date, there are no quality standards for CP.
Traditionally; the quality of the CP is determined by
the absence of errors and a certain level of
optimality. Among the types of possible errors, a
loop, a hang, and also an emergency stop of a CP
during fatal errors, for example, division by zero, are
distinguished. CP optimization can be carried out
according to different criteria; the criterion of mini-
mum complexity is most often used.

© Paulin, O. N., Komleva, N. O., Marulin, S. U.,
Nikolenko, A. 0., 2019
Indirectly, the quality of a particular CP can

be evaluated by analyzing software developed on its
basis for compliance with requirements in
accordance with 1SO 12207, ISO 9000, CMM
(Capability Maturity Model). Failure to comply with
such requirements entails the need for error
correction, reengineering and re-testing of program
code, which requires additional resources, including
time, and is much more expensive than fixing errors
at the initial stage of development. However, in
practice, the development of a high-quality CP as a
basis for high-quality software is not always given
due attention, which causes the described problems.
That is why the construction of a high-quality CP is
actual.

An effective way to improve CP is its
modeling, while using different approaches, taking
into account, among others, the apparatus of Petri
nets. The work offers the new approach, which
involves decomposing the CP into elementary
computing structures, modeling and debugging these
structures by Petri nets, the final assembly of
separate structures into a complete net of whole CP

260 DOI: 10.15276/aait.04.2019.1

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

mailto:paolenic@yandex.ru
https://orcid.org/0000-0002-2210-8317
mailto:nkomlevaya@gmail.com
mailto:stanislavmaru@gmail.com
https://orcid.org/0000-0003-0755-0104
mailto:anatolyn@ukr.net
http://orcid.org/0000-0002-9849-1797

Applied Aspects of Information Technology

2019; Vol.2 No.4: 260-270

Models and Methods of Information Technology

and its modeling. Applying of this approach allows
to improve the quality of the computing process, and
this, as a result, will lead to quality improvement of
its software implementations.

Analysis of recent and
formulation of the problem

With all the variety of computational processes,
there is the possibility of formalizing them, which
makes it possible to choose an apparatus for
describing and further analyzing these processes. At
one time, much attention was paid to the automatic
approach to the representation of processes and their
software implementations [1]. In the automated
approach, two of the most developed ways can be
distinguished: SWITCH-technology and SM-
technology (State machine) of development [2].
These ways are distinguished by the implementation
of the logic of automatic programs. However, such
an approach is a programming paradigm, since it is a
program or its fragment that is interpreted as a
model of some formal automaton. At the same time,
it is more expedient to associate computational
constructions with the automaton. In addition, the
disadvantage of the automaton approach is the small
computing power expressed by the automaton
language, because the automaton does not reflect a
more complex concept than “operation”, that is, the
concept of “event”.

The above disadvantages are deprived of Petri
nets, which have a significantly greater
expressiveness of their language. As shown in [3],
they occupy an intermediate position between the
state machine and the Turing machine. Petri nets
reflect the interrelation “event — condition”, which
made it possible to widely use them for modeling
[4].

Thus, the publications [5-6] show the
construction of Petri nets for a wide range of
different algorithmic processes. In [7] it is shown
how the fulfillment of the conditions and restrictions
imposed on such processes affects the characteristics
of the constructed Petri nets. In the work [8], the
relationship between the complexity criteria of the
original algorithms and the sizes of Petri nets
constructed from them was studied. The article [9]
describes the optimization mechanisms for Petri nets
using the example of minimizing the number of
places using special heuristics. A number of studies
expand the scope of Petri nets to more complex
multilevel processes, in which algorithmic processes
as such are fragmented, with the construction of
Petri nets for such fragments [10-12].

As can be seen from the analysis, despite a
fairly wide range of work related to computational
processes [13; 14], the authors did not attempt to

publications

adjust the initial CP or algorithm using Petri nets
built on their basis as a reverse control action to
improve the quality of the CP.

The aim of the work is to improve the quality
of the computing process by eliminating errors and
optimizing it by modeling and debugging based on
the Petri net of the computing process and its
fragments.

To achieve this aim, the following tasks must
be solved:

— development the method for constructing a
CP model;

— development the procedure that implements
this method:;

— development the rules for converting
macrooperations into fragments of Petri nets and the
further assembly of a complete Petri net.

1. Brief description of Petri nets

Petri net is a bipartite graph with set of vertices
PUT, containing two kinds of vertices: transition
peP (depicted by a dash) and a position teT (in
some sources, a place; depicted by a circle), and,
accordingly, two types of relation: p—t (triggered
transition gives permission to fulfill the condition)
and t—p (implemented condition allows the
transition to trigger). A transition identifies an event,
and a position identifies a condition. Transitions and
positions alternate. Transitions and positions can
have several inputs and outputs.

A dot (chip) in the position indicates the
possibility of fulfilling the condition; the number of
points in the position means the number of possible
conditions. The allocation of points by position
(network marking) characterizes the state of the net.

A markup M of the net N is represented as a
vector of numbers m;, denoting the number of points
in the position p;, m; = M(pi): M = (M(p1), M(p2), ...,
M(py))-

During the operation of the Petri net, the points
migrate over the net. When a transition is triggered,
one point is taken from the previous positions, and
one point is added to each output position.

Petri net has reachability and survivability
properties.

A markup M’ is achievable in the network from
the markup M as a result of the sequence of
operations of the transitions = t, t, _t;, if there is
a sequence of consecutive markings

AF AL -éjv A markup M is reachable on

the net N, if there exists ¢ such that, where

T 1
M, FM , My — an initial markup.

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

261

Applied Aspects of Information Technology

2019; Vol.2 No.4: 260-270

Models and Methods of Information Technology

Let R(N) be the set of all markups reachable in
the net N. Then the transition t is reachable from the
markup M in the net N, if markup A" exists in R(N)

z- 1
t MoEM

and there is such z, tha and transition t

can work with M. A transition is reachable in the net
N, if it is reachable from M.

