Mashtalir S. V., Nikolenko O. V. / Applied Aspects of Information Technology

2023; Vol.6 No.3: 318-326

DOI: https://doi.org/10.15276/aait.06.2023.22
UDC 004.91

Data preprocessing and tokenization techniques for

technical Ukrainian texts

Sergii V. Mashtalir?
ORCID: https://orcid.org/0000-0002-0917-6622; sergii.mashtalir@nure.ua. Scopus Author ID: 36183980100

Oleksandr V. Nikolenko?

ORCID: https://orcid.org/0000-0002-6422-7824; oleksandr.nikolenko@gmail.com

D Kharkiv National University of Radio Electronics, 14, Nauky Ave. Kharkiv, 61166, Ukraine
2 Uzhhorod National University, 14, University Str. Uzhhorod, 88000, Ukraine

ABSTRACT

The field of Natural Language Processing (NLP) has witnessed significant advancements fueled by machine learning, deep
learning, and artificial intelligence, expanding its applicability and enhancing human-computer interactions. However, NLP systems
grapple with issues related to incomplete and error-laden data, potentially leading to biased model outputs. Specialized technical
domains pose additional challenges, demanding domain-specific fine-tuning and custom lexicons. Moreover, many languages lack
comprehensive NLP support, hindering accessibility. In this context, we explore novel NLP data preprocessing and tokenization
techniques tailored for technical Ukrainian texts. We address a dataset comprising automotive repair labor entity names, known for
errors and domain-specific terms, often in a blend of Ukrainian and Russian. Our goal is to classify these entities accurately,
requiring comprehensive data cleaning, preprocessing and tokenization. Our approach modifies classical NLP preprocessing,
incorporating language detection, specific Cyrillic character recognition, compounded word disassembly, and abbreviation handling.
Text line normalization standardizes characters, punctuation, and abbreviations, improving consistency. Stopwords are curated to
enhance classification relevance. Translation of Russian to Ukrainian leverages detailed classifiers, resulting in a correspondence
dictionary. Tokenization addresses concatenated tokens, spelling errors, common prefixes in compound words and abbreviations.
Lemmatization, crucial in languages like Ukrainian and Russian, builds dictionaries mapping word forms to lemmas, with a focus on
noun cases. The results yield a robust token dictionary suitable for various NLP tasks, enhancing the accuracy and reliability of
applications, particularly in technical Ukrainian contexts. This research contributes to the evolving landscape of NLP data
preprocessing and tokenization, offering valuable insights for handling domain-specific languages.

Keywords: Multilingual natural language processing; data preprocessing; tokenization; technical Ukrainian texts;
lemmatization

For citation: Mashtalir S. V., Nikolenko O. V. “Data preprocessing and tokenization techniques for technical Ukrainian texts”. Applied
Aspects of Information Technology. 2023; Vol. 6 No. 3: 318-326. DOI: https://doi.org/10.15276/aait.06.2023.22

INTRODUCTION AND LITERATURE
REVIEW

Text mining has long been one of the priority
areas for the development of scientific research. This
is due to the fact that the creation of a compact text
description of a particular physical process or
technical problem is one of the most intuitive
solutions. At the same time, the science development
in general and the existence of appropriate tools for
deep neural networks also make it possible to big
data text analysis, which is typical for a number of
tasks. In particular, it can be noted that such areas as
medical diagnostics, when marking algorithms can
be used to big data text analysis [1], there are also
approaches that allow you to extract the necessary
information under various kinds of noise
conditions [2].

© Mashtalir S., Nikolenko O., 2023

Another direction in the big data text analysis is
various kinds of abstracting or summarization,
which allows you to make a brief description that
can be used for various tasks related to the data
search systems [3, 4], [5, 6]. At the same time, in
most cases, the extraction of textual information is
reduced either to the problem of data classification
[7], or various data clustering [8, 9]. However, it
should also be noted that most of the works related
to the extraction of text data do not take into account
the specifics of a particular language, but are a
common toolkit.

In this regard, the direction of text analysis,
which is associated with taking into account the
features of various kinds for a particular language, is
quite promising. These developments have not only
enabled more natural and intuitive human-computer
interactions but have also expanded the scope of
NLP applications.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/deed.uk)

318

Software engineering and systems analysis

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

https://orcid.org/0000-0002-0917-6622
mailto:sergii.mashtalir@nure.ua
https://orcid.org/0000-0002-6422-7824
mailto:oleksandr.nikolenko@gmail.com

Mashtalir S. V., Nikolenko O. V.

[Applied Aspects of Information Technology

2023; Vol.6 No.3: 318-326

The field of Natural Language Processing
(NLP) has undergone a profound transformation in
recent years, driven by advancements in machine
learning, deep learning, and artificial intelligence.

Despite the wealth of data available, NLP
systems still grapple with issues related to data
incompleteness and errors [10, 11]. Inaccurate or
incomplete training data can lead to biased or
erroneous model outputs, affecting the reliability of
NLP applications. Addressing these issues requires
the development of more robust data curation and
cleaning processes.

Natural language processing faces challenges when
dealing with highly specialized scientific or
technical domains that employ domain-specific
terminology. Adapting NLP models to accurately
understand and generate content in these domains
remains an ongoing challenge, necessitating domain-
specific fine-tuning and custom lexicons.

The majority of NLP vocabularies and libraries
are well-developed for the Top-10 languages,
leaving many languages with limited or no NLP
support [12, 13]. This imbalance restricts the
accessibility and utility of NLP technologies for
speakers of less-represented languages.

While NLP models have achieved impressive
results in monolingual environments, they encounter
difficulties in multilingual scenarios [14]. Languages
that share numerous common words and linguistic
roots pose challenges in disambiguation and
accurate language processing. The development of
effective multilingual NLP models remains an area
of active research.

