
Applied Aspects of Information Technology 2021; Vol.4 No.4: 338–353

338 DOI: https://doi.org/10.15276/aait.04.2021.4 ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

DOI: https://doi.org/10.15276 /aait.04.2021.4

UDC 004.4'24

Automated object-oriented technology

for software module development

Oleksii B. Kungurtsev1)
ORCID: http://orcid.org/0000-0002-3207-7315; akungurtsev19@gmail.com. Scopus Author ID: 57188743440

Nataliia O. Novikova2)
ORCID: http://orcid.org/0000-0002-6257-9703; nataliya.novikova.31@gmail.com. Scopus Author ID: 57212034123

Svitlana L. Zinovatna1)

ORCID: http://orcid.org/0000-0002-9190-6486; zinovatnaya.svetlana@opu.ua. Scopus Author ID: 57219779480

Nataliia O. Komleva1)

ORCID: http://orcid.org/0000-0001-9627-8530; komleva@opu.ua. Scopus Author ID: 57191858904
1) Odessa National Polytechnic University, 1, Shevchenko Ave. Odessa, 65044, Ukraine

2) Odessa National Maritime University, 34, Mechnykov Str. Odessa, 65029, Ukraine

ABSTRACT

It is shown that most technologies for creating information systems are based on an object-oriented approach and provide for

the presentation of functional requirements in the form of use cases. However, there is no general agreement on the format of the use

cases and the rules for describing script items. The work has improved the classification of items of use cases basing on the analysis

of a great number of existing descriptions from different subject areas. New rules have been introduced and the existing rules have

been clarified for describing use cases, which made it possible to further formalize and automate the process of describing use cases.

It is also proposed to automate the process of forming a model of program classes by introducing additional information linking the

class with use cases. Thus, the programming class model contains significantly more information for coding than the existing models

in UML diagrams. A method for constructing a model of program classes has been developed. Methods for the automated description

of use cases and the construction of a model of program classes are linked into a single process. The level of information richness of

the class model also makes it possible to automate the debugging process associated with changing requirements. Since the decisions

made cover most of the steps in the software module creation process, they collectively represent a new technology. The proposed

model, methods and technology were implemented in the ModelEditor and UseCaseEditor software products. Approbation of the

method for automating the description of use cases demonstrated a decrease in the number of errors compared to the traditional

method of describing more than two times, and shortening the time more than one and a half times. Testing the method for con-

structing a model of program classes showed its advantage over the existing technology: errors and time reduction almost one and a

half times. The proposed technology can be used in the development of any information systems.

Keywords: Use case; model of program classes; information technology; object-oriented technology

For citation: Kungurtsev O. B., Novikova N. O., Zinovatna S. L., Komleva N. O. Automated object-oriented for software module develop-

ment. Applied Aspects of Information Technology. 2021; Vol. 4 No. 4: 338–353. DOI: https://doi.org/10.15276/aait.04.2021.4

1. INTRODUCTION

Most technology for creating information sys-

tems (IS) are based on an object-oriented (OO) ap-

proach. The object-oriented approach involves a se-

ries of sequential steps by the developer. Fig. 1 gives

a generalized representation of the main stages of a

typical OO-technology for creating an IS program

module in the form of a set of activities: presentation

of requirements in the form of use cases (UC), draw-

ing up a model of conceptual classes, building inter-

action diagrams; creation of the specification of pro-

gram classes, coding and testing.

The developers of the software product in the

manual mode perform almost all mentioned activi-

ties and provide information communication be-

tween them. This is confirmed by an analysis of the

literature.

© Kungurtsev O., Novikova N., Zinovatna S.,

 Komleva N., 2021

In [1] and [2], a number of rules for describing
UC are proposed, the high labor intensity of the pro-
cess is noted, but there are no proposals for its re-
duction. References [3] and [4] provide guidelines
for the use of UML diagrams, but do not consider
the relationship of the said activity with the previous
and subsequent design steps. In [5], the issues of
testing based on UC are also considered in the form
of a separate process. In [6], the application of OO-
technology in the development of software products
is considered, but exclusively in relation to mobile
applications. In [7], the advantages and disad-
vantages of using UML diagrams are described, but
only with respect to the specifics of reengineering
existing systems in accordance with the evolution of
software types. An assessment of the existing soft-
ware development technology is given in [8], where
as one of its main disadvantages it is indicated that
all its processes are based solely on the human fac-
tor.

https://doi.org/
http://orcid.org/0000-0002-4078-3519

Applied Aspects of Information Technology 2021; Vol.4 No.4: 338–353

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

 339

Fig. 1. Typical object-oriented technology for software module development
Source: compiled by the authors

Thus, increasing the productivity of existing

technology by automating individual processes and

exchanging information between them is a task of

current interest.

The aim of the study is to reduce the time and

the number of errors at the stages of forming re-

quirements and creating class models by combining

separate fragments of creating a model of program

classes in a unified technology.

To achieve the goal, the following tasks should

be solved:

 to clarify the rules for describing UC and im-

prove the classification of items in the scenario of

precedents;

 to change the method of automated UC gen-

eration taking into account changes in the classifica-

tion;

 to improve the method of forming a model of

program classes (MPC) by making changes to the

class model;

 to develop new technology for development

of a program module;

 to carry out approbation of the adopted deci-

sions.

2. REVIEW OF THE LITERATURE AND

PROBLEM STATEMENT

Drawing up UC is quite a laborious process. In

[1], the following data on the time spent on compil-

ing the UC are given: a group of 10 people produced

140 short descriptions of the UC per week (2.8 de-

scriptions per person per day). In [2], automation

tools are presented for development based on use

cases taking into account frequently used artifacts,

which is expected to reduce the overheads and com-

plexity of the simulation. However, automation is

limited to the use case diagram when working with

product lines.

Most IT specialists believe that a UC descrip-

tion should contain three main parts: a preamble, a

main successful scenario, and alternative scenarios.

However, there is a great divergence of opinions on

the content and formats of UC presentation. For in-

stance the popularizes of the Rational Unified Pro-

cess [9] propose to include 9 positions in the pream-

ble. And in work [3] it is recommended to reduce

their number to 4, to exclude the concept of a trig-

ger, but also to introduce the concept of the target of

UC. In [10], it is also proposed to have 4 positions in

the preamble, but instead of the actor, a trigger is

introduced.

There is no prevailing opinion regarding the

format of the script items. In work [1] the following

format is proposed: one column of the text (not ta-

bles); numbered steps; no sentences with “if”; the

numbering convention in the extensions section, in-

cluding combinations of numbers and letters. In

work [5] it is proposed to write a scenario in the

form of a table with three columns, in work [10] as

a table with four columns.