A transition t is alive if it is reachable from any
markup from R(N). A Petri net is alive if all its
transitions are alive.

2. Development of a method for constructing
a computational process model based on a Petri
net

We introduce some definitions and thesis.

Definition 1. An elementary computational
process (ECP) will be called a fragment of an CP
that performs a functionally minimal complete
computation process, and the term “computation” is
understood in a broad sense: computation is the
processing of a variety of data, from simple to
multimedia.

In the paper, CPs is considered irrespective of
the form and classes of problems being solved. The
only restriction for the CP is that an algorithm must
exist for it, i.e. CP must satisfy the following
requirements: certainty, convergence and mass
character.

The quality of the CP, as mentioned above, is
understood not only as the absence of gross errors
(freezing, looping, etc.), but also its optimality in the
sense of a minimum of complexity.

There are several criteria for evaluating the
complexity of an algorithm, or CP. Most often, the
order of growth of time and memory capacity
needed to solve the problem is used, with an
increase in the amount of input data. We associate
with each concrete task a certain number n, called its
size, which would express a measure of the amount
of input data. For example, the size of the matrix
multiplication task may be the largest size of the
matrix of factors, the size of the task on the graph
may be the number of vertices/edges of a given
graph, etc.

In this case, asymptotic estimates of complexity
in the worst case are used (top marks) — O(f(n)),
where f expresses the growth rate of complexity, for
example, f=nlogn.

In addition, eliminating repetitions, rearranging
modules in order to speed up the CP, reducing the
complexity of the CP due to special techniques (for
example, splitting a task into subtasks and balancing
them, etc.) also leads to optimization of the CP.

Definition 2. Macrooperation (MO) is a
fragment of CP (ECP and more complex
functionally completed constructions) endowed with

the following attributes: name, designation, function,
parameters with details of their definition.

For example, the name MO is “Counting
cycle”, the designation is “MOcc”, the function is
“iteration count”; parameter — a variable called a
cycle parameter, for example, i, the range of
parameter valuesi=1..n.

MOs include at the lower level of the hierarchy
simple arithmetic operations and arithmetic
expressions, at the next level — rearrangement of
array elements, offsets of sequence elements,
comparison of rows/columns of a table, etc.

We proposed [15] to consider CP in the form of
two components: computational and control. The
first component is macrooperations, which are
functionally completed operations of different
hierarchical levels. The second component provides
the organization of control of CP, that is, the
alignment of the process in a certain order. The
controls are proposed — “follow”, “select”, and
“transition”; a theorem on the functional
completeness of these control elements (CE) is
proved. Well-known control structures are built from
CE [16]: an alternative and cycles of three types:
countable, conditional of the first kind (with a
precondition) and conditional of the second kind
(with a postcondition).

Thus, the theorem is fundamental: it allows us
to formalize the CP recording [17] and opens up the
possibility of constructing algebra of control
structures.

Note that control structures (composition,
alternative, iteration, and more complex structures)
can be built into the MO. So, a simple sorting by
inserts can be considered as a MO of the 3rd
hierarchy level with two cycles controlling the
sorting process.

In [18], the MOs were located; MO lists are
ordered taking into account the hierarchy of CP
fragments. The final list contains 19 MOs.

In [19; 20], the consideration of another class of
CPs — the search for coverage — was begun; the
search algorithms for coverage by boundary search
and reduction of the coverage table using the

corresponding theorems are analyzed. A feature
of this class of tasks is the work with tables. For the
mentioned algorithms, the total number of
elementary MOs was 22, which gives reason to
assert a relatively small variety of MOs and the
possibility of forming their complete list for certain
classes of problems.

Statement. Any CP can be represented by a
combination of a relatively small number of MOs
and control elements/structures.

In accordance with the proposed approach, for
the developed method of constructing a CP model

262

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Applied Aspects of Information Technology

2019; Vol.2 No.4: 260-270

Models and Methods of Information Technology

on the basis of a Petri net, it provides operations for
decomposing a CP into an ECP, debugging them on
the corresponding Petri net, assembling the complete
net and modeling it. The essence of the method is
the sequential transformations of the CP into a Petri
net and modeling the resulting net.

The method of constructing a CP model based
on a Petri net includes:

1) decomposition of CP into ECPs;

2) formalization ECP in the form of MO;

3) building a model of ECP in the form of a
fragment of Petri net for each MO;

4) Petri net fragment modeling;

5) building a complete Petri net;

6) modeling a complete Petri net.

Procedure that implements the method

This method is implemented as a procedure
that at each stage implements one of the operations
of the method. At the same time, interaction with the
library is carried out.

Here is a description of the proposed procedure.

Input: initial CP in the form of a verbal
description of the algorithm.

Output: MOs, Petri net fragments, corrected
CP and a complete Petri net.

Verbal description of the procedure

1. The initial CP is divided into elementary
computing processes.

2. ECPs identified with MOs with the
assignment of certain attributes.

3. MOs, according to certain rules, are
transformed into Petri net fragments.

4. Fragments of the Petri net are modeled. If
the result is positive (no errors), then the MO and the
corresponding fragment of the Petri net are entered
into the library if they are not there. In the case of an
unsatisfactory result, it is necessary to return to the
original CP and correct the error (correct the CP)
and then repeat steps 2 and 3.

5. Next, according to certain rules, fragments
of the Petri net are assembled to obtain a complete
network.

6. The resulting Petri net is modeled and the
results are analyzed. In the case of an unsatisfactory
result (the desired quality of the CP is not achieved),
it is necessary to return to the original / previous
version of the CP and correct the errors. If the
desired quality is achieved, then the last versions of
the CP and Petri nets and the corresponding
fragments of the CP and Petri nets are entered into
the library.