The problem this article is about at hand
revolves around the utilization of a dataset
comprising names of automotive repair labor
entities. These data have been extracted from the
Garage Management System and are notable for

their propensity to harbor errors, technical
abbreviations, and domain-specific terminology.
Furthermore, the dataset encompasses

predominantly Ukrainian and Russian languages,
occasionally exhibiting a blend of the two,
commonly referred to as "Surzhik". Additionally, we
possess annotated data in the form of a detailed

classifier of automotive service jobs in both
Ukrainian and Russian languages.
The overarching objective entails the

classification of each labor entity into predefined
categories. To accomplish this, the initial steps
involve a comprehensive data cleansing and
preprocessing pipeline, including tokenization see
Fig. 1 and [15]. The aim is to transform the raw
natural language text into a binary vocabulary
conducive to subsequent classification tasks.

To mitigate the substantial impact of
vocabulary size on computational resources and
processing time [14], it is imperative to implement
vocabulary normalization as an integral part of its
inception.

THE GOAL OF PAPER

The goal of this paper is to create a normalized
text data model for bilingual technical text data sets
in Ukrainian and Russian in the presence of errors
and incomplete data.

PROPOSED APPROACH

Classical NLP preprocessing pipeline contains
some preliminary (sentence segmentation, word
tokenization), frequent (stop word removal,
stemming and lemmatization, removing
digits/punctuation, lowercasing) and other steps
(normalization, language detection, code mixing,
transliteration) [15, 16].

Data Acquisition —»{ Text Cleaning —| Pre-Processing — Ean?gteLtlerr(ieng
A A
')
' Improving the
: model |
: !
Monitoring and . _
Model Updating <«— Deployment |¢&—— Evaluation «— Modeling

Fig. 1. Natural Language Processing Pipeline
Source: compiled by the [15]

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Software engineering and systems analysis

319

Mashtalir S. V., Nikolenko O. V.

[Applied Aspects of Information Technology

2023; Vol.6 No.3: 318-326

In our data preprocessing pipeline, certain
modifications were necessitated due to the origin of
the data. Specifically, some conventional steps such
as sentence segmentation were deemed unnecessary.
Conversely, we introduced additional procedures
tailored to the dataset's characteristics, which
included language detection, specific Cyrillic
characters approach, the disassembling of
compounded words and handling of specific
shortcuts and abbreviations.

1. Language identification

Language identification is accomplished
through the utilization of two distinct approaches:

1. Identification of Specific Characters: This
approach involves the recognition of language-
specific characters, such as "i," "i," "¢," and "r" for
Ukrainian, as well as "sr," "s," "3," and "€" for
Russian.

2. Word Counting in Dictionaries: A
complementary method relies on counting the
occurrences of words found in both Ukrainian and
Russian dictionaries, as detailed in the
“Lemmatization” chapter.

Following the language identification process,
all data undergo translation into Ukrainian. This
translation is facilitated by two custom
correspondence dictionaries, which are elaborated
upon in the chapters titled “Translation of Tokens
from Russian to Ukrainian” and “Synonyms”.

2. Text lines normalization

Text line normalization encompassed a series of
standardization procedures. These encompassed
segregating numbers and punctuation symbols with
spaces, uniformly converting all characters to
lowercase, substituting backslashes (“\”) with
regular forward slashes (“/”), and replacing
underscores (“_”) with spaces. Additionally, our
specific task demanded the normalization of various
types of apostrophes into a singular format. This
process also extended to the treatment of certain
Cyrillic characters, such as transforming “r” to “r”
and "€" to "e". Furthermore, prior to the removal of
stop words and special characters, common
abbreviations featuring slashes or hyphens were
substituted with their expanded counterparts, a
feature particularly relevant to the context of garage
repair texts (e.g., "k-1" denoting "xommekt" (Kit),
"m/m" signifying "nemonrax / monTax" (mounting /
dismounting) and "o/p" representing "oxoJ0/Kyr0Ua
pimuua" (cooling fluid) among others).
Subsequently, all special characters, with the
exception of the apostrophe, which holds linguistic

significance in the Ukrainian language, and
designated stop words were eliminated from the text.

3. Stopwords

Our compilation of stopwords comprised a
comprehensive set, encompassing both Ukrainian
and Russian languages. Notably, certain stopwords
present in the general set were excluded, given their
relevance to our classification task. For instance,
"TO," an abbreviation for "TeXHIYHE
obOciayroByBanas" (technical maintenance), and
"uix," which could be interpreted as a noun (knife)
and is pertinent to our directory, were retained.
Conversely, additional stopwords were introduced
that did not significantly contribute to the
subsequent classification process. These included
brand names of cars or parts, terms such as "auto,"
"automobile," "automotive," "service,” and other
highly generic words devoid of distinctive
characteristics relevant to individual entities.

4. Translation of tokens from Russian to
Ukrainian

Since we possess detailed classifiers containing
Ukrainian and Russian versions of names, and since
most names share an identical number and order of
words in both versions, we were able to
automatically construct a correspondence dictionary
between Russian and Ukrainian words.

For each name in the dictionary, we iteratively
compare Ukrainian and Russian name versions.

1. Split both versions into token lists.

2. If the lengths of the token lists are equal,
iterate through the tokens and increment a “counter”
by 1 for each corresponding Ukrainian-Russian
token pair. If the number of tokens in the names is
not the same, add the missing tokens to the
“omitted” category, which is then manually checked.
We also skip tokens that are identical in both
versions.

3. We obtain correspondence dictionaries where
each Russian token corresponds to Ukrainian tokens
that were found in the same position in the sentence,
along with the number of such occurrences. We
select the translation option that occurred most
frequently as the most likely correct one.
Consequently, we have a dictionary where each
Russian token can be matched to its Ukrainian
equivalent.

4. Additional steps included manual verification
of token translations that differed significantly
according to the Jaro-Winkler metric [16], as well as
the addition of translations for omitted names with
differing token counts.

320

Software engineering and systems analysis

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Mashtalir S. V., Nikolenko O. V.