There is no consensus on the format and loca-

tion of alternative scenarios. In work [1] it is pro-

posed to move alternative scenarios outside the main

scenario, and in work [5] it is proposed to divide an

alternative scenario into two streams: an alternative

Use case
Conceptual

classes

Program

module

Changes to

requirements

Model of

program

classes

Artifact transfer

Process control

Use case
elaboration

1

Description of
a model of
conceptual

classes

2
Drawing up

sequence dia-

grams

3

Development of

program class

specifications

4

Coding

5

Testing and

debugging

6
Conclu-

sions

Module
accepted

Errors
Model does not fit

the patterns

Applied Aspects of Information Technology 2021; Vol.4 No.4: 338–353

340 ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

stream and a stream that leads to unsuccessful com-

pletion.

Thus, a large number of contradictory rules for

compiling UC and lack of classification of their

items do not allow automating the process of their

formation. It remains extremely labor intensive.

The first stage of IC design usually begins with

the separation of conceptual classes. In [11], options

are considered for defining conceptual classes using

a list of categories of conceptual classes and by

highlighting nouns. In [12], it was proposed to use

the terms of the subject area for this purpose. In

[13], it is proposed to distinguish conceptual classes

basing on the analysis of each UC separately.

Regardless of how the concept class is allocat-

ed, it is usually represented as follows:

c= <cName, mCAttr'>, (1)

where: cName is class name; mCAttr' is a subset of

the class attributes needed to understand its use; at-

tribute types are usually not specified.

The conceptual class model is a document

linked with the subsequent stages of work on the

project only through the developer (Fig. 1).

Usually, the model of a program class is under-

stood as its specification, which can be represented

as:

classSpecif= <cName, mCAttr, mcFunc>, (2)

where: mCAttr is a list of class attributes with indi-

cation of types; mcFunc is a list of class methods

with arguments and return type.

To obtain the specification, UML tools are usu-

ally used [14] in the form of sequence diagrams

[15]. However, the authors do not propose to estab-

lish a direct connection between the processes of

building interaction diagrams and creating class

specifications. Also, when constructing interaction

diagrams and class specifications, design patterns

are used [16]. In [17], it is also not proposed to

check for compliance the results obtained with de-

sign patterns, or it is not indicated at all at which

design stages the patterns are used. Thus, the com-

munication of the various design stages is realized

through the developer. In [18], on the basis of the

publications, it is shown that UML diagrams are of-

ten used while designing or modeling, however,

more often in the description, class diagrams are al-

ready used, and sequence and state diagrams had a

low frequency of use, not to mention the description

of UC. In [19], a study was carried out, which also

showed that developers do not use most of the UML

diagrams at all.

On the basis of the analysis of literature data,

the following conclusions can be drawn:

– there are no generally accepted rules for de-

scribing UC, this process is performed manually, is

laborious, and associated with a large number of er-

rors;

– the process of constructing class models is di-

vided into several stages, the models are not in-

formative enough, it is difficult to trace the mapping

of requirements in classes and make changes to the

requirements;

– in the existing technology for developing a

software module the stages are connected through

the developer, which determines a significant pro-

portion of manual labor, a large dependence of the

results on the qualifications and experience of the

developer.

3. RESULTS OF DEVELOPMENT OF

TECHNOLOGY FOR CREATION OF THE

SOFTWARE MODULE

3.1. Clarification of the rules for generating

use cases and classification of the scenario items

A use case is drawn up by a systems analyst

(SA) after working with an expert in a specific do-

main. Systems analyst lays down in UC the possibil-

ities of the future software product, therefore, each

point of the scenario must be analyzed in terms of

the possibility and method of its implementation.

It is proposed in each point of the scenario to

indicate all the actions that the system must perform

in accordance with the considered business process

and all the data that are used in this case.

Example

A. Traditional revision of the UC script item.

n. The client contributes a certain amount. The cash-

ier fixes the amount in the system. The system cal-

culates the rest of money and generates a ticket.

B. Recommended edition.

n. The client contributes a certain amount. The cash-

ier fixes the amount in the system. The system cal-

culates the rest of money, marks the sold seat, and

generates a ticket. It contains the departure date, the

train number and class, the carriage number and

class, the seat number. When transferring for the

second train, the number of the train, and its class,

the number of the carriage and its class, the number

of the seat, and the transfer station are indicated. The

transaction is recorded (transaction attributes will be

defined later).

It is proposed to perform only one validation of

the input data at each point in the scenario.

Example

A. Traditional revision of the UC scenario item.

n. The student reports their specialty and group. The

secretary enters the received data into the system.

The system confirms it.

Applied Aspects of Information Technology 2021; Vol.4 No.4: 338–353

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

 341

B. Recommended edition.

n. The student reports their specialty. The secretary

enters the system. The system confirms the presence

of the specialty.

n + 1.The student reports their group. The secretary

enters the system. The system confirms.

If the scenario item provides for the creation of

an object, then you should indicate what it is created

for.

Example

A. Traditional revision of the UC scenario item.

n. The client contacts the cashier about buying a

ticket. The cashier creates a “new sale” in the sys-

tem.

B. Recommended edition.

n. The client contacts the cashier about buying a

ticket. The cashier creates a “new sale” in the system

to store all information about the ticket.

“Visible” and “Invisible” parts of the UC de-

scription. It is proposed to make a part of the UC

description invisible for the subject area expert,

since this part will not relate to the requirements for

a software product, but to its design.

It is proposed in all paragraphs where some da-

ta are discussed, to indicate in the invisible part the

storage location (the invisible part of the description

is located after the symbols “//”).

Example

n. The client reports the name of the departure and

destination stations. The cashier enters them into the

system. The system confirms the presence of sta-

tions // Station departSt and station arrivSt are stored

in the NewSale class.

It is impossible to automate the process of de-

scribing the UC without introducing a classification

of a scenario points. In [20], based on the experience

of working with UCs, a classification of scenario

items was proposed. To improve and substantiate

this classification, 37 examples of UC descriptions

in [21], more than 10 descriptions in [5, 11], descrip-

tions from [22], as well as the results of solving

problems within the educational process, formulated

in [23], were analyzed. The hierarchical classifica-

tion method was chosen [24, 25] due to its simplici-

ty, high information saturation and visibility [24].

The qualification characteristics were determined by

the procedures for communicating the user with the

system. The result is shown in Fig. 2.

At the second level of the hierarchy, there are

three groups of items: “Input”, “Command” and

“Request”. Group “Input” contains items “Data in-

put” and “Select from the list”. “Data entry” pro-

vides for the entry of one or more data into the sys-

tem. “Select from the list” provides for the input of

data corresponding to some items from the list. The

list should have been displayed earlier. The “Com-

mand” group includes five items. The item “Repeat

of actions” defines a repeating group of items in the

scenario. The “UC call” item gives a link to another

UC, to which control is transferred. Items “Success-

ful completion of the UC” and “Unsuccessful com-

pletion of the UC” provide for certain sets of actions

in appropriate situations. The item “Create” creates a

model of the program class. The “Request” group

includes four items. “Request with value input” pro-

vides for receiving data depending on the entered

value. “Service request” involves the selection of

one of the alternative scenarios. “Request for a list

of values” further provides for selection from this

list. A “Value request” requires a single value to be

logged out.