Rules for transforming a MO into a
fragment of a Petri net and assembling a
complete Petri net

Representation of MO by fragments of the Petri
net is carried out according to the following rules.

1. MO is represented by a transition, which is
framed by the input and output positions; point is
placed in the entry position.

2. The selection operation is represented by a
position with two outputs that are assigned priority 0
and 1.

The complete Petri net corresponding to the
initial CP is constructed from fragments of the Petri
net according to the rules:

1. The sequence of MOs is represented by the
sequence of transitions corresponding to them;
positions are placed between transitions; the
sequence is framed by the input and output
positions. A point is placed at the input position.

2. At the merging of individual sequences, the
output position of the previous sequence merges
with the input position of this sequence. The input
position of the resulting sequence will be the input
position of the previous sequence, and the output
position will be the output position of this sequence.

Note that the obligatory alternation of positions
and transitions leads to the need to introduce
fictitious positions and transitions.

Library of descriptions of CPs and
corresponding Petri nets

The library is designed to store debugged MOs,
fragments of Petri nets, CPs, complete Petri nets and
their descriptions. The library is organized
hierarchically.

Four operations are defined for the library of
descriptions: adding a new component (MOs,
fragments of Petri nets, CPs, full Petri nets) to the
library, searching for the specified component,
selecting the specified component and deleting it.

The library is the core of the knowledge base,
structured by classes of tasks: sorting, finding
coverage, tasks on graphs, etc.

There are also components used in different
classes of tasks. These common components are
allocated in a separate group.

In certain sections of the library, the formulas

of MOs and CPs should also be stored.

The example of the allocation of MO

Consider, as an example, the allocation of MOs in
sorting by simple inserts.

Fig. 1 shows the graphical model of such sorting
in ascending order. The graphic model contains a
numerical axis on which dots indicate the sequence of
array elements. Considered ideas retain their meaning
when sorting has descending order.

The sorted sequence is divided into two
subsequences: finished and input. The arrow shows the
possible movement of the boundary (current) element.

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

263

Applied Aspects of Information Technology

2019; Vol.2 No.4: 260-270

Models and Methods of Information Technology

The basic concept of “border” is introduced,
this border separates the finished and input
subsequences. It uses the specification of: current,

I8

next and the initial border. A boundary element is an
element immediately beyond the border.

[N=3 ., MNB

o—e—
dy & d
finished sequence

‘dj.| E'IJ'

3—i-ll ‘di' div) o dy
mput sequence

IB- initial bound

CB — current bound

NB — next bound

Fig. 1. CP model “Sorting by simple inserts”

The current state of the sorting process is
considered and the new positions of the border, as
well as its initial and starting position, are indicated.
During the operation of the simple insertion sorting
method for the current boundary element X, a
suitable place in the finished subsequence is sought,
for which a double inequality is used: a;1<x<a;.
Since x may be in the first position, and in this case
the left side of the double inequality is missing, a

dummy element is introduced ay, called the “barrier.
For a guaranteed hit x in the first position take ay=x.

Fig. 2 shows a flowchart, constructed in
accordance with the considered model of the sorting
process. lteration counters for internal and external
loops are shown. The dashed-dotted line in the
diagram represents the inner loop. This flowchart
fully displays the CP.

[Appropriate place

‘ X:=a;; 3 ..

i Gy array 1:=1+1
| Ao=x; A’[n]

i End

: ji=i-1

1 No ;

i X8 I

| [| Yes :

3 j=-1 aj+1:=9; - [Shift of the element a; E

3 Yes :

Fig. 2. Flowchart of a simple insertion sorting algorithm

264

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Applied Aspects of Information Technology

2019; Vol.2 No.4: 260-270

Models and Methods of Information Technology

From CPs for simple and selected complex
sortings, MOs are selected and collected in the
corresponding lists. These lists are systematized by
combining into a common list with its subsequent
minimization. Specific to the considered sortings is
the MO “Compare — rearrange”. In addition, for
complex sortings, the MO “Sublisting” is specific.
Two dozen MOs turned out to be sufficient to
describe this class of sortings. At the same time,
some MOs can also be used in CPs of other classes.

Here is a list of MOs for sorting by simple
inserts:

1. MO “Search for a suitable place” (this is a
joint implementation of MO “Counting Cycle” and
MO “Comparison of Double Inequality™).

2. MO “Shift an element by one position to
the right”.

3. The organization of the cycle under the
condition.

3. Experimental results and evaluation

Consider an example of constructing and
modeling a Petri net for the given sorting by simple
inserts. Fig. 3 shows the Petri net constructed
according to the rules defined above for this CP.

Traditionally, the Petri net contains the usual
net links along which the chips are moved according
to the scenario specified by the algorithm. However,
for a full description of the CP, this is not enough —
additional facilities are needed to implement the
operation of choosing alternatives. The use of
inhibitory bonds that implement the logic NOT
turned out to be artificial. As the analysis showed, an
introduction to the consideration of priorities is more
appropriate: “1” corresponds to the TRUE
alternative, and “0” corresponds to the FALSE
alternative. For modeling, we use a special class of
Petri nets with a priority mechanism — these are E-
nets [21] (Evaluation nets). Emulators are known
[22], which are most suitable for our purposes; we
have chosen a freeware program PIPE 2 [23].

Fig. 3. Petri net for CP of sorting inserts

The selected Petri net editor uses the cross-
platform programming language Java, which allows
to run nets on various operating systems. PIPE2
allows creating, editing and simulating stochastic
Petri nets, including with inhibitor arcs. The editor
has a number of additional analysis modules that
expand its functionality.

The description of the components of the Petri
net as a model for CP sorting by simple inserts is
given in Table 1 and Table 2.