[Applied Aspects of Information Technology

2023; Vol.6 No.3: 318-326

5. Tokenization of “concatenated” tokens
(with missing spaces)

The algorithm takes as input a unique set of
tokens derived from the data we intend to classify
subsequently. It searches for concatenated tokens
within this set.

For each input token:

1. Check whether it starts or ends with a token
known to us.

2. If so, separate it and add it to the "parts" list.

3. Repeat steps 1-2 until we traverse the sorted
list of known tokens.

4. Anything that remains unprocessed is added
to the list of parts. Remove all parts that are absent
from the set of known tokens.

5. If, after this process, more than one part is
obtained, identify it as a concatenated token. Add
both the original concatenated token and its
decomposition to a “dictionary” of token
decompositions, which is used later to replace such
tokens in input strings.

Table 1 provides illustrative instances of
concatenated tokens prior to and token separation
following the application of the algorithm.

This token concatenation search is relatively
basic in nature, as it can only break tokens that start
or end with reference tokens without typographical
errors. In the worst-case scenario, a token may not
only be concatenated but also contain errors within
its constituent parts, in which case the algorithm will
fail to identify it. However, concatenated tokens
themselves are relatively infrequent, and
concatenated tokens with errors are even rarer.
Developing a more complex algorithm to address
such cases would entail significant computational
costs. Therefore, we have chosen to implement this
straightforward approach.

Table 1. Concatenated tokens examples

Concatenated tokens Separated tokens
OamrepanepeHero Oamriepa nepeaHero
3aMiHanpaBoro 3aMiHa IPaBOTroO
Cynopracynopra cymopTa
MOBITPSTHO3a00PHOTO MOBITPsI 3200pHOTO
Brokcrymwti OJIOK CTYIHTI

Source: compiled by the authors

6. Spelling correction

Spelling errors are identified within tokens that
do not exist in reference dictionaries; otherwise, they
are considered correct and skipped. Essentially, this
process entails the search for the most similar words
among those present in the token sets from reference
dictionaries, including all their inflected forms found

in Ukrainian and Russian noun and adjective
dictionaries.

For input, we receive a unique set of tokens
from the data that we plan to classify subsequently.
Typographical errors are sought within this set. The
error detection occurs in two stages.

1. In the first stage, search for the nearest
match for tokens that differ by no more than 2
characters from existing tokens. The match is found
using the Jaro-Winkler [17] similarity function and
is accepted if the similarity value exceeds a
predefined threshold. The Jaro-Winkler metric
assigns greater weight to token "prefixes" (letters at
the beginning of the token).

2. In the second stage, the match is also sought
using the same function but without a limit on the
maximum of 2 character differences, hence, the
threshold value is higher compared to the first stage.
Therefore, in the first stage, we tolerate lower
“similarity”, as long as the token differs from
existing ones by no more than 2 characters, while in
the second stage, greater dissimilarity is allowed, but
the similarity value requirement is higher.

In essence, during the first stage, the distance
function allows for smaller “similarity”, but tokens
must differ from existing ones by no more than 2
characters. In the second stage, greater differences
(more than 2 characters) are allowed, but the
similarity requirement is stricter.

7. Motivation for choosing the
jaro-winkler metric

The Jaro-Winkler Measure is a measure of
similarity / distance between two text sequences. It
uses the prefix scaling factor p, which provides a
higher score to sequences that match at the
beginning up to a specified prefix length I. The
higher the Jaro-Winkler similarity measure, the more
similar the two text sequences are. The score is
normalized such that 0 indicates no similarity, and 1
indicates a perfect match. Similarity and distance are
inversely related, and their correspondence is
established by the formula distance = 1 - similarity.
The Jaro-Winkler Measure is a modification of the
Jaro measure.

The Jaro similarity sim; of two text strings s,
and s, is determined by the following formula:

0 ifm=20

B
HE (S S+ ifm>0

|5"_| |S':| ™m

m—t

where |s;| is length of string s;; m is number of
matching characters; t is number of transpositions.

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Software engineering and systems analysis

321

Mashtalir S. V., Nikolenko O. V.

[Applied Aspects of Information Technology

2023; Vol.6 No.3: 318-326

Two characters from =; and s, are considered
a match if they are identical and located no more
than p positions apart. If no matches are found, the
algorithm stops and returns a similarity score of 0. If
matches are found, the number of transpositions is
then calculated. A transposition occurs when a
corresponding (matching) character is not in its
correct position, and the number of corresponding
characters not in their correct position, divided by 2,
yields the number of transpositions.

The Jaro-Winkler similarity sim;,, of two text

strings s; and s, is determined by the following
formula:

simy, = sim; + Ip (1 — sim;),

where sim; is Jaro similarity of text strings s; and

s4; | is length of the common prefix at the beginning
of the string, maximum of 4 characters; p is a
constant scaling coefficient that adjusts the estimate
in the direction of increasing values in the presence
of a common prefix: the standard value is 0.1;

or

1Fpqg =0
ifm=10

cim, =4 Lym m m-i f 1im i m—1iy
£ l:l_ tt— b ll-sl—+—+—) Jifm>0
5 m 3Meyl ey m

3 I8

There are many distance metrics, among others
Levenshtein Distance, Indel (Insertion-Deletion)
Distance and Hamming Distance.

Levenshtein Distance. The minimum number
of single-character operations (insertions, deletions,
and substitutions) required to transform one text
string into another [18]:

e Insertion: aBTOOO1JIb — aBTOMOOLIB
e Deletion: ABTOMMOOUIb —
aBTOMOOLIIb

e Substituion: ABTOMOB1JIbL — aBTOMOOIJIbL

According to Levenshtein pair of pexykrop —
penykropumii has a distance of 3 (3 insertions) and
pair of pemkommiekr — peMkmoruiekT has a
distance of 2 (2 substitutions).

Indel (Insertion-Deletion) distance. The
minimum number of insertions and deletions of
characters required to transform one text string into
another. Substitutions are not allowed, but each
substitution can be accomplished by a pair of a
deletion and an insertion, making this distance
equivalent to the Levenshtein distance with a
substitution weight of 2.