Fig. 2. Classification of a scenario items
 Source: compiled by the authors

All classes

Command Input Request

Data input
Repetition of

actions

Select from the

list UC call

Creation

Successful

completion of the UC

Unsuccessful

completion

of the UC

Service request

Value request

Request for a list

of values

Request with value

input

Applied Aspects of Information Technology 2021; Vol.4 No.4: 338–353

342 ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

3.2. Method of automated generation of use

cases

To describe the UC scenarios, a number of rules

were formulated, which individually are not new,

but together they allow automating the process of

compiling UC scenario items:

 UC appears to be a major success scenario

and extensions;

 the initiator of the action of each item of the

main successful scenario is always the user;

 at each point in the scenario, the imaginary

system must perform certain actions.

The method of automated generation of use

cases involves the sequential implementation of

three stages.

At the first stage method is proposed to repre-

sent the UC in the form:

u= <uName, pr, sc, mc>, (3)

where: uName UC name; pr preamble; sc UC

scenarios; mc set of classes which implement UC.

The preamble includes: ap the main actor; da

 interests of the participants; pc preconditions for

performing UC; gm minimum guarantees; gs

guarantees of success.

As a result of the first stage, the UC gets a

name, and all the elements of the preamble are de-

termined.

At the second stage of the method, the items of

the main scenario are formed. An item model is a

sequence of elements, each of which can be:

 automatically generated data (scenario item

number nP),

 designation of a certain person acting within

the scenario (Client, Actor);

 pre-prepared piece of the text tpi;

 text fragment formed in the process of com-

posing a item tuj;

 a type value that can be entered into the sys-

tem, or obtained from it;

The model also uses metacharacters. Items in

square brackets “[...]” are optional. Items enclosed

in parentheses “(...)” can be repeated. Items enclosed

in curly braces “{...}” belong to the design phase, so

they are not included in the software requirements

documents. The “+” symbol denotes string concate-

nation. The “/” symbol means the use of one of two

elements separated by this symbol.

As an example, the model of the item “Enter

data” is shown.

inputData= <nP, [Client, tp1, tu1,] Actor, tp2,

(tu2, {data1 [tp3])>, (4)

where: nP UC point number; tp1 = “reports”; tu1

user-generated text, such as an address; tp2 = “enters

the system”; tu2 user-generated text depends on

tu1; data1 = {d1, d2, ..., dn) list of input data; tp3=

“The system confirms the correctness of the data”.

As a result of the second stage, a verbal descrip-

tion is formed for each item of the main successful

scenario. The description format is determined by

the item type according to the classification and the

corresponding item model. It also defines the data

that at this point in the scenario will enter or be ex-

tracted from the software product.

At the third stage alternative scenarios are

formed. For each item in the main scenario, which

contains a phrase like “the system confirms” or

“Client / Actor agree”, the user is prompted to create

an alternative scenario.

Each alternative scenario begins with the phrase

N.l: S,

where: N is the number of the point of the main sce-

nario in which some condition was not met; S is the

text determining the condition for the transition to

the alternative scenario.

The first item in the extension script is initial-

ized by the system. The rest are built using the pre-

viously discussed item models.

The third stage completes the verbal description

of the UC. The UC text can be presented to the Cus-

tomer for agreement and approval. In addition, the

necessary information has been prepared for further

automation of the process of building a model of

program classes (UC name, number, type, and data

for each point of the scenario).

3.3. An improved method of forming a model

of program classes

According to Fig. 1, after writing the UC, a

model of conceptual classes is built, then – interac-

tion diagrams and a model of program classes. The

disadvantage of this technology is a large proportion

of manual labor and the isolation of separate stages,

which determines the high complexity of design as a

whole. The developer, forming the UC, necessarily

thinks about the ways of its implementation in the

future system (Fig. 1, activity 1), but this is not

recorded anywhere. They must perform the same

work again when drawing up models of conceptual

and program classes (Fig. 1, activities 2 and 3).

To eliminate the indicated disadvantages of

the existing technology, a method is proposed that

makes it possible to automate the process of forming

a model of program classes. The essence of the

method lies in the fact that upon completion of the

description of each point of the scenario, a fragment

Applied Aspects of Information Technology 2021; Vol.4 No.4: 338–353

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

 343

of the MPC is created. It is intended for the imple-

mentation of the functions provided for by this point

(Fig. 3). In this case, the formation of the UC and

the creation of the class model are performed in par-

allel. If necessary, the process of forming a class

model can be put aside, but all the necessary infor-

mation for it is saved.

The use of the existing model of the program

class (2) provides for a “manual mode” when per-

forming operations of correcting the model, tracing,

searching for classes and their functions. Therefore,

to implement the proposed method for constructing

the MPC, an improved model of the program class

has been developed. This model significantly in-

creases the information content of the existing model

(2) and has essential additional capabilities in com-

parison with the model presented in [26].

Advanced model of program clasess

In the model of the program class [27], it is

proposed to improve the typing of data. To realize it,

all types are divided into simple and structured. The

simple ones include:

Text is any text;

Numb is any number;

Bool is boolean value;

Void is absence of the data;

рClass is a reference to a class object.

The structured ones include:

List is a list (can represent a linear list, array,

set, etc.);

Struct is a structure (in general, it contains

fields of different types), must contain the number-

ing of the fields.

This approach makes it possible to describe ra-

ther complex data sets.

Example 1. Let it be the case that at a certain

item k of the scenario it is necessary to present a list

X, where each element represents a person P and

contains a surname N and a year of birth Y. Then the

type X will be described as follows

X: List-> P -> Struct (2) (1) N: Text (2) Y:

Numb

It also provides a methodology for defining the

goals of a class, methods, and attributes.

We represent the class by a tuple

cl= <cHeader, mCAttr, mFunc>. (5)

The cHeader class header looks like this:

 cHeader= <cName, tC, uName, nP, mPurp>, (6)

where: cName is the class name; uName, nP is the

name of the UC and the number of the scenario item

in which the class or prototype was created; tC is the

type of the class (class or prototype); mPurp stands

for many purposes of using the class; each element

of the set has the form: <uName, nP, purpose>.

A class can only be created in the “Create” UC

item. In this case, one goal is introduced into the

empty set, mPurp.

Example 2. A point of a certain scenario is be-

ing considered. “The client turns to the receiver in

order to hand over things to dry cleaning. The re-

ceiver creates a new order in the system”. In accord-

ance with the item, a NewOrdern class will be creat-

ed with the purpose of “Storing data on a dry clean-

ing order”.

The rest of the elements of the mPurp set will

be added as they appear in the function class. Let us

represent the class function by the tuple

func= <fName, fPurp, mArgs, returnVal,

mNewValAttr, mRfFunc>, (7)

where: fName is the function name; fPurp is the pur-

pose of using the function.

Whenever a service is required from a class, it

must be represented by a function. Therefore, the

purpose of using the function is added to the set of

purposes of the class.

