УДК 621.43.056

С.И. СЕРБИН¹, А.Б. МОСТИПАНЕНКО¹, В.В. ВИЛКУЛ²

¹Национальный университет кораблестроения им. адмирала Макарова, Украина ²НПКГ «Зоря»-«Машпроект», Украина

ИССЛЕДОВАНИЕ СТРУКТУРЫ ТЕЧЕНИЯ ВО ФРОНТОВОМ УСТРОЙСТВЕ КАМЕРЫ СГОРАНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ МОЩНОСТЬЮ 25 МВТ

Исследовано течение рабочего тела во фронтовом устройстве камеры сгорания ГТД с целью определения потерь полного давления. Представлены результаты гидродинамического анализа структуры потока.

камера сгорания, завихритель, моделирование, турбулентность, потери давления

Введение

Проблема определения потерь давления во фронтовых устройствах камер сгорания ГТД является актуальной. Как правило, из-за сложной формы таких устройств аналитически рассчитать гидравлические потери не представляется возможным. В последнее время, в связи с развитием численных методов гидрогазодинамики, решение подобных задач стало одним из направлений совершенствования рабочего процесса камер сгорания [1 – 3].

1. Формулирование проблемы

Для исследований аэродинамической структуры потока выбран лопаточный завихритель фронтового устройства камеры сгорания газотурбинного двигателя мощностью 25 МВт производства ГП НПКГ «Зоря»-«Машпроект», г. Николаев. Геометрия завихрителя показана на рис. 1.

Сегодня исследователи располагают достаточно надежными методами расчета трехмерных течений, основанными на интегрировании уравнений с частными производными и дополненными соответствующими моделями турбулентного обмена [1, 2].

Математическая модель

Для практического применения наиболее эффективными считаются способы, основанные на осреднении системы уравнений, описывающей законы сохранения массы, импульса и энергии. Уравнения неразрывности и количества движения [3]:

Рис. 1. Фронтовое устройство камеры сгорания газотурбинного двигателя

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_i} (\rho u_i) = 0; \qquad (1)$$

$$\frac{\partial}{\partial t} (\rho u_j) + \frac{\partial}{\partial x_i} (\rho u_i u_j) =$$

$$= \frac{\partial}{\partial x_i} \left(\mu \left[\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right] \right) - \frac{\partial p}{\partial x_j} + \rho g_j, \qquad (2)$$

где t – время;

 x_i, x_j – координаты;

ρ, *u*, μ, *p*, *g* – плотность, скорость, коэффициент динамической вязкости, давление и ускорение свободного падения.

В уравнении (2) слагаемые в левой части пред-

ставляют собой конвективные члены, первое выражение правой части – диффузионные, второе и третье – градиент давления и гравитационные силы.

Для турбулентного потока скорость в произвольной точке рассматривается как сумма осредненной (по времени) скорости и пульсационной ее составляющей:

$$u_i = \overline{u}_i + u'_i \,. \tag{3}$$

Подстановка выражения (3) в формулы (1) и (2) дает

$$\frac{\partial}{\partial t}(\rho u_{j}) + \frac{\partial}{\partial x_{i}}(\rho u_{i}u_{j}) = \frac{\partial}{\partial x_{i}}\left(\mu\left[\frac{\partial u_{i}}{\partial x_{j}} + \frac{\partial u_{j}}{\partial x_{i}}\right]\right) - \frac{\partial p}{\partial x_{j}} + \rho g_{j} + \frac{\partial}{\partial x_{i}}(\rho \overline{u}_{i}'\overline{u}_{j}').$$
(4)

Уравнение (4) аналогично уравнению (2), но записано с учетом эффекта турбулентности через напряжения Рейнольдса $\rho \vec{u_i'u_j'}$, которые определяются при помощи осредненных по времени параметров потока и выбранной модели турбулентности.

1.2. Модель турбулентности

При проведении расчетов использовалась стандартная $k - \varepsilon$ -модель турбулентности и RNG $k - \varepsilon$ модель [3, 5]. Они обладают относительно быстрой сходимостью и приемлемой точностью результатов.

Модели турбулентности включают два основных уравнения, решение которых позволяет определить турбулентную скорость и масштаб длины. Экономия времени, разумная точность в широком диапазоне скоростей потоков объясняют их популярность при моделировании процессов течения различных вязких жидкостей. Это полуэмпирические модели, которые основываются на феноменологическом подходе и ряде эмпирических зависимостей [5].

В стандартной *k* – ε-модели в соответствии с гипотезой Бусинеска напряжения Рейнольдса

$$\rho \overline{u_i' u_j'} = \frac{2}{3} \rho k \delta_{ij} + \mu_t \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right).$$

Коэффициент турбулентной вязкости μ_t является комбинацией двух величин:

$$\mu_t = \rho C_{\mu} \frac{k^2}{\varepsilon} \,,$$

где *k* – энергия турбулентности;

є – скорость диссипации турбулентной энергии.
 Транспортные уравнения для кинетической энергии турбулентности *k* и скорости диссипации турбулентной энергии є записываются в виде:

$$\frac{\partial}{\partial t}(\rho k) + \frac{\partial}{\partial x_i}(\rho k u_i) = \frac{\partial}{\partial x_j} \left[\left(\mu + \frac{\mu_t}{\sigma_k} \right) \frac{\partial k}{\partial x_j} \right] + (5) + G_k - \rho \varepsilon - Y_M;
\frac{\partial}{\partial t}(\rho \varepsilon) + \frac{\partial}{\partial x_i}(\rho \varepsilon u_i) = \frac{\partial}{\partial x_i} \left[\left(\mu + \frac{\mu_t}{\sigma_\varepsilon} \right) \frac{\partial \varepsilon}{\partial x_i} \right] + (6) + C_{1\varepsilon} \frac{\varepsilon}{k} G_k - C_{2\varepsilon} \rho \frac{\varepsilon^2}{k}.$$