Hamming distance. The number of positions
where two strings of equal length differs. It
represents the minimum number of substitutions

required to transform one string into another and can
only be applied to sequences of equal length.

Jaro-Winkler Metric is more complex than
simple distance algorithms based on counting basic
character operations. It provides a real value
between 0 and 1, making the distance values more
informative and suitable for comparison and sorting.
Additionally, it gives more significance to prefixes,
which is a useful property when dealing with “typo
searching”. Spelling correction is used not for
spelling errors only but as well for words with
variations in their endings, sharing a common prefix.
Giving more weight to prefixes increases the
chances of correctly identifying such “typos”.

Differences in short sequences are more
significant than in long sequences. Therefore, the
metric's value must depend not only on the number
of basic operations but also on the length of the
sequences, allowing for more accurate word
comparisons.

Table 2 shows comparative example using the
Levenshtein distance and Jaro-Winkler metric, with
short and long words.

Table 2. Levenshtein distance and Jaro-Winkler
Metric Comparison

Comparable strings Leven- Jaro-
shtein Winkler
Distance Metric
KOXKYX — KOXKyXa 1 0.966
caiieHTOI0K — CaliJIeHTOI0Ka 1 0.983
KOJKYX — KoJieca 4 0.577
CaliJIeHTOIOK — CaiIe THOIOKIB 4 0.951

Source: compiled by the authors

The Levenshtein metric erroneously vyields
equivalent distances for the latter two comparisons,
which stands in contradiction to the substantial
dissimilarity in the lengths of the respective
sequences. In stark contrast, the Jaro-Winkler metric
aptly delineates the similarities among pairs 1, 2,
and 4 while appropriately highlighting the
substantial dissimilarity within pair 3.

8. Lemmatization

Given that we are working with Ukrainian and
Russian languages, which have a vast number of
word forms, and the unavailability of as
sophisticated NLP libraries as for English, we
implemented lemmatization independently using
electronic dictionaries.

The construction of dictionaries mapping word
forms to their lemmas is performed by extracting
data from electronic Ukrainian and Russian
language dictionaries. During extraction,
dictionaries of correspondences for specific word

322

Software engineering and systems analysis

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Mashtalir S. V., Nikolenko O. V.

[Applied Aspects of Information Technology

2023; Vol.6 No.3: 318-326

forms to certain lemma are created (for some word
forms, multiple lemmas may exist). An inverse
dictionary, mapping lemma to word forms, is also
generated. Subsequently, for word forms with
multiple corresponding lemmas, we choose a single
lemma (usually the most frequently occurring one,
or in the case of equal occurrences, the first in the
list). Word forms corresponding to all other lemmas
are attributed to the chosen lemma. Although this
approach may result in minor drawbacks when one
word form belongs to different parts of speech (e.g.,
adjectives and nouns in our case), such situations are
rare. This approach is preferred to a scenario in
which some inflections are lemmatized into one
lemma while others into a different one.

After completing these steps, we establish a
definitive dictionary of correspondences between
noun cases and lemmas for use in preprocessing.

Additionally, during lemmatization, another
correspondence dictionary mapping Russian lemmas
to their Ukrainian counterparts is generated. To
achieve this, we traverse the Russian-Ukrainian
translation dictionary, searching for lemmas from
the form-lemma dictionary described earlier for each
pair of words. If lemmas are found for both words,
and they are not identical, these lemmas are added to
the lemma translation dictionary.

Table 3 presents a systematic exposition of the
sequential evolution of the initial text as it undergoes
the procedures of text cleansing, preprocessing, and
lemmatization.

9. Separation of common prefixes in
compound words

Prefixes such as "enextpo" (electro), "mHeBMO"
(pneumo), "aBTo" (auto), and others, are separated
from tokens to standardize different spellings (both
combined and separate) of such words. This also
enables the linkage of names containing suffixes of
compound words written with and without such
prefixes (e.g., "mHeBMOHacoc" (pneumopump) —
which transforms to "mHeBMo Hacoc" (pneumo
pump) — and "macoc" (pump) will be treated as
similar tokens; otherwise, these two tokens would
have been considered entirely different).

10. Deciphering abbreviations

We created a file containing common word
abbreviations / acronyms and their corresponding
expansions. Abbreviations (including those with
slashes and hyphens) were manually identified from
a large dataset of job names. During preprocessing,
tokens representing abbreviations are replaced with
their expanded versions as shown in the Table 4.

Table 3. Text processing step by step

Initial Data

Before lemmatization (after
normalization, spell-checking,
disassembling concatenated tokens,
stop-words, translation)

After lemmatization

3aMiHa 3THBHOTO TPYOOITPOBOIY
TiIpOTiICHITIOBaYa PYJIHOBOTO
KEpYBaHHS

3aMiHa 3TMBHOTO TPYOONPOBOIY Tiapo
MiICHITIOBaYa PyJIbOBOTO KEPYBaHHS

3aMiHa 3MBHUH TPyOONPOBIZ Iipo
Mi/ICHITIOBAY PYJIbOBHI KepyBaHHS

TIpo3BOHKA MPOBOJIKU Ha PO3ETKY
ocBerieHus 15 pin. ¢poHapu. Ha
moBopoT ot 6oka LCM. nuranus
LCM. nHeBMOCHTHAT

MPO3BOHKA MPOBOJIKH PO3ETKY
ocBiTIIeHHs 15 nixTapi HOBOpOT Oiioka
lecm skuBiIeHHS lcm MHEBMOCHTHAT

MPO3BOHKA MPOBOJIKA PO3ETKA
OCBiTJIEHHS 15 JiXTap MOBOPOT OJIOK
lem >xuBJIEHHS lcm MTHEBMOCHUTHAI

YcTaHOBKA BBIXJIONTHON CHCTEMBI
(TIymuTesb. KaTaau3aTop.
BBIXJIOIHAsI TPYOa. BEIXJIOIHAs rodpa)