Example 3. A point of a certain scenario is be-

ing considered. “The client informs about the type of

service. The receiver enters the type of service into

the system. The system confirms“. Let the Serviсe-

TypeList class be created earlier. Then fPurp will

take the value “Check for service availability”, and

the same value will be added to mPurp.

returnVal = <retType, purpose> the value re-

turned by the method;

The rest of the elements of expression (7) have

the following meaning:

mArgs stands for many function arguments;

each argument is represented by id, argType, and

purpose of use argPurp;

Fig. 3. Relationship between the scenario item and class models
Source: compiled by the authors

Scenario element

formation

System function

defining

Class method

definition
Class definition

Applied Aspects of Information Technology 2021; Vol.4 No.4: 338–353

344 ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

mNewValAttr is a set of attributes, the values of

which change as a result of the method execution;

mRfFunc stands for many references to external

functions (methods) of other classes that are used in

this method. Each element of mRfFunc is represent-

ed by a tuple:

mRfFunci = <cNamej, fName>,

where: cNamej is the class that the external function

belongs to; fName is the name of the external func-

tion.

Let us represent the class attribute with a tuple

Attr = <attrName, attrPurp, attrType,

mattrRf>, (8)

where: attrName is the attribute name; attrPurp is

the purpose of using the attribute; attrType is the

attribute type; c={<fName, cName, uName, nP>}

method references that use the attribute.

The purpose of the attrPurp attribute is actually

its name in the language of the class modeller. The

attribute description elements attrName,

attrPurp, and attrType remain unchanged from the

time the attribute is created. The mattrRf set is re-

plenished with a new element each time the attribute

is used with a new function. The proposed method-

ology for the formation of goals makes it possible to

give a preliminary quantitative assessment of the

degree of similarity of classes, methods and attrib-

utes.

Stages of the improved method of formation

and the adjustment of the model of program classes

The method contains four stages.

At the first stage, the UC is determined for the

construction of the MPC. In this case, two options

are possible:

 a previously not described UC is selected and

the MPC is formed simultaneously with the descrip-

tion;

 the UC is selected, for which the description

was compiled, but the MPC was formed.

From the point of view of the total time spent

on design, the first option is preferable. However,

various circumstances can create a situation when

the processes of UC description and MPC creation

are separated in time. For example, a customer has

limited the time it takes to get interviews from his

employees. In any case, it is necessary to control the

process of describing the UC.

We define the set of UC

mU= {<uNamei, ma, state>}, i = 1,k, (9)

where: uNamei is UC name; ma is a set of people

interested in UC; state is a UC readiness degree.

There are three suggested values for the state:

“Proposed”, “Description completed”, “Completed”.

The degree of readiness “Proposed” means, from the

point of view of the preparation of the MPC, the

simultaneous work with the description. If the UC is

readily “Composed Description”, then only the MPC

is created.

The procedure for describing UCs, as well as

designing the corresponding MPC for large software

products, is difficult to establish in advance. This

leads to the fact that a certain class may be in de-

mand until the moment of its “creation” in a certain

UC. Therefore, the model uses the concept of

“class” for the previously “created” class and “proto-

type” for a class that has not yet been created, but

there is a need to use it.

At the second stage, changes are made to the

MPC in accordance with each point of the scenario.

Fig. 4 shows the main actions associated with ad-

justment of the MPC when implementing a scenario

item in the model.

Adjustment of the MPC is realized by perform-

ing a combination of procedures corresponding to

each point of the scenario (Table).

From Table 1 it follows that eight procedures in

various combinations implement all types of scenar-

io items.

At the third stage, an automatic construction

of the specification of program classes is performed

basing on the obtained MPC. The third stage is op-

tional and is performed at the request of the devel-

oper.

The created MPC contains all the information

necessary for constructing the specifications of the

program classes. Therefore, specifications can be

created without the participation of an expert.

We represent the specification of the program

class in the form

classSpecif= <cName, mClassAttr, mFunc>,

where: cName represents the class name in the mod-

el and in the specification;

mClassAttr is a list of class attributes;

mFunc is a list of class functions (methods).

Each attribute can be represented as

attri= <attrName: attrType>,

where – attrName, attrType is the name and type of

the attribute taken from the description of the attrib-

utes in the model (8).

We represent each function in the form

fName (mArgs): retType,

where: fName is the function name according to (7);

retType is a return type; mArgs is a list of function

arguments.

Applied Aspects of Information Technology 2021; Vol.4 No.4: 338–353

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

 345

Fig. 4. Changes to the Programming Class Model when a new scenario item is added
Source: compiled by the authors

Table .Combinations of procedures for building a model in accordance with the points of the scenario

Scenario Item Type Class procedures

Data input Method formation; search for classes by purposes; adding a method to a class

Select from the list Method formation; search for classes by purposes; adding a method to a class

Successful completion of

UC

Method formation; formation of attributes; search for classes by purpose

Unsuccessful completion

of UC

Method formation; search for classes by purposes; adding a method to a class

Creation Formation of the title; method formation; formation of attributes; search for

classes by purposes; search for classes by purposes; class union

Value request Method formation; search for classes by purposes; adding a method to a class;

forming a class based on a method

Request for a list of

values

Method formation; search for classes by purposes; adding a method to a class;

forming a class based on a method

Request with the value

entry

Method formation; formation of attributes; search for classes by purposes; add-

ing a method to a class; forming a class based on a method

Service request Method formation; search for classes by purposes; adding a method to a class;

forming a class based on a method
Source: compiled by the authors

Entering the item ID and

number

Defining the function

and class purpose

Formation of the purpose of the

class. Search for a prototype

Finding a class

(prototype)

Search method
Prototyping, purpose

formation

Adding a method

Adding attributes

Adding a new purpose

to the class

Creating a new class

Converting a

prototype to a class

Item Creation

Method is found

A class (prototype) for the
purpose is found

Prototype is

found

Applied Aspects of Information Technology 2021; Vol.4 No.4: 338–353

346 ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

We represent each argument as:

arg= <id: argType>,

where: id is the argument identifier; argType is the

type of the argument.

At the fourth stage, the MPC is adjusted when

editing requirements (scenario items). This stage is

typically performed after code creation and testing,

and it is mandatory for any agile technology.

Changing a scenario item will be considered as

deleting the item in the old edition and drawing up a

new edition of the item. The item deletion process

involves deleting or adjusting the classes that “ser-

viced” the deleted item. The correction algorithm is

shown in Fig. 5.

When you delete an item, all classes that were

used when creating this item are determined. If a

class “serviced” only this item, then it is removed. If

a method of some class “serviced” only this item,

then it is deleted. If an attribute of a class was used

only in the method that is being removed, then this

attribute is also removed.

4. THE TECHNOLOGY OF THE SOFTWARE

MODULE DEVELOPING

The new information OO-technology has been

developed, which makes it possible to automate and

tie together the processes of UC formation, the de-

velopment and correction of the class model, the

specification of program classes and unit testing

(Fig. 6).