В этих уравнениях член G_k описывает генерацию турбулентной энергии и определяется уравнением

$$G_k = -\rho \overline{u}' \overline{u}' \frac{\partial u_j}{\partial x_i} \,.$$

По гипотезе Бусинеска член G_k определяется через коэффициент μ_t и среднее значение напряжений *S* :

$$G_k = \mu_t S^2 \,,$$

где S определяется по формуле

$$S = \sqrt{2S_{ij}S_{ij}} \; .$$

Компонент Y_M моделирует влияние сжатия в турбулентном потоке. По гипотезе Саркара этот параметр рассчитывается так:

$$Y_M = 2\rho\varepsilon M_t^2$$
,

где M_t – турбулентное число Маха, которое определяется следующим образом

$$\mathbf{M}_t = \sqrt{\frac{k}{a^2}} \; ,$$

где $a = \sqrt{\gamma RT}$ – скорость звука.

Коэффициенты $C_{\mu}, C_{1\epsilon}, C_{2\epsilon}, \sigma_k, \sigma_e$ являются эмпирическими константами и принимались следующими [4]:

$$C_{1\epsilon} = 1,44$$
; $C_{2\epsilon} = 1,92$;
 $C_{\mu} = 0,09$;
 $\sigma_{k} = 1.0$; $\sigma_{c} = 1.3$.

Уравнения (4) – (6) представляют собой замкнутую систему, которая при соответствующих начальных и граничных условиях и выбранной итерационной схеме [1 – 3] определяет структуру течения при холодных продувках фронтового устройства.

2. Результаты численного и стендового экспериментов

Для удобства сравнения результаты численного и стендового экспериментов приведены к безразмерному виду.

Результаты представлены в виде зависимостей приведенного расхода воздуха от относительного давления на входе (рис. 2) и потери полного давления от приведенного расхода (рис. 3).

Приведенный расход рассчитывается по формуле

$$A = \frac{G\sqrt{T_{ex}}}{P_{ex}} ,$$

где G – расход воздуха через завихритель;

T_{вх} – температура воздуха на входе;

 P_{6x} – полное давление воздуха на входе в завихритель.

Относительное давление на входе определяется так:

$$P_{OMH} = \frac{P_{\theta X}}{B},$$

где *В* – барометрическое давление окружающей среды.

Потери полного давления рассчитываются по зависимости

$$\Delta P = \frac{P_{ex} - B}{P_{ex}} \cdot 100 \% .$$

Кроме того, проведено сравнение рассчитанных и замеренных статических давлений P_{cm} в выходном сечении фронтового устройства (рис. 4).

Рис. 2. Зависимость приведенного расхода от относительного давления на входе

Рис. 3. Зависимость потерь полного давления от приведенного расхода

Рис. 4. Распределение статического давления в выходном сечении завихрителя

Получено также распределение компонент скорости во фронтовом устройстве, которое представлено на рис. 5.

Рис. 5. Распределение скоростей во фронтовом устройстве

Заключение

 По результатам расчетов трехмерной виртуальной модели фронтового устройства, подтвержденных экспериментом, видно, что потери полного давления значительно возрастают с увеличением приведенного расхода (см. рис. 3).

 Расчетные потери полного давления в завихрителе отклоняются от экспериментальных данных не более чем на 15%. Увеличение расчетных потерь полного давления по сравнению с замеренными величинами связано с некоторыми упрощениями элементов при построении геометрической модели фронтового устройства.

3. Расчетное распределение статического давления в выходном сечении фронтового устройства, как видно из рис. 4, не полностью соответствует реальной физической картине. Это связано с недостаточной густотой разностной сетки, отсутствием в расчетной модели призматического подслоя в районе стенок, а также с недостаточной точностью используемых моделей турбулентности. Может потребоваться применение более сложных моделей турбулентности, связанных с непосредственным вычислением напряжений Рейнольдса. Однако, если целью эксперимента ставится определение потерь полного давления, то использование $k - \varepsilon$ -модели и ее модификаций, представляется вполне целесообразным. Ее основным преимуществом при проведении оптимизационных расчетов остается стабильная и достаточно быстрая сходимость вычислений.

4. По сравнению с натурными испытаниями численный эксперимент имеет ряд преимуществ: отсутствие затрат на стендовое оборудование, существенное сокращение времени на принятие решений, значительно больший объем данных, получаемых в результате расчетов, отсутствие влияния средств измерений на структуру потока.

Литература

 Романовский Г.Ф., Сербин С.И. Плазмохимические системы судовой энергетики. – Николаев: УГМТУ, 1998. – 246 с.

 Меллор А.М. Загрязнение атмосферы газотурбинными двигателями // Образование и разложение загрязняющих веществ в пламени. – М.: Машиностроение, 1981. – С. 217 – 260.

3. Launder B.E., Spalding D.B. The Numerical Computation of Turbulent Flows // Computer Methods in Applied Mechanics and Engineering, 1974.

4. New $k - \epsilon$ Eddy-Viscosity Model for High Reynolds Number Turbulent Flows / T.-H. Shih, W.W. Liou, A. Shabbir , Z. Yang , J.A. Zhu // Model Development and Validation. Computers Fluids, 1995.

5. Yakhot V., Orszag S. A. Renormalization Group Analysis of Turbulence: 1. Basic Theory // Journal of Scientific Computing, 1986.

Поступила в редакцию 11.05.2005

Рецензент: д-р техн. наук, проф. Г.Ф. Романовский Национальный университет кораблестроения им. адмирала Макарова, Николаев.