BCTAHOBJICHHSI BUXJIOITHOT CHCTEMH
[JIYLIHKUK KaTajgi3aTop BHXJIONHA
TpyOa BUXJIONHA rodpa

BCTAHOBJICHHSI BUXJIOITHUI cHCTEMa
TJIYLIHKUK KaTajgi3aTop BUXJIOMHHUI
TpyOa BUXJIONHUI rodp

PemMoHT npoBoIKM Ha TATYUK
IaBIICHUs Macja. JaTYMK JaBICHUS
KapTEpHBIX T'a30B. Maclia. TOIUIMBA

PEMOHT HMPOBOJKH AATUHK THCKY
Maca JaTIuK TUCKY KapTepHHX Ta3iB
Macia ajInBa

PEMOHT IPOBOJKA AATYHK THCK MACIIO
JaTYMK TUCK KapTEepPHUH ra3 Macio
MaJIMBO

JleMOHTa/MOHTaX MOIYPECCOPEI C
BBICBEPJIMBAaHUEM HAIPABSIOIIETO
mtrdTa (CTPEMSHKH CHSTBHI. TPEThSI
0Cb IIpaBasi CTOpPOHA)

JIEMOHTa)X MOHTa)XX HAIliB PECOPH
BUCBEP/IFOBaHHS HAIIPABIISIOUHI
mtHdTa CTPEMSIHKN 3HATHH TPEThs
BiCh npaBas Oik

JEMOHTa)X MOHTaX HalliB pecopa

BUCBEP/IFOBAaHHS HAIPABIISTIOUHI
mTH(T cTpeM'sTHKa 3HATHH TpeTiit
BiCh IpaBuii Oik

Source: compiled by the authors

Table 4. Typical Abbreviations

Abbreviation Complete text
IPyC IIapHip piBHUX KYTOBHX IIBHIKOCTEH
I'bO raso Oanonue 00Ja HaHHS
TTIK T1IpO TiJICHITIOBAaY KepMa
AKB aKyMyJsiTopHa 6aTapest
ECU SIIEKTPOHHUI OJIOK KepyBaHHS

Source: compiled by the authors

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Software engineering and systems analysis

323

Mashtalir S. V., Nikolenko O. V.

[Applied Aspects of Information Technology

2023; Vol.6 No.3: 318-326

11. Synonyms

This is the specific aspect of the Ukrainian
language — existence of “Surzhyk” (blending of
Ukrainian and Russian words) and the abundance of
synonyms.

We compiled a file containing synonyms for
words and word combinations. Synonyms were
identified during data processing (including during
the creation of translation dictionaries from a list of
all encountered translations). Some synonyms were
also added based on logical considerations.

All synonym words are unified into a single
form.

12. Vocabulary size reduction

As previously noted, the final token vocabulary
size plays a pivotal role in determining the
computational time and machine learning burden
incurred in subsequent stages of the pipeline.
Consequently, every step we undertake should
exhibit a significant reduction in the volume of
tokens.

Table 5 illustrates the outcomes of the
algorithm when applied to a dataset comprising
10.288 initial sentences. When commencing with an
initial count of 6.062 unique tokens, a sequence of
preprocessing steps — including normalization, spell-
checking, token disassembly, removal of stop-
words, translation, lemmatization, and more — results
in a reduction to 2.484 tokens, signifying a
remarkable 60 % decrease in the original vocabulary
size. It is worth noting that since computational time
exhibits exponential growth in relation to vocabulary
size, this 60 % reduction in vocabulary size
translates to an impressive 84 % reduction in both
computational time and computational load.

Table 5. Step-by-step Vocabulary Size Reduction

Step Stage No. of
Tokens
1 Initial number of unique tokens 6 062
2 After normalization 4847
3 Before lemmatization (after normaliza- 3991
tion, spell-checking, disassembling con-
catenated tokens, stop-words, translation)
4 After lemmatization 2484

Source: compiled by the authors

RESULTS ACHIEVED

In conclusion, text mining has emerged as a
pivotal domain in scientific research, driven by the
need to succinctly describe complex physical
processes and technical challenges. The advent of

deep neural networks and the availability of
substantial data have expanded the horizons of text
analysis, finding applications in diverse fields such
as medical diagnostics and data search systems.

However, the field of WNatural Language
Processing (NLP) faces several challenges. Data
incompleteness and errors continue to plague NLP
systems, necessitating robust data curation and
cleaning. Moreover, specialized technical domains
pose difficulties for NLP models due to domain-
specific terminology, demanding domain-specific
fine-tuning.

Language support in NLP remains skewed
toward the Top-10 languages, limiting accessibility
for speakers of less-represented languages.
Multilingual scenarios pose additional complexities,
especially for languages sharing common words and
linguistic roots.

This article delves into the development of
specialized technical vocabularies for bilingual
datasets in Ukrainian and Russian, focusing on the
automotive repair domain. The challenges addressed
encompass data cleansing, language identification,
normalization, spelling correction, lemmatization,
and vocabulary reduction.

The use of the Jaro-Winkler metric in spelling
correction is highlighted as a powerful tool for
identifying similarities in text sequences. Its ability
to consider prefixes and scale similarity values
between 0 and 1 makes it well-suited for typo
detection and spelling correction, especially in
languages with complex word forms.

Additionally, the comprehensive preprocessing
pipeline, including tokenization, language-specific
character recognition, and synonym handling,
contributes to a substantial reduction in vocabulary
size. This reduction has significant implications for
computational efficiency, resulting in an impressive
84 % reduction in computational time and load for
the given dataset.

CONCLUSIONS

In conclusion, the model of technical text
normalizations presented in this article offer
valuable insights into addressing challenges in NLP,
particularly in specialized bilingual domains, and
underscore the importance of meticulous text
preprocessing for efficient and accurate language
processing.

Using the proposed approach, it was possible to
reduce the terms vocabulary by 60 % (from 6062 to
2484 tokens), which, which gave to computational
time and computational load 84 % reduction.