 Fig. 5. Algorithm for correcting the model of program classes when deleting a scenario item
Source: compiled by the authors

Method j uses
the q attribute?

No

Start

Entering the

number of the item

to be deleted (K)

i= 1, N

Get access to

class i

Delete method j

Remove q

attribute

End

q= 1, R
Yes

 i

 j q

Class i
“services” other

items?

 Method j services

item K?

Method j
“services” other

items?

Is the q

attribute used by
another method?

Class i

“services” point

K?

j= 1, P

Remove class i

Yes

No

Yes

No Yes

No

Yes

No Yes

No

Applied Aspects of Information Technology 2021; Vol.4 No.4: 338–353

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

 347

 Fig. 6. New technology for the software module developing
 Source: compiled by the authors

In contrast to known technology (Fig. 1), the

proposed technology is built of automated blocks, in

which the number of local iterations is significantly

reduced, as well as part of the developer's work in

manual mode. Operations for identifying IS users

and assigning them to the UC have been added to

the process of UC formation. The need for the stage

of creating a model of conceptual classes has disap-

peared.

Fig. 7 shows the main activities required to de-

velop a software module and the degree of their au-

tomation in the existing and proposed technology.

For each activity, the symbols at the top left of

the corresponding block characterize the existing

technology, and the symbols at the top right - the

proposed one.

From Fig. 7 it follows that the proposed tech-

nology makes it possible to automate most of the

work.

5. APPROBATION OF ACCEPTED

SOLUTIONS

When designing software for the implementa-

tion and testing of methods and models, it was de-

cided, if possible, to separate the part of the system

responsible for describing the UC from the part re-

sponsible for creating the class model. Therefore, the

precedent description subsystem was singled out

(Fig. 8). Before creating a description of a specific

UC, it may be necessary to adjust the general infor-

mation about all UCs, in particular, the list of stake-

holders and the list of UCs. For this purpose, the

module “General Data Formation Wizard” is intend-

ed. The “UC preamble formation wizard” is a tem-

plate for entering the data provided in expression

(3). The “Master of the formation of items of the

main scenario” implements the algorithms devel-

oped for each of the 10 types of items. The “Wizard

for Forming Items for Alternative Scenarios” defines

those items of the main scenario, which should have

transitions to alternative scenarios. The wizard for

the formation of data tables is connected in the case

when the process of describing the UC and design-

ing the MPC is performed at different times. In this

case, the initial information about the data associated

with the corresponding UC points is recorded in the

“Data Table”.

The subsystem for generating class models –

ModelEditor is shown in Fig. 9. A system analyst or

programmer, using the Class Formation Wizard or

the Item Removal Wizard, can select from the UC

List the use case that interests them. To form a class,

combinations of procedures are used that correspond

to the type of a specific scenario item. The complet-

ed class model is placed in the List of class models.

If it is necessary to delete a scenario item, the Item

Delete Wizard adjusts the MPC in accordance with

the algorithm shown in Fig. 5. In addition, the text of

the scenario is edited (List of UCs). Since the pro-

posed methods for automating the description of UC

and constructing a model of program classes do not

cover the entire cycle of creating a software module,

the effectiveness of the decisions made was evaluat-

ed for the corresponding stages of the technology.

As criteria for evaluating the results obtained,

two characteristics that are most often used in prac-

tice were used: the time to complete a certain

amount of work and the number of errors made in

this case. The second characteristic can be expressed

through the first, but is useful for analyzing the re-

sults.

Ten students who successfully completed the

study of the disciplines “Analysis of software re-

quirements” and “Design of software” took part in

experiments on the analysis of the automated UC

formation method effectiveness. Five subject areas

Development

of the

specification of

program

classes

Formation of

a use case

Development

and

modernization

of the class

model

Coding

Testing and

Debugging
Conclusions

Changes to

requirements

Module accepted

2 1 3

5

4

Applied Aspects of Information Technology 2021; Vol.4 No.4: 338–353

348 ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

that were not considered in the educational process

were proposed. During the research, students could

use the Internet. The traditional method of compiling

the UC corresponded to the “manual” mode, the

proposed method was automated. Time was record-

ed from the moment the task was issued to the end

of the work. As a result of the experiment, a de-

crease in the number of errors in the automated

mode as compared to the “manual” mode was ob-

tained by an average of 2.6 times (Fig. 10a), and the

reduction in time on average by 57 % (Fig. 10b).

Fig. 7. Assessment of the degree of automation in new and traditional technology
Source: compiled by the authors

List (diagram) of use cases

1 M MA

Defining the information system

functions

2
M AM

Building and Editing the

Programming Class Model

3
M AM

 Building and editing use cases

4
MA AM

Detection of inconsistencies between the

program class model and design patterns

and corporate requirements

5

MA MA

Development of module tests

7

MA MA

Module testing
6 MA AM

Tracing

8
MA A

Development of

specification of program classes

9
M M

Coding M M

 Analysis of errors

10

E

A

E

P

A

T

P

[Code errors] [Errors in

requirements]

[Inconsistency]

Analyst (A)

Expert (E)

Programmer (P)

Tester (T)

[Errors]

M – Manual work

MA – Mostly manual work

AM – Predominantly automated work

A – Automated work

Applied Aspects of Information Technology 2021; Vol.4 No.4: 338–353

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

 349

Fig. 8. The structure of the use case description subsystem UseCaseEdіtor
Source: compiled by the authors

Fig. 9. The structure of the subsystem for describing use cases ModelEditor
Source: compiled by the authors

Wizard for creating

general data

Wizard for creating

use case preambles

List of item

types

Wizard for creating

items of the main scenar-

io

Wizard for creating

items of alternative

scenarios

Data tables

Wizard for building data

tables (objects)

Input

Input

System

Analyst

Template

filling

Choice

Template filling,

editing

Creating tables and

records

Reading

Reading

Creating tables and
records

Use case header

Main scenario

Alternative scenarios

UseCaseEditor

Shaping wizard

class
List of class

models

Shaping wizard

specifications

Item deletion wizard

List of unfinished use cases

System analyst,

programmer
Name

Attributes

Methods

List of use cases

List of class

specifications

Procedures
ModelEditor

Applied Aspects of Information Technology 2021; Vol.4 No.4: 338–353

350 ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

 a

 b

Fig. 10. Comparative histogram for method of

 automated generation of use cases:

 a – by the number of errors;

 b – by the time of description
 Source: compiled by the authors

To analyze the effectiveness of the method for
constructing the MPC, a comparison was made be-
tween the three modes of creating the MPC. In man-

ual mode the proposed model was built without
the use of software tools. In the automated mode -
the same model, but using a software product. In the
“classical technology” mode, a class model corre-
sponding to this technology was created. The manu-
al mode turned out to be the most laborious due to
the use of a more complex model than in the classi-
cal technology. The automated mode showed an ad-
vantage over the existing technology in reducing

errors by an average of 54 % (Fig. 11a) and time
on average by 41 % (Fig. 11b).