Based on the structure of the Petri net, we
define transition scenarios that encompass all
possible branches / contours of the structure.

We have:

1) p0—t0—pl—otl—p2;

2) p0—t0—>NOTpl—-t2—p3—t3—>NOTp4—t8
—pT7—t9—pl—-tl—p2;

3) p0—t0—>NOTp1—t2—p3—t3—->NOTp4—t8
—p7—-t9—>NOTpl -t2—p3—t3—>NOTpd—...—t9
—pl—otl—p2;

4) p0—t0—>NOTpl—t2—p3—t3—pd—td—p5

—t5—-p6—1t6—p5—... >NOTp6—-t7—p7—1t9—
NOTpl—-t2—p3—t3—pd—td...—>t3—>NOTpd—...
—t9— pl—>tl—p2.

Table 1. Positions and their meaning

Positions Meaning

Po Start
P1 i>n

P> End
P3 %)

P4 X<g
Ps)

Ps X<aj1
p7 %)

We believe that in the position p; condition p; is
checked.

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

265

Applied Aspects of Information Technology

2019; Vol.2 No.4: 260-270

Models and Methods of Information Technology

Table 2. Transitions and their meaning

Transitions Meaning

to input A; i:=2
ty output A’
t X:=aj; 8pi=X
ts ji=i-1

ts NOP

ts Qj+1:= @

te j=j-1

t; :=X

tg NOP

to =i+l

The first scenario is trivial and actually tests the
ability to perform a sort operation. The second
scenario occurs if there are only two numbers in the
array to be sorted. The third scenario corresponds to
the situation when the source array is already sorted.
There is a cycle ... NOTpl—t2—p3—t3—>NOTp4
—t8—p7—t9—>NOTpl..., exit from which occurs
when checking all numbers of the array by condition
pl: i>n. The fourth scenario is the main one with an
inner loop ... p5S—t5—p6—t6— 5... with an exit
from it by condition NOTp6, and external
NOTpl—t2—p3—t3—->NOTp4—t8—p7—t9—NO
Tpl..., exit from which occurs when the condition
pl: i>n is true, that is, after sorting all the elements
of the array.

Note that triggering transitions t1 or t2, t4 or t8,
t6 or t7 occurs depending on the value of the
condition being checked pl, p4, p6 respectively in
the corresponding position (truth is 1, false is 0). On
the net scheme, this is indicated by the numbers O
and 1 near the arc leaving the position.

The modeling results showed that each of the
scenarios is executed, i.e., the net is alive, and with
the correct initial data the modeling ends in a finite
number of steps.

Conclusion

In this paper, we propose a new approach to
improving the quality of the computational process
(CP), which consists in preliminary modeling of the
CP by the Petri net and transferring the improved CP
to the stage of software implementation. The choice
of a Petri net for modeling is based on the fact that
the Petri net has a more powerful description
language than other known models (for example,

automatic). To implement this approach, the method
for constructing a CP model based on a Petri net was
developed. The method is implemented in the form
of a procedure consisting of a sequence of the
following steps: decomposition of the CP into the
macrooperations (MOs), transformed them into Petri
net fragments, assembly of the complete net and its
research. The proposed approach is consistent with
the criterion of “scientific innovation”.

Petri net modeling allows us to determine the
reachability of any vertex from a given one, i.e.
verify all branches and contours of the CP, as well as
the survivability of the net. In this case, CP errors
are detected: looping, hovering, unrealizability of
some of its fragment. CP optimization is also
possible: detection and elimination of repetition of
CP fragments, rearrangement of CP modules to
accelerate its execution, etc.

The examples of simple sorting and solving the
coverage task show the possibility of isolating MOs
and minimizing their number. However, to complete
this stage, a methodology should be developed for
the general case.

A more detailed study of the organization of a
library of descriptions of CPs and their fragments
and corresponding fragments of the Petri net, as well
as debugged CPs and their corresponding complete
Petri nets, is required. The stage of interaction with
the library was worked out sketchy — further
extensive research is required here. This would
simplify the description of the CP and its modeling.

An example of sorting by inserts shows the
transformation of a CP into a Petri net, as well as a
study of the operability of this Petri net for all net
behavior scenarios; the correctness of the Petri net
operation for this CP is shown. For the general case
of studying the behavior of a Petri net, it is necessary
to develop a method for converting a CP into a Petri
net and a method for modeling a CP in the general
case based on the corresponding Petri net.

References

1. Shulga, T. E., Ivanov, E. A., Slastihina, M.
D. & Vagarina, N. S. (2016). “Developing a
software system for automata-based code
generation” [Text] Programming and Computer
Software, Vol. 42, Issue 3, pp. 167-173,
https://doi.org/10.1134/s0361768816030075.

2. Lyubchenko, V. (2006) “K probleme
sozdaniya modeli parallel'nyh vychislenij” [To the
Problem of Creating a Parallel Computing Model]
[Text] Proceedings of the Third International

266

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

https://link.springer.com/journal/11086
https://link.springer.com/journal/11086
https://link.springer.com/journal/11086/42/3/page/1

Applied Aspects of Information Technology

2019; Vol.2 No.4: 260-270

Models and Methods of Information Technology

Conference “Parallel Computing and Control
Problems, PACO'2006” (in Russian).

3. Truhin, M. P. (2018). “Modelirovanie
signalov i system” [Modeling Signals and Systems]
[Text] Setevye modeli: Uch. Posobie, Publ. lzd-vo
Ural. Un-ta, Yekaterinburg: Russian Federation, 204
p. (in Russian).

4, Latsou, C., Dunnett, S. J. & Jackson, L. M.
(2019). A new Methodology for Automated PetriNet
Generation: Method Application [Text] Reliability
Engineering and System Safety, Vol. 185, pp. 113-
123, https://doi.org/10.1016/j.ress.2018.12.017.