324

Software engineering and systems analysis

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Mashtalir S. V., Nikolenko O. V. / Applied Aspects of Information Technology
2023; Vol.6 No.3: 318-326

REFERENCES

1. Trivedi, H., Panahiazar, M., Liang, A., Lituiev, D., Chang, P., Sohn, J., Chen, Y., Franc, B., Jog, B. &
Hadley, D. “Large scale semi-automated labeling of routine free-text clinical records for deep learning”.
Journal of Digital Imaging. 2018. [Scopus]. DOI: https://doi.org/10.1007/s10278-018-0105-8.

2. Nguyen, H. & Patrick, J. “Text mining in clinical domain: dealing with noise “KDD '16: Proceedings
of the 22nd ACM SIGKDD.” International Conference on Knowledge Discovery and Data Mining. August
2016. p. 549-558. DOI: https://doi.org/10.1145/2939672.2939720.

3. Gao, L. & Zhao, J. “Deep learning based network news text classification system” MLMI '22:
Proceedings of the 2022 5th International Conference on Machine Learning and Machine Intelligence.
September 2022. p. 52-57. [Scopus]. DOI: https://doi.org/10.1145/3568199.3568207.

4. Yang, Z., Zhenghan, C. & Hua, Z. “Automatic extraction of paper research methods based on multi-
strategy”. ICCIP '19: Proceedings of the 5th International Conference on Communication and Information
Processing. November 2019. p. 196-200. [Scopus]. DOI: https://doi.org/10.1145/3369985.3370025.

5. Sulova, S. “Text mining approach for identifying research trends”. CompSysTech '21: Proceedings of
the 22nd International Conference on Computer Systems and Technologies. 2021. p. 93-98. [Scopus].
DOI: https://doi.org/10.1145/3472410.3472433.

6. Fisher, M., Albakour, D, Kruschwitz, U. & Martinez, M. Recognising Summary Articles. Advances
in Information Retrieval. 2019. p.69-85. DOI: https://doi.org/10.1007/978-3-030-15712-85.

7. Xylogiannopoulos, K., Karampelas, P. & Alhajj R. “Text mining for malware classification using
multivariate all repeated patterns detection”. ASONAM '19: Proceedings of the 2019 IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining. August 2019. p. 887-894.
[Scopus]. DOI: https://doi.org/10.1145/3341161.3350841.

8. Lachana, Z, Loutsaris, M.A. & Charalabidis, Y. “Clustering legal artifacts using text mining”.
ICEGOV '21: Proceedings of the 14th International Conference on Theory and Practice of Electronic
Governance. 2021. p. 65-70. DOI: https://doi.org/10.1145/3494193.3494202.

9. Ren, S. “Multi-media content clustering and computer intelligent analysis by text mining”.
AIAM2021: 2021 3rd International Conference on Artificial Intelligence and Advanced Manufacture.
October, 2021, p. 2276-2285. [Scopus]. DOI: https://doi.org/10.1145/3495018.3501088.

10. Arenas, M., Botoeva, E., Kostylev, E. & Ryzhikov, V. “A note on computing certain answers to queries
over incomplete databases”. In: CEUR Workshop Proceedings. Proceedings of the 11th Alberto Mendelzon
International Workshop on Foundations of Data Management and the Web. Montevideo: Uruguay. 2017.

11. Li, Y., Currim, F. & Ram, S. “Data completeness and complex semantics in conceptual modeling”.
The Need for a Disaggregation Construct. Journal of Data and Information Quality. 2022; 14 (4), Article
No. 22: 1-21. [Scopus]. DOI: https://doi.org/10.1145/3532784.

12. Sebastian, M. P., & G, S. K. “Malayalam natural language processing: challenges in building a
phrase-based statistical machine translation system”. ACM Transactions on Asian and Low-Resource
Language Information Processing. 2022; 22 (4), Article No. 117: 1-51. [Scopus].
DOI: https://doi.org/10.1145/3579163.

13. Butnaru, A.-M. “Machine learning applied in natural language processing”. ACM SIGIR Forum .
June 2020; 54 (1), Article No. 15: 1-3. DOI: https://doi.org/10.1145/3451964.3451979.

14. Vajjala, S., Majumder, B., Gupta, A. & Surana, H. “Practical natural language processing: A
comprehensive guide to building real-world NLP systems”. Published by O Reilly Media, Inc. 2020.

15. Jurafsky, D. & Martin, J. “Speech and language processing”. Third Edition draft. 2018. — Available
from: https://web.stanford.edu/~jurafsky/slp3/ed3book_jan72023.pdf. — [Accessed: 28 July, 2022].

16. Winkler, W. E. “String Comparator Metrics and Enhanced Decision Rules in the Fellegi-Sunter
Model of Record Linkage”. Proceedings of the Section on Survey Research Methods. American Statistical
Association. 1990. p. 354-359. — Available from: https://files.eric.ed.gov/fulltext/ED325505.pdf. —
[Accessed: 28 July, 2022].

17. Cohen, W. W., Ravikumar, P. & Fienberg, S. E. “A comparison of string distance metrics for name-
matching tasks (PDF)”. KDD Workshop on Data Cleaning and Object Consolidation. 2003; 3: 73-78. —
Available from: https://www.cs.cmu.edu/afs/cs/Web/People/wcohen/postscript/kdd-2003-match-ws.pdf.
[Accessed: 28 July, 2022].

18. Levenshtein, V. 1. “Binary codes capable of correcting deletions, insertions, and reversals”.
Cybernetics and Control Theory. 1966; 10 (8): 707—710.