The proposed technology was also tested in the
process of modernizing the existing IS. Within the
framework of a real project, it was not possible to
make a detailed comparison of technologies. Ac-
cording to the experts, the reduction in the time for
the description of the UC, the construction of the
MPC and testing was 19 %.

 a

b

Fig. 11. Comparative histogram for the

 model building method program classes:

a – by the number of errors;

b – by the time of description
Source: compiled by the authors

6. DISCUSSION OF THE OBTAINED

RESULTS OF APPROBATION OF THE

PROPOSED TECHNOLOGY OF CREATION

OF SOFTWARE MODULES

Reducing the time and errors in the automated

mode of constructing the MPC is obtained through

the use of the proposed model of the program class

representation and the method of its construction.

This made it possible to reduce the time spent on

searching for “suitable” classes, to formalize the de-

scription of methods and attributes.

In the proposed model of program classes and

technologies, such relationships between classes as

inheritance and composition have not yet been con-

sidered. Also, the issue of presenting some non-

functional requirements has not been resolved, for

example, the allowable delay in the response of the

system. These disadvantages are the subject of fur-

ther research.

0

1

2

3

4

5

6

1 2 3 4 5

Manual work

Automated work

Subject area

N
u
m

b
er

 o
f

er
ro

rs

0

5

10

15

20

1 2 3 4 5

Manual work

Automated work

Subject area

T
im

e,
 h

o
u
rs

0

2

4

6

8

10

1 2 3 4 5

Existing technology

Manual work

Automated work

Subject area

N
u

m
b

er
 o

f
er

ro
rs

0

10

20

30

40

1 2 3 4 5

Existing technology

Manual work

Automated work

T
im

e,
 h

o
u
rs

Subject area

Applied Aspects of Information Technology 2021; Vol.4 No.4: 338–353

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

 351

As presented, the technology can be used in all

projects where an object-oriented and the presenta-

tion of functional requirements in the form of use

cases approach are adopted.

7. CONCLUSION

1. For the first time, the classification of items

of UC scenarios has been performed on the basis of

an analysis of the set of existing descriptions of UC

from different subject areas. Ten types of items have

been defined. The rules for UC description have

been clarified, which made it possible to further

formalize and automate the UC description process.

2. The method of automated UC description has

been improved, which provides for the use of mod-

els for each type of item, which makes it possible to

significantly speed up the process of describing UC

and reduce the number of errors.

3. The method of forming a model of program

classes has been improved by typing data at the level

of the class model. The concepts of responsibilities

for a class, its methods, attributes have been intro-

duced. This made it possible to combine the process

of building a specific class model with the formation

of a scenario item and to automate the corresponding

stage of work.

4. An object-oriented technology has been de-

veloped, which, unlike existing technologies, has

made it possible to link and automate the main pro-

cesses of development of a software module. The

presence of additional information in the model of

program classes made it possible to simplify the

coding process, organize forward and backward trac-

ing in the process of module testing and debugging.

The totality of the decisions made increases the

quality and shortens the development time in gen-

eral.

5. Approbation of the research results has been

completed. The efficiency of the decisions made is

shown both at the stage of UC description and at the

stage of compiling and using the model of program

classes. This is confirmed by the reduction in the

time for the specified types of work by approximate-

ly 50 % and the number of errors – by more than

2.5 times.

REFERENCES

1. Coburn, A. “Modern methods for describing functional requirements for systems” [in Russian]. Mos-
cow: Russian Federation. 2016. 264 p. ISBN: 978-5-85582-326-4.

2. Hajri, I., Goknil, A., Briand, L. C. & Stephany, T. “Configuring use case models in product families”.
Software and Systems Modelling. 2018; 17 (3): 939–971. DOI: https://doi.org/10.1007/s10270-016-0539-8

3. “UML fundamentals – use-case diagrams” [in Russian]. – Available from: https://pro-

prof.com/archives/2594. [Accessed Dec 2020].
4. Iqbal, S., Al-Azzoni, I., Allen, G. &Khan, HU “Extending UML use case diagrams to represent non-

interactive functional requirements”. E-informatica Software Engineering Journal. 2020; 14 (1): 97–115.
DOI: https://doi.org/10.37190/e-Inf200104.

5. “Use case and use case testing complete tutorial”. – Available from:

https://www.softwaretestinghelp.com/use-case-testing. [Accessed Dec 2020].
6. Kravchenko, I. A. & Speranskiy, V. A. “Cross-platform practices for mobile application development

of automated trade accounting”. Applied Aspects of Information Technology. Publ. Nauka i Tekhnika. Odes-
sa: Ukraine. 2018; Vol. 1 No.1: 48–58. DOI: https://doi.org/10.15276/aait.01.2018.3.

7. Velykodniy, S. S. “Analysis and synthesis of the results of complex experimental research on reengi-
neering of open cad systems”. Applied Aspects of Information Technology. Publ. Nauka i Tekhnika. Odessa:
Ukraine. 2019; Vol. 2 No.3: 186–205. DOI: https://doi.org/10.15276/aait.03.2019.2.

8. Mahmudova, S. “Methods of organizing the technological process of software development”. Review
of Information Engineering and Applications. 2018; 5 (1): 1–11.
DOI: https://doi.org/10.18488/journal.79.2018.51.1.11.

9. Powelll-Morse, A. “What is rational unified process and how do you use it?” Available from:

https://airbrake.io/blog/sdlc/rational-unified-process. [Accessed Dec 2020].
10. Abramova, A. “Use cases. What are they and why are they needed?” [in Russian]. – Available from:

https://systems.education/use-case. [Accessed Dec 2020].
11. Larman, C. “Applying UML and patterns: an introduction to object-oriented analysis and design and

iterative development”. 2004. 736 p. ISBN-13: 978-0131489066.
12. Kungurtsev, O., Zinovatnaya, S., Potochniak, Ia. & Kutasevych, M. “Development of information

technology of term extraction from documents in natural language”. Eastern-European Journal of Enterprise
Technologies. 2018; Vol. 6 No. 2(96): 44–51. DOI: https://doi.org/10.15587/1729-4061.2018.147978.