5. Badouel, E., Bernardinello, L. &
Darondeau, P. (2015). “Petri Net Synthesis”.
Springer Publ., Heidelberg: 339
p. http://dx.doi.org/10.1007/978-3-662-47967-4.

6. Reisig, W. (2013). “Understanding Petri
Nets”, “Modeling Techniques, Analysis Methods,
Case Studies”, 211 p. Springer Publ., Hiedelberg:
http://dx.doi.org/10.1007/978-3-642-33278-4.

7. (2016). Kleijn, J. (eds) “Transactions on
Petri Nets and Other Models of Concurrency XI”.
“Lecture Notes in Computer Science”, Vol. 9930,

Springer Publ., Berlin, Heidelberg: DOI
https://doi.org/10.1007/978-3-662-53401-4_9.
8. (2015). Knight, S., Lanese, I, Lluch

Lafuente A., Vieira, H. T. (Eds.). 8th Interaction and
Concurrency Experience, (ICE 2015) EPTCS 189,
pp. 53-67, doi:10.4204/EPTCS.189.6.

9. Schlachter, U. (2016). “Petri Net Synthesis
for Restricted Classes of Nets”. “Application and
Theory of Petri Nets and Concurrency”. PETRI
NETS 2016. “Lecture Notes in Computer Science”,
Vol. 9698, Springer Publ.,, Cham. DOI
https://doi.org/10.1007/978-3-319-39086-4_6.

10. Amparore, E. G., Donatelli, S., Beccuti,
M., Garbi, G.,, & Miner, A. (2018) “Decision
Diagrams for Petri Nets: A Comparison of Variable
Ordering Algorithms”. “Transactions on Petri Nets

and Other Models of Concurrency XIII”, “Lecture
Notes in Computer Science”, Vol 11090. Springer
Publ., Berlin, Heidelberg: DOl

https://doi.org/10.1007/978-3-662-58381-4 4.

11. Shershakov, S. A., Kalenkova, A. A., &
Lomazova, |. A. (2017) “Transition Systems
Reduction: Balancing Between Precision and
Simplicity”. “Transactions on Petri Nets and Other
Models of Concurrency XII”. “Lecture Notes in
Computer Science”, Vol 10470. Springer Publ.,
Berlin, Heidelberg: DOI
https://doi.org/10.1007/978-3-662-55862-1 6.

12. Ribeiro, Joel & Carmona, Josep. (2016).
“A Method for Assessing Parameter Impact on
Control-Flow Discovery Algorithms”. “Transactions
on Petri Nets and Other Models of Concurrency XI”.
“Lecture Notes in Computer Science”, Vol. 9930.
Springer Publ., Berlin, Heidelberg.
DOI https://doi.org/10.1007/978-3-662-53401-4_9.

13. Verlan, A. F., Polozhaenko, S. A,
Prokofieva, L. L., & Shylov, V. P. (2019).
Algorithmization of the Failed Subschemes
Localization Process, Herald of Advanced
Information Technology, Odessa, Ukraine, Publ.
Science & Technology, Vol. 2 No. 1, pp. 37-46, doi:
10.15276/hait.02.2019.4.

14. Kalnauz, D. V., & Speranskiy, V. A.

(2019). Productivity Estimation of Serverless
Computing, Applied Aspects of Information
Techology, Odessa, Ukraine, Publ. Science &
Technology, Vol. 2 No. 1, pp. 20-28, doi:
10.15276/aait.02.2019.2.

15. Paulin, O. “O funkcionalnoj polnote

elementov upravleniya vychislitel'nymi processam”.
(2016). [On the Functional Completeness of Control
Elements of Computing Processes], Scientific
looking to the future. Odessa, Ukraine, Publ.
Institute of Maritime and Enterprise, Release 4, Vol.
4, pp. 4-8 (in Russian). DOI: 10.21893/2415-7538-
2016-04-4-018.

16. Goodman, S. E. & Hedetniemi, S. T.
(2002). “Introduction to the Design and Analysis of
Algorithms”, Publ. Tata Mcgraw-Hill, New Delhi.
https://doi.org/10.2307/2346822.

17. Paulin, O., Komlevaya, N., & Marulin, S.
(2016). “Ob upravleniya vyichislitelnyimi
protsessami” [About a Management by the
Calculable Processes]. Trudy XVII International
Research and Practice Conference “Modern
Information and Electronic Technologies”, Odesa:
Ukraine, Vol. 1, pp. 20-21 (in Russian).

18. Paulin, O., Komlevaya, N., & Marulin, S.
“O vydelenii makrooperacij iz vychislitel'nyh
processov sortirovki massivov dannyh”. (2016).
[Macro-operations Extraction out of Computation
Process array Sorting Data]. CEUR Workshop
Proceedings (in Russian)
https://www.scopus.com/record/display.uri?eid=2-
s2.0
84983598214 &origin=inward&txGid=ccdebcf7d4ee
8f843deb8079c5883e22.