Conflicts of Interest: The authors declares that there is no conflict of interest

ISSN 2617-4316 (Print) Software engineering and systems analysis 325
ISSN 2663-7723 (Online)

https://dl.acm.org/author/Trivedi%2C+Hari+M
https://dl.acm.org/author/Panahiazar%2C+Maryam
https://dl.acm.org/author/Liang%2C+April
https://dl.acm.org/author/Lituiev%2C+Dmytro
https://dl.acm.org/author/Chang%2C+Peter
https://dl.acm.org/author/Sohn%2C+Jae+Ho
https://dl.acm.org/author/Chen%2C+Yunn-Yi
https://dl.acm.org/author/Franc%2C+Benjamin+L
https://dl.acm.org/author/Joe%2C+Bonnie
https://dl.acm.org/author/Hadley%2C+Dexter
https://doi.org/10.1007/s10278-018-0105-8
../../../../../../zergi/Downloads/KDD%20'16:%20Proceedings%20of%20the%2022nd%20ACM%20SIGKDD.”%20International%20Conference%20on%20Knowledge%20Discovery%20and%20Data%20Mining
../../../../../../zergi/Downloads/KDD%20'16:%20Proceedings%20of%20the%2022nd%20ACM%20SIGKDD.”%20International%20Conference%20on%20Knowledge%20Discovery%20and%20Data%20Mining
https://doi.org/10.1145/2939672.2939720
javascript:void(0);
javascript:void(0);
https://dl.acm.org/doi/proceedings/10.1145/3568199
https://dl.acm.org/doi/proceedings/10.1145/3568199
https://doi.org/10.1145/3568199.3568207
https://dl.acm.org/doi/proceedings/10.1145/3369985
https://dl.acm.org/doi/proceedings/10.1145/3369985
https://doi.org/10.1145/3369985.3370025
javascript:void(0);
https://dl.acm.org/doi/proceedings/10.1145/3472410
https://dl.acm.org/doi/proceedings/10.1145/3472410
https://doi.org/10.1145/3472410.3472433
https://dl.acm.org/author/Fisher%2C+Mark
https://dl.acm.org/author/Albakour%2C+Dyaa
https://dl.acm.org/author/Kruschwitz%2C+Udo
https://dl.acm.org/author/Martinez%2C+Miguel
javascript:void(0);
javascript:void(0);
https://dl.acm.org/doi/proceedings/10.1145/3341161
https://dl.acm.org/doi/proceedings/10.1145/3341161
https://doi.org/10.1145/3341161.3350841
https://dl.acm.org/doi/proceedings/10.1145/3494193
https://dl.acm.org/doi/proceedings/10.1145/3494193
https://doi.org/10.1145/3494193.3494202
javascript:void(0);
https://dl.acm.org/doi/proceedings/10.1145/3495018
https://doi.org/10.1145/3495018.3501088
javascript:void(0);
javascript:void(0);
javascript:void(0);
https://dl.acm.org/toc/jdiq/2022/14/4
https://doi.org/10.1145/3532784
javascript:void(0);
javascript:void(0);
https://dl.acm.org/toc/tallip/2023/22/4
https://dl.acm.org/toc/tallip/2023/22/4
https://doi.org/10.1145/3579163
javascript:void(0);
https://dl.acm.org/toc/sigir/2020/54/1
../../../../../../../zergi/Downloads/Volume%2054
https://doi.org/10.1145/3451964.3451979
https://web.stanford.edu/~jurafsky/slp3/ed3book_jan72023.pdf
https://files.eric.ed.gov/fulltext/ED325505.pdf
https://www.cs.cmu.edu/afs/cs/Web/People/wcohen/postscript/kdd-2003-match-ws.pdf

Mashtalir S. V., Nikolenko O. V. / Applied Aspects of Information Technology
2023; Vol.6 No.3: 318-326

Received: 18.07.2023
Received after revision: 08.09.20232
Accepted: 20.09.2023

DOI: https://doi.org/10.15276/aait.06.2023.22
YK 004.91

MeToau npenpouecinry Ta ToKeHi3aiii J1aHuXx JJis
TEeXHIYHUX YKPAIHCbKHUX TEKCTIB

Mamraaip Cepriii Boionumuposnu?
ORCID: https://orcid.org/0000-0002-0917-6622; sergii.mashtalir@nure.ua. Scopus Author 1D: 36183980100

Hikosenko Ouexcanap Boaogumuposuy?

ORCID: https://orcid.org/0000-0002-6422-7824; oleksandr.nikolenko@gmail.com

D XapkiBchkuii HallioHaNbHU yHIBEPCUTET pajioenekTpoHiku, np. Hayku, 14. Xapkis, 61166, Ykpaina
2) Y3KkropoichKiil HallioHanbHUE yHiBEpCUTET, BJL. YHiBepcuteTchka, 14, Vikropoa, 88000, Ykpaina