https://www.researchgate.net/scientific-contributions/Ines-Hajri-2111648069?_sg%5B0%5D=WqTgOzpXMM4jn0Y_ZmHngd2COd-6GCzjrU0FtkPP1vl8G3TnTQt5oY1YBiWacyu8ecPOSZA.74eOp8nphgNIr4BP1NHoZkTEbYIEx2AQb43GJDitKUPrh35D4nTvVOuE2goxgvBNRiVbCF0vMufTsebiYtGjiA&_sg%5B1%5D=AOvXKSrV-UYyPTcBpSMFJmfEaikssVtGt1mfi_A2jTo3mRqoZdhkaWCZ0jHfQTvEv-bTjQ0.8_Cky5xQfuik3T13KjhhGVRRhDurIIYIgjNVT5nFk7GfOy11tSB4xAp3eN39PpTKnBXxqVcQB-7wHdCgGrOoow
https://www.researchgate.net/scientific-contributions/Arda-Goknil-70706530?_sg%5B0%5D=WqTgOzpXMM4jn0Y_ZmHngd2COd-6GCzjrU0FtkPP1vl8G3TnTQt5oY1YBiWacyu8ecPOSZA.74eOp8nphgNIr4BP1NHoZkTEbYIEx2AQb43GJDitKUPrh35D4nTvVOuE2goxgvBNRiVbCF0vMufTsebiYtGjiA&_sg%5B1%5D=AOvXKSrV-UYyPTcBpSMFJmfEaikssVtGt1mfi_A2jTo3mRqoZdhkaWCZ0jHfQTvEv-bTjQ0.8_Cky5xQfuik3T13KjhhGVRRhDurIIYIgjNVT5nFk7GfOy11tSB4xAp3eN39PpTKnBXxqVcQB-7wHdCgGrOoow
https://www.researchgate.net/profile/Lionel_Briand?_sg%5B0%5D=WqTgOzpXMM4jn0Y_ZmHngd2COd-6GCzjrU0FtkPP1vl8G3TnTQt5oY1YBiWacyu8ecPOSZA.74eOp8nphgNIr4BP1NHoZkTEbYIEx2AQb43GJDitKUPrh35D4nTvVOuE2goxgvBNRiVbCF0vMufTsebiYtGjiA&_sg%5B1%5D=AOvXKSrV-UYyPTcBpSMFJmfEaikssVtGt1mfi_A2jTo3mRqoZdhkaWCZ0jHfQTvEv-bTjQ0.8_Cky5xQfuik3T13KjhhGVRRhDurIIYIgjNVT5nFk7GfOy11tSB4xAp3eN39PpTKnBXxqVcQB-7wHdCgGrOoow
https://www.researchgate.net/scientific-contributions/Thierry-Stephany-2111643409?_sg%5B0%5D=WqTgOzpXMM4jn0Y_ZmHngd2COd-6GCzjrU0FtkPP1vl8G3TnTQt5oY1YBiWacyu8ecPOSZA.74eOp8nphgNIr4BP1NHoZkTEbYIEx2AQb43GJDitKUPrh35D4nTvVOuE2goxgvBNRiVbCF0vMufTsebiYtGjiA&_sg%5B1%5D=AOvXKSrV-UYyPTcBpSMFJmfEaikssVtGt1mfi_A2jTo3mRqoZdhkaWCZ0jHfQTvEv-bTjQ0.8_Cky5xQfuik3T13KjhhGVRRhDurIIYIgjNVT5nFk7GfOy11tSB4xAp3eN39PpTKnBXxqVcQB-7wHdCgGrOoow
https://link.springer.com/article/10.1007/s10270-016-0539-8
https://pro-prof.com/archives/2594
https://pro-prof.com/archives/2594
https://pure.hud.ac.uk/en/persons/gary-allen
https://pure.hud.ac.uk/en/publications/extending-uml-use-case-diagrams-to-represent-non-interactive-func
https://doi.org/10.37190/e-Inf200104
https://doi.org/10.15276/aait.03.2019.
https://systems.education/use-case/

Applied Aspects of Information Technology 2021; Vol.4 No.4: 338–353

352 ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

13. Jacobson, I., Spence, I. & Bittner, K. “USE-CASE 2.0 The guide to succeeding with use cases”.
2011. 55 p. – Available from: https://www.ivarjacobson.com/sites/default/files/field_iji_file/article/use-

case_2_0_jan11.pdf. [Accessed: Nov. 2020].
14. Booch, G., Rumbaugh, J. & Jacobson, I. “Unified modeling language user guide”. 2005. 496 p.

ISBN-13: 978-0321267979.

15. “Sequence Diagram”. – Available from: https://plantuml.com/ru/sequence-diagram. [Accessed
Nov 2020].

16. Freeman, E., Robson, E., Sierra, K. & Beit, B. Head First. “Design patterns” [in Russian]. 2018. 656
p. ISBN 978-5-496-03210-0.

17. Dubina, O. “Review of design patterns” [in Russian]. – Available from:

http://citforum.ru/SE/project/pattern/. [Accessed Nov 2020].
18. Koç, H., Erdoğan, A. M., Barjakly, Y. & Peker, S. “UML diagrams in software engineering re-

search: a systematic literature review”. 7th International Management Information Systems Conference, 9-11
December 2020. Proceedings 2021; 74 (1): 13. DOI: https://doi.org/10.3390/proceedings2021074013.

19. Ventayen, T. J. M. & Ventayen, R. J. M. “Systems modeling usage in project management among
junior and senior business system developers”. International Journal of Applied Science. 2018; Vol. 1,

No. 1; 17. DOI: https://doi.org/10.30560/ijas.v1n1p1.
20. Kungurtsev, A., Novikova, N., Reshetnyak, M. & Cherepinina, Ya. “Clarification of the classifica-

tion and models of items of scenarios of use cases” [in Russian]. Technical Science and Technology. Cherni-
giv: Ukraine. 2018; No. 1 (11): 79–88.

21. “Enterprise architect. Create | verify | share. Official Version: 15.2 Build 1559”. Available from:

https://sparxsystems.com/products/ea. [Accessed Nov 2020].
22. “40 use case templates & examples”. – Available from: https://templatelab.com/use-case-templates.

 [Accessed: Dec. 2020].
23. Kungurtsev, O. B. & Zinovatna, S. L. “Work with the requirements to software” [in Ukrainian].

Odessa: Ukraine. 2019. 232 p. ISBN 978-966-927-457-1.
24. Kuzmin, A. A. “Hierarchical classification of document collections” [in Russian]. Thesis. 2017.

120 p. – Available from: http://www.frccsc.ru/sites/default/files/docs/ds/002-073-05/diss/08-kuzmin/008-

kuzmin_main-txt.pdf?809. [Accessed Dec 2020].
25. Adamovich, I. M., Volkov, O. I. & Markova, N. A. “A method for classifying information on the basis

on hierarchical tags and its implementation on the example of a family archive fund” [in Russian]. Systems and

means of informatics. 2012; 22. (2): 146156. – Available from:

http://www.mathnet.ru/links/91d22b2066a220d61047771352b266df/ssi284.pdf. [Accessed Dec 2020].
26. Kungurtsev, O., Novikova, N., Reshetnyak M., Cherepinina Ya., Gromaszek, K. & Jarykbassov, D.

“Method for defining conceptual classes in the description of use cases”. Photonics Applications in Astrono-
my, Communications, Industry, and High-Energy Physics Experiments. 2019. Vol. 11176.
DOI: https://doi.org/10.1117/12.2537070.

27. Novikova, N. O. “Changing and tracing of software requirements at level of conceptual classes”.
Applied Aspects of Information Technology. Publ. Nauka i Tekhnika. Odessa: Ukraine. 2020; Vol. 3 No.1:
393–404. DOI: https://doi.org/10.15276/aait.01.2020.2.