19. Paulin, O.
algoritmov pokrytiya”

“Vychislitel'nye modeli
(2016). [Computational

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

267

https://www.sciencedirect.com/science/article/pii/S0951832017312073
https://www.sciencedirect.com/science/article/pii/S0951832017312073
https://www.sciencedirect.com/science/journal/09518320
https://www.sciencedirect.com/science/journal/09518320
https://doi.org/10.1016/j.ress.2018.12.017
http://dx.doi.org/10.1007/978-3-662-47967-4
https://doi.org/10.1007/978-3-642-33278-4
https://doi.org/10.1007/978-3-319-39086-4_6
https://doi.org/10.1007/978-3-662-55862-1_6
https://doi.org/10.1007/978-3-662-53401-4_9
https://www.scopus.com/record/display.uri?eid=2-s2.0%2084983598214&origin=inward&txGid=ccde5cf7d4ee8f843deb8079c5883e22
https://www.scopus.com/record/display.uri?eid=2-s2.0%2084983598214&origin=inward&txGid=ccde5cf7d4ee8f843deb8079c5883e22
https://www.scopus.com/record/display.uri?eid=2-s2.0%2084983598214&origin=inward&txGid=ccde5cf7d4ee8f843deb8079c5883e22
https://www.scopus.com/record/display.uri?eid=2-s2.0%2084983598214&origin=inward&txGid=ccde5cf7d4ee8f843deb8079c5883e22

Applied Aspects of Information Technology

2019; Vol.2 No.4: 260-270

Models and Methods of Information Technology

Models of Coverage Algorithms]. Computer science
and Mathematical Methods in Modeling, Vol. No. 4,
pp. 385-396. (in Russian)

20. Paulin, O. “Vychislitel'nye modeli
processa predvaritel'nogo sokrashcheniya tablicy
pokrytiya”. (2017). [Computational Models of the
Process of Preliminary Reduction of the Coverage
Table], Computer science and mathematical
methods in modeling, Vol. No. 4, pp. 333-338 (in
Russian).

21. Cabac, L., Haustermann, M. & Mosteller,
D. (2018). “Software Development with Petri nets
and agents: Approach, Frameworks and tool set”

[Text] Science of Computer Programming, Vol. 157,
pp.56-70.
https://doi.org/10.1016/j.scico.2017.12.003.

22. Dingle, N. J.,, Knottenbelt, W. J. &
Suto, T. (2009). “PIPE2: a Tool for the Performance
Evaluation of Generalized Stochastic Petri Nets”.
[Text] Newsletter ACM SIGMETRICS Performance
Evaluation, Vol. 36, Issue 4, pp. 34-39, NY, USA.
https://doi.org/10.1145/1530873.1530881.

23. “PIPE2: Platform-Independent Petri net
Editor” [Electronic resource] Access mode: URL:
http://pipe2.sourceforge.net, Title from the screen
(Active link — 28.10.2019).

Received 17.09.2019
Received after revision 26.11.2019
Accepted 02.12.2019

VJIK 004.042

Mayain, Oner Muko1aiioBH4, JOKTOP TEXHIYHUX HAYK, JOLEHT KadeapH CHCTEMHOTO IIPOrPaMHOI0
3a0e3MeueH s iIHCTUTYTY KoMIT IoTepHuX cuctem, E-mail: paolenic@yandex.ru, ORCID ID: 0000-0002-
2210-8317

'Komsiea, Hatanisi OneriBHa, KaHIuIaT TEXHIYHAX HAYK, JOLEHT KadepH CHCTEMHOTO IPOrPaMHOro
3a0e3MeueHH s iIHCTUTYTY KoMIT 1oTepHux cucrem, E-mail: nkomlevaya@gmail.com, ORCID ID: 0000-0002-
2430-0134

"Mapyunin, Cranicnas FOpiiioBHy, KaHIuIaT TEXHIYHUX HAYK, JOUEHT KadeapH CHCTEMHOTO IPOrPaMHOIO
3abe3neueH s iIHCTUTYTY KOMIT 10TepHux cucteM, E-mail: stanislavmaru@gmail.com, ORCID ID: 0000-
0003-0755-0104

1HiK0J1eHR0, Anatodiii OnekcaHApPoOBHY, KAaHIUIAT TEXHIYHUX HAYK, TOIEHT Kadenpu iHpopMaIitHIX
CHCTEM IHCTHTYTY KoMIT toTepHux cucteM, E-mail: anatolyn@ukr.net, ORCID ID: 0000-0002-9849-1797
'Onechkuit HaliOHATBHAI IO TEXHIYHAI yHiBepcurer, mp. [lleByenka, 1, M. Oneca, Ykpaina, 65044

METO/J NIOBYJAOBU MOJIEJII OBYUCJIIOBAJIBHOI'O ITPOLECY
HA OCHOBI MEPEXI IETPU

Anomauia. Memoio pobomu € niosuwents aKocmi 004UCTIOBATILHO20 NPOYeECY, WO BUPIULYE NOCMABNEHY 3a0ayy, 3d PAXYHOK
11020 MOOeNI08anHs i Hana2o0xcentsa Ha ocHosi mepexci [lempi. 11i0 axicmio obuucnio8anbHo20 npoyecy po3ymMi€emsvcs 8i0CYMHICMb
NOMUNOK (3G YUKTIOBAHHA, NAPANiy, HeMOdCIugicmv peanizayii desaxkozo ¢ppasmenmy i m.n.) i oco onmumizayis 3a Kpumepiem
MiHIMYyMY cknaonocmi. I[Ipononyemvca Hnoeuii nioxio 0o amanizy 00YUCTIO8ANLHOZO NPOYecy, 3ACHOBAHUL HA NONEPEeOHbOMY
Mmooenroeanti mepesxcamu Ilempi sax pacmenmie 0OYUCTIOBATLHUX NPOYeCi8, MAK 1 NOGHUX O00UUCTIO8ATLHUX npoyecis. Lle
003801UMb GUABTAMU 6A2AMO NOMUNOK HA Ccmadii molenoeanus o06yucoeaiviozo npoyecy. Obuuciosanvhuil npoyec
PO32780AEMbCSL SIK CYKYRHICMb MAKPOONEpayii, sKi € QYHKYIOHANbHO 3aKIHYEHUMU Onepayisimu pizno2o iepapxiunoeo pieus. /s
BUOLNEHHSA MAKpoonepayiti 3 004UCTIO8AILHO20 NPOYECy NPOBOOUMBCS 1020 OeKOMNO3UYisl HA ereMeHmapHi (0a308i) 0OUUCTI0BATbHT
KOHCcmpyKyii. Popmynioemvbca meepodtcents npo me, wjo 0y0b-AKUll 00YUCTIOBATILHULL npoYec Modce OYmu CKOHCMPYUO08aHUll Ha
OCHO8I 8IOHOCHO Hegenuxoi Kinbkocmi maxpoonepayii. /[[na peanizayii Ho8020 NiOX00y CMABUMbCA i GUPILULYEMbCS 3A60AHHS
po3podKu memody nobyoosu mepedici Ilempi no sadanomy obuucnioganrvuomy npoyecy. Cymv 3anponoHosano2o memooy noiseac 8
pO3OUmMmi 0OYUCTIOBATILHO20 NpoYyecy HA Makpoonepayii, nobyooei 01s KoocHoi makpoonepayii @pacmenma mepedci I[lempi,
MoOeniosanti 6cix gppaemenmis, 30ipku 3 gpacmenmie mepedici noenoi mepeci Ilempi i i mooenosanni. [ns peanizayii memooy
po3pobnsembca npoyedypa nobyoosu mooeni 06uuciosanvHoco npoyecy. Hasooumwvca onuc emanie oamoi npoyedypu:

268 ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

https://www.sciencedirect.com/science/article/pii/S0167642317302678
https://www.sciencedirect.com/science/article/pii/S0167642317302678
https://www.sciencedirect.com/science/journal/01676423
https://doi.org/10.1016/j.scico.2017.12.003
http://pipe2.sourceforge.net/
mailto:stanislavmaru@gmail.com

Applied Aspects of Information Technology 2019; Vol.2 No.4: 260-270
Models and Methods of Information Technology

0eKOMNO3UYis 0OUUCTIOBANLHO20 NpoOYecy HA MAKpoOnepayii 3a 3anponoHOGAHUMU NPASULAMU, HepeKIad Maxkpoonepayit y
@paemenmu mepexci Ilempi i ix mooentosanns, 30ip 3a 3anponoHoeanumu npaguiamu noenoi mepedici Ilempi i modenosanms
ompumanoi mepexci [lempi. Pesynomamu peanizayii 6cix emanie npoyeoypu 3aHOCAMbCA 6 0iOAiomeKy, NpusHaueHHs AKoi —
HAKONUYEHHsI 3HAHb NPO OOYUCTIOBANbHI npoyecu, 6i0nosioni im mepeoici I[lempi ma pesynomamu moodenosanus. Lle dozeonse
Cchpocmumu npoyec MoOenio8aHHs HO8020 0OUUCTIOBANILHO20 NPOYECY 3a PAXYHOK 6UKOPUCAHHS 8JiCe HANA200NCEHUX ppazmeHmis.
Y pasi suasnenna nomunku 6 obuuciosanbHOMy npoyeci abo 1020 He ONMUMATLHOCMI 0OUUCTIOBATILHULL NPOYEC KOPUSYEMbCA, WO |
00360715€ NIOSUWUMU 020 AKICMb 34 6Ka3aHumMy euuje Kpumepiamu. Ha npuknadi copmyeanns 6cmaskamu eKcnepumeHmanbHo
NiOMBEPOHCYEMbCA NPABUTLHICIb pobomu no6yoosanoi mepedxci [lempi i3 3acmocy8aHHAM 3aA61€H020 Memooy.
Knruoesi cnosa: obuucnosanvruil npoyec; Mikpoonepayis, memoo; npoyedypa; mepexca Ilempi; mooentosanns; bibriomexa

VIIK 004.042

ll'[ay.mzm, Ouner HukosiaeBuY, JOKTOp TEXHUYECKUX HAYK, TOIEHT Kadeapbl CHCTEMHOTO TIPOTPAMMHOTO
oOecrieueHust HWHCTUTYTA KOMIIBIOTEPHBIX CUCTEM,

E-mail: paolenic@yandex.ru, ORCID ID: 0000-0002-2210-8317

1KOM.JIeBaﬂ, Haranusa OsneroBHa, KaHauIaT TEXHHYECKUX HAYK, TOLECHT Kad)eAphl CUCTEMHOTO
IIpoOrpaMMHOI0O O6CCHC‘-I€HI/I$1 HWHCTUTYTA KOMIIBIOTCPHBIX CUCTEM,

E-mail: nkomlevaya@gmail.com, ORCID ID: 0000-0002-2430-0134

1Mapynl/m, CranuciaaB FOpbeBuY, KaHIMIAT TEXHUYSCKUX HAYK, TOICHT KadeAphl CHCTEMHOTO
IIpoOrpaMMHOI0 O6CCHC‘-I€HI/I$1 HWHCTUTYTAa KOMIIBIOTCPHBIX CUCTEM,

E-mail: stanislavmaru@gmail.com, ORCID ID: 0000-0003-0755-0104

lHI/IKOJ‘IeHKO, AHATOJIMi AJIEKCAHIPOBUY, KaHIHIAT TCXHUYSCKUX HAYK, TOICHT Kadeapsl
I/IH(bOpMaHI/IOHHI)IX CHUCTCM MHCTUTYTA KOMIIBIOTCPHBIX CUCTEM,

E-mail: anatolyn@ukr.net, ORCID ID: 0000-0002-9849-1797

YOneccknii HAMOHANBHBIN IONMUTEXHITYECKHIT yauBepcurer, mp. [llesuenko, 1, r. Oxecca, Ykpanna, 65044