AHOTALIA

3a octaHHI poku ramy3bp o0poOku mpupoanoi moBu (Natural Language Processing, NLP) mepexuna 3Ha4HiI JTOCATHEHHS
3aBISKU MalIMHHOMY Ta MTMOMHHOMY HAaBYAHHIO i IITYYHOMY iHTEJIEKTY, IO PO3IMINPHUIIO Ti 3aCTOCYBaHHS Ta ITOKPALIHIO B3aEMOJIII0
MIX JIIOUHOIO Ta KOMIT'ToTepoM. OiHaK cHCTeMH 00pOOKY IPHPOIHOT MOBH CTHKAIOTHCS 3 IIPOOJIeMaMH, MOB'SI3aHUMH 3 HEIOBHUMH
Ta NOMMJIKOBHMH JTaHUMH, II0 MOKE IPH3BOIUTH 10 MOOYIOBU MOAENEH 3 MOMHIKOBHMY pe3ynbTataMu. CrieriatizoBaHi TeXHIYHI
0051acTi CTaBIATH JOJATKOBI BUMOTH, BHMAralud HaJAlITYBaHHS MOJENEH MiJ KOHKPETHY Tally3b Ta BHUKOPHCTAHHS BJIACHHX
cnenu(ivHUX TepMiHiB. binbine Toro, 6araTo mpupoAHiX MOB HE MAalOTh MOBHOWIHHOI miaATpuMKH B NLP. ¥V mpomy KOHTEKCTI MU
JIOCTIDKYEMO HOBI METOAM MOMNEpenHbOi OOpOOKM NaHWX Ta TOKEHi3alii, MpU3HA4YeHI IS TEXHIYHUX YKPAiHCBKHX TEKCTiB. Mmu
MPaIloeEMO 3 HaOOPOM JaHUX, IO MICTUTh HA3BU OIEpAIliil 3 raly3i aBTOMOOUIBHOTO PEMOHTY, CHEHH(]IKOI SKUX € HAsABHICTH
0araTboX IMOMHJIOK Ta NMPUCYTHICTH CleNU(IYHNX TEPMiHIB, 4acTO y KOMOIHaIil ykpaiHCBKOI Ta pociiickkoi MoB. Harmoro meroro €
TOYHA KiacuQikailis X CYTHOCTEH, [0 Ha MEPUIOMY eTami nepeadadae KOMIUICKCHY OYHCTKY JaHHX, MOIMEPEIHI0 00poOKy Ta
TokeHi3anito. Ham migxin momudikye kmacuuHy momepenHio o0poOky NLP, BkimroyarouM BHSBIECHHS MOBH, PO3Ii3HAaBaHHS
KOHKPETHHX KHPWIMYHHMX CHMBOJIB, PO3KJIaJ] CKIAIHUX CIIIiB Ha IPOCTI 4acTHHM Ta oOpoOKy abpesiatyp. Hopmamizamis gactux
OKpPEMOT0 PEYEHHs CTaHJapTH3ye CHMBOJIM, BUAAISE PO3JIUIOBI 3HaKM Ta po3mmppoBye abpesiatypu. Ilepexian 3 pociiickkoi Ha
YKpaiHCBKY MOBY 3[IfICHIOETbCSA IUIAXOM BHMKOPUCTaHHSA IETANBHUX JOBIIHHMKIB Ta aBTOMAaTHYHO CTBOPEHHX CIIOBHHUKIB
BigmoBigHocTei. [lin yac TokeHi3amii BUPINIYIOTHCS MUTAHHS 3IUTUX TOKEHIB, opdorpadiyHuX MOMHIIOK, CIIIBHUX HpedikciB y
CKJIaJHHUX cJoBax Ta abpeBiaTypax. JlemaTusamisi, 0cOONMBO BaXXJIUBa Ui MOB, SKi BHKOPHUCTOBYIOTH BiJIMIHKH, BHKOPHUCTOBYE
BEJIMKI HayKOBi CIOBHHKH, SKi IEPETBOPIOIOTH CIIOBOGOPMH Y JIEMH, 3 aKIICHTOM Ha Ha3WBHOMY BiIMiHKY iMEHHHKiB. B pe3ymprarti
CTBOPIOETHCS TIOBHUI CIIOBHHK TOKEHIB, SIKMH MOYK€ BUKOPHUCTOBYBAaTHCh Y PI3HHMX 3aBIAHHAX y cdepi 0OpoOKH MPHUPOAHOI MOBH.
[ToBHOTa CIOBHHMKA Ta YHIKAJIBHICTh OKPEMHX TOKCHIB MiJBHIIYE TOYHICTh Ta HAMIHICTh TXHBOTO 3aCTOCYBaHHsS, OCOOIHBO B
TEXHIYHUX YKpalHChKUX TekcTaX. lle JocmiKeHHs MOrIMOIIoe iCHYrOUl METOIHM 1 MOJENi MOMepeHb0i 00poOKH Ta TOKeHi3arii
naHux B pamkax NLP Ta Haae KOHKpeTHI iHCTpyMEHTH AJIsl pOOOTH 3 TEKCTaMH i3 cneludivHuX ramy3ei.

KiwuoBi cioBa: o0poOka mpupomHoi MOBH; TomepeqHs OoOpoOKa MaHWX; TOKEHi3amis; TeXHIYHI yKpaiHChKi TEKCTH;
BU3HAYCHHS MOBH; JIEMATH3AI[is; TEXHIYHI CIIOBHUKH

ABOUT THE AUTHORS

Sergii Volodymyrovych Mashtalir - Doctor of Engineering Science, professor. Professor of Informatics
Department Kharkiv National University of Radio Electronics, 14, Nauky Ave. Kharkiv, 61166, Ukraine

ORCID: https://orcid.org/0000-0002-0917-6622; sergii.mashtalir@nure.ua. Scopus: 36183980100

Research field: Image and video processing; data analysis

Mamranip Cepriii Borogumuposny - 1oKTOp TeXHIYHMX Hayk, mpodecop. IIpodecop xadenpu Inpopmarmkn
XapKiBChKOT0 HallIOHAJILHOTO YHIBEPCUTETY paioenekTponiku, np. Hayku, 14. Xapkis, 61166, Ykpaina

Oleksandr Volodymyrovych Nikolenko - Specialist on Applied Mathematics. PhD student at Uzhhorod National
University, 14, University Str. Uzhhorod, 88000, Ukraine

ORCID: https://orcid.org/0000-0002-6422-7824: oleksandr.nikolenko@gmail.com

Research field: Natural language processing; big data; machine learning

Hikosienko Onexcanap BosioguMupoBHY - CriemiaiicT mo crenianbHocTi «[IpukiangHa MateMaTrkay. 3100yBay
cTyneHst jpokropa ¢inocodii y Jlep)kaBHOMY BHIIOMY HaBUYaJbHOMY 3aKiIadi «YKrOpOJACHKHH HalliOHAIBHUH
yHIBepcuTeT», ByJ1. YHiBepcuTerchka, 14. Vikropox, 88000, Ykpaina

326 Software engineering and systems analysis ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

https://orcid.org/0000-0002-0917-6622
mailto:sergii.mashtalir@nure.ua
https://orcid.org/0000-0002-6422-7824
mailto:oleksandr.nikolenko@gmail.com
https://orcid.org/0000-0002-0917-6622
mailto:sergii.mashtalir@nure.ua