Conflicts of Interest: the authors declare no conflict of interest

Received 12.12.2020

Received after revision 27.02.2021

Accepted 14.03.2021

DOI: https://doi.org/10.15276/aait.04.2021.4

УДК 004.4’24

Автоматизована об’єктно-орієнтована технологія створення

програмного модуля

Олексій Борисович Кунгурцев1)
ORCID: https://orcid.org/0000-0002-3207-7315; akungurtsev19@gmail.com. Scopus Author ID: 57188743440

Наталія Олексіївна Новікова2)
ORCID: https://orcid.org/0000-0002-6257-9703; nataliya.novikova.31@gmail.com. Scopus Author ID: 57212034123

Світлана Леонідівна Зіноватна1)

ORCID: https://orcid.org/0000-0002-9190-6486; zinovatnaya.svetlana@opu.ua. Scopus Author ID: 57219779480

https://plantuml.com/ru/sequence-diagram
http://citforum.ru/SE/project/pattern/
https://doi.org/10.3390/proceedings2021074013
https://sparxsystems.com/products/ea/
https://www.spiedigitallibrary.org/profile/notfound?author=Oleksii_Kungurtsev
https://www.spiedigitallibrary.org/profile/notfound?author=Nataliia_Novikova
https://www.spiedigitallibrary.org/profile/notfound?author=Maria_Reshetnyak
https://www.spiedigitallibrary.org/profile/notfound?author=Yana_Cherepinina
https://www.spiedigitallibrary.org/profile/Konrad.Gromaszek-6449
https://www.spiedigitallibrary.org/profile/Daniyar%20.Jarykbassov-4146738
https://doi.org/10.15276/aait.01.2020.2
https://doi.org/

Applied Aspects of Information Technology 2021; Vol.4 No.4: 338–353

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

 353

Наталія Олегівна Комлева1)
ORCID: http://orcid.org/0000-0001-9627-8530; komleva@opu.ua. Scopus Author ID: 57191858904

1) Одеський національний політехнічний університет, пр. Шевченка, 1. Одеса, 65044, Україна
2) Одеський національний морський університет, вул. Мечникова, 34. Одеса, 65029, Україна

АНОТАЦІЯ

Показано, що більшість технологій створення інформаційних систем засновані на об’єктно-орієнтованому підході й

передбачає представлення функціональних вимог у вигляді варіантів використання. Однак не існує загальної думки про

формат варіантів використання й правила опису пунктів сценаріїв. У роботі вдосконалена класифікація пунктів сценаріїв

варіантів використання на основі аналізу множини існуючих описів з різних предметних областей. Уведено нові й уточнені

існуючі правила опису варіантів використання, що дозволило надалі формалізувати й автоматизувати процес опису варіан-

тів використання. Запропоновано також автоматизувати процес формування моделі програмних класів за рахунок внесення

додаткової інформації, яка пов'язує клас із варіантом використання. Таким чином, модель програмних класів містить значно

більше інформації для кодування, чим існуючі моделі в UML-діаграмах. Розроблено метод побудови моделі програмних

класів. Методи автоматизованого опису варіантів використання й побудови моделі програмних класів зв'язані в єдиний

процес. Рівень інформаційної насиченості моделі класів дозволяє також автоматизувати процес налагодження, пов'язаний зі

зміною вимог. Оскільки ухвалені рішення стосуються більшості етапів процесу створення програмного модуля, у сукупнос-

ті вони представляють нову технологію. Запропоновані модель, методи й технологія були реалізовані в програмних продук-

тах ModelEdіtor і UseCaseEdіtor. Апробація методу автоматизації опису варіантів використання показала зменшення кілько-

сті помилок у порівнянні із традиційним способом опису більш, ніж в два рази, і скорочення часу більш, ніж в півтора

рази. Апробація методу побудови моделі програмних класів показала його перевагу в порівнянні з існуючою технологією:

зменшення кількості помилок і скорочення часу практично в півтора рази. Запропонована технологія може бути викорис-

тана при розробці будь-яких інформаційних систем.

Ключові слова: варіант використання; модель програмних класів; інформаційна технологія; об’єктно-орієнтована те-

хнологія

ABOUT THE AUTHORS

Oleksii B. Kungurtsev – Candidate of Engineering Sciences, Professor, Department of System Software. Odessa National

Polytechnic University, 1, Shevchenko Ave. Odessa, 65044, Ukraine
ORCID: https://orcid.org/0000-0002-3207-7315; akungurtsev19@gmail.com. Scopus Author ID: 57188743440

Research field: Methods and means of increasing the productivity of information systems; communication means with auto-

mated systems in natural language

Олексій Борисович Кунгурцев – кандидат технічних наук, професор кафедри Системного програмного забезпечен-

ня. Одеський національний політехнічний університет, пр. Шевченка, 1. Одеса, 65044,Україна

Nataliia O. Novikova – Candidate of Engineering Sciences, Senior Lector, Department of the Technical Cybernetics and

Information Technology named prof. R. V. Merkt. Odessa National Maritime University, 34, Mechnikov Str. Odessa, 65029,

Ukraine

ORCID: http://orcid.org/0000-0002-6257-9703; nataliya.novikova.31@gmail.com. Scopus Author ID: 57212034123

Research field: Methods for object-oriented design of software products; learning automation systems

Наталія Олексіївна Новікова – кандидат технічних наук, старший викладач кафедри Технічної кібернетики й
інформаційних технологій ім. проф. Р. В. Меркта. Одеський національний морський університет, вул. Мечникова, 34.

Одеса, 65029, Україна

Svitlana L. Zinovatna – Candidate of Engineering Sciences, Associate Prof., Department of System Software. Odessa

National Polytechnic University, 1, Shevchenko Ave. Odessa, 65044, Ukraine
ORCID: https://orcid.org/0000-0002-9190-6486; zinovatnaya.svetlana@opu.ua. Scopus Author ID: 57219779480

Research field: Data analysis; information system productivity

Світлана Леонідівна Зіноватна – кандидат технічних наук, доцент кафедри Системного програмного забезпечення.
Одеський національний політехнічний університет, пр. Шевченка, 1. Одеса, 65044,Україна

Nataliia O. Komleva – Candidate of Engineering Sciences, Associate Prof., Department of System Software. Odessa

National Polytechnic University, 1, Shevchenko Ave. Odessa, 65044, Ukraine
ORCID: http://orcid.org/0000-0001-9627-8530; komleva@opu.ua. Scopus Author ID: 57191858904

Research field: Data analysis; software engineering; knowledge management

Наталія Олегівна Комлева – кандидат технічних наук, доцент кафедри Системного програмного забезпечення.
Одеський національний політехнічний університет, пр. Шевченка, 1. Одеса, 65044,Україна

http://orcid.org/0000-0002-4078-3519
http://orcid.org/0000-0002-4078-3519