METOA IMOCTPOEHUSA MOAEJIN BBIYUCJIMTEJBHOI'O NIPOLECCA
HA OCHOBE CETHU IIETPHU

Annomayusn. Llenvio pabomul s6nsemcs nogviuleHUe KA4ecmed Gbl4UCTUMENbHO20 NPOYeccd, peuaruie2o NoCmasieHHylo
3a0ayy, 3a cuém e2o0 MOOenUposanus U OmiaAdKu Ha ocHose cemu Ilempu. I100 Kawecmeom 6bIYUCTUNENBHO20 NPOYECcCa
noHuMaemcsi omcymcemeue owubOK (3ayuKIuGaHUe, NAPAIUY, HEPearu3VeMOCmb HEeKOMopo2o gpazmenma u m.n.) u e2o
onmumu3ayus no Kpumepuio Munumyma cioxciocmu. Ilpeonazaemcsi HOGblli NOOX00 K AHAAU3Y GbIYUCIUMENbHO20 Nnpoyeccd,
OCHOBAHHBIL HA NpedsapumenbHom moodeauposanuu cemsamu Ilempu Kax hpaemenmos blyUCIUMETbHBIX NPOYECCO8, MAK U HOIHBIX
BbIUUCTUMEILHBIX NPOYECCO8. DMO NO360NUM BbIAGIAMG MHOSUE OUUOKU HA CMAOUU MOOEAUPOBANUSL 8bIUUCTUMENbHO20 NPOYeccd.
Bviuucnumenvuviii npoyecc paccmampugaemcsi Kak COBOKYNHOCMb MAKpOONepayull, Komopvle AGIAIOMCs QYHKYUOHATbHO
3AKOHUEHHBIMU ONEPaYUAMU PAZIUYHO20 UEPAPXUYECKO20 YPOoeHs. [evloeNienus MaKxpoonepayull u3 6bluUcIumenbHo20 npoyecca
nPoBOOUMCSE €20 0eKOMNO3UYUs Ha dNeMeHmapuvle (6a306vle) svbluuciumenvHvle KOHCmpyKyuu. Dopmyaupyemes ymeepicoenue o
mom, 4mo 060U BbIYUCTUMENbHBIL NPOYecc Modcem Oblmb CKOHCMPYUPOBAH HA OCHO8E OMHOCUMENbHO HeOONbUO020 Yucia
Maxpoonepayuil. [{ns peanuzayuu HO8020 NOOX00d CIASUMCS U pewiaemcs 3a0a4a paspabomxuy memooda nocmpoerus cemu Ilempu
no 3a0anHHOMy 8bryucaumensromy npoyeccy. Cymo npeonacaemozo mMemooa cocCmoum 8 pasdueHuy BbIYUCIUMeNbHO20 npoyecca Ha
Makpoonepayuu, nocmpoenuu 0isi Kaxcoou makpoonepayuu gpaemenma cemu Ilempu, mooenuposanuu écex gpazmenmos, cOopru
u3 ¢ppaemenmos cemu noanoii cemu Ilempu u eé mooeruposanuu. /[na peanuzayuu memooa paspadbamuiéaemcs npoyeoypa
nocmpoenusi Mooenu GLIYUCIUMeENbHo20 npoyecca. llpusooumcsa onucanue >3manog OAaHHOU NpoYeoypbl. OeKOMNO3UYUS
BLIYUCTUMENBHO20 NPOYeCca HA MAKPOONEpayuu no npeoiodiCeHHbIM NPAGUIAM, Nepesod MAKpOOnepayull 60 (ppazmeHmvl cemu
Ilempu u ux modenuposanue, c60p no NPedLONHCEHHBIM npaguiam noanot cemu Ilempu u modenupoganue nonyyennou cemu I[lempu.
Pesynvmamer peanusayuu 6cex 3manog npoyeoypvl 3aHOCAMCS 6 OUOIUOMEKY, HA3HAUeHUe KOMOpOl — HAKONAEHUe 3HAHUL O
BbIUUCTUMENLHBIX NPOYeccax, coomeemcmayiowux um cemsax Ilempu u pesynomamax mooeauposanus. Jmo no36o0asem ynpocmums
npoyecc MoOenUpoBanUs HOBO20 GbLIYUCTUMENLHO20 NPOYECCA 3a CHEM UCHONb306AHUSL YIice OMAAICEHHbIX (pazmenmos. B ciyuae
8bIAGNEHUSL OUUOKU 8 BLIYUCTUMENLHOM NPOYecce Ul e20 He ONMUMATbHOCIU BLIYUCTUMENbHBLI NPOYecc KOPPEKMupyemces, 4mo u

ISSN 2617-4316 (Print) 269
ISSN 2663-7723 (Online)

mailto:stanislavmaru@gmail.com

Applied Aspects of Information Technology 2019; Vol.2 No.4: 260-270

Models and Methods of Information Technology

N0360JI5lem NOBbICUMb €20 KAUECMBO N0 YKA3AHHbIM eblule Kpumepusim. Ha npumepe copmuposku 6cmagkamu 9KCnepuUMeHmaibHo
NnOOMEePIACOAemcst NPASUILHOCHb pabonvl nocmpoerHol cemu Tlempu ¢ npumenenuem 3a16/1eHH020 Memooa.

Knrouesvle cnosa: uluuciumenshvlii Npoyecc; Maxpoonepayus, memood; npoyedypa;, cemv Ilempu; moderuposanue;
oubuomexa

Paulin, Oleg Nikolaevich, Doctor of Technical Sciences
Area of scientific interests: algorithms, parallel and distributed systems and computing,
processing large data streams, computer system components

Komleva, Nataliia Olegovna, Candidate of Technical Sciences
Area of scientific interests: data analysis, analysis of the quality of information sources,
machine learning

Marulin, Stanislav Urievich, Candidate of Technical Sciences
Area of scientific interests: database development, object oriented design
and programming

Nikolenko, Anatoly Alexandrovich, Candidate of Technical Sciences
Area of scientific interests: modeling systems, digital signal and image processing

270

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

