УДК 669.094.54:661.87.621:661.668

Г.В. БОКУЧАВА¹, В.Д. ВИРИЧ², Г.Ш. ДАРСАВЕЛИДЗЕ¹, А.Ю. ЖУРАВЛЁВ², В.В. ЛЕВЕНЕЦ², Н.А. СЕМЁНОВ², С.В. СТРИГУНОВСКИЙ², А.А. СУЩАЯ², Б.М. ШИРОКОВ²

¹Сухумский физико-технический институт, Грузия ²ННЦ «Харьковский физико-технический институт», Украина

СОСТАВ И МОРФОЛОГИЯ КРЕМНИЙ И КРЕМНИЙ-ГЕРМАНИЕВЫХ ПЛЕНОК ЛЕГИРОВАННЫХ БОРОМ И ФОСФОРОМ НА МОНОКРИСТАЛЛАХ SI И SI-GE

Методами лазерной масс-спектрометрии, микрорентгеноспектрального анализа, растровой микроскопии и ядерно-физическими исследованиями изучены морфология, состав эпитаксиальных пленок, определены профили распределения основных элементов Si, Ge и примесных P и B. Получены профили распределения элементов на границе раздела подложка-пленка. Показано, что в зависимости от условий получения могут быть реализованы поликристаллические и эпитаксиальные варианты структуры в широком диапазоне концентраций основных элементов и вводимых примесей P и B.

Ключевые слова: кремний, германий, плёнки, морфология поверхности, исследования, легирование, состав, распределение элементов.

Введение

Получение новых полупроводниковых материалов и структур с контролируемыми примесями для создания высокотехнологичных элементов микроэлектронных устройств стало одним из основных направлений современной электроники. Применение полупроводниковых приборов на основе Si-Ge сплавов и гетероструктур особенно актуально в настоящее время для авиационной и космической техники в устройствах навигации, системах управления и в качестве датчиков и источников излучений. Проведение научно-исследовательских и технологических разработок получения гетероэпитаксиальных структур невозможно без комплексного исследования состава, структуры, распределения основных элементов и вводимых примесей. Одним из возможных направлений аналитического сопровождения в области создания новых полупроводниковых приборов на основе сплавов кремния и германия является объединение особенностей методов лазерной масс-спекрометрии (ЭМАЛ), ядерно-физических (ХРИ и МИЯР), микрорентгеноспектральных (МРСА) и растровой микроскопии (РЭМ). Настоящая работа посвящена изучению свойств пленок Si-Ge легированных бором и фосфором на монокристаллических подложках Si, Si-Ge этими методами.

Основными достоинствами масс-спектрометров с лазерным источником ионов и двойной фокусировкой являются, с одной стороны, высокая абсолютная $(10^{-11} c)$ и относительная $(10^{-7} \%)$ чувствительность, а с другой стороны, – возможность одновременной регистрации с последующим количественным определением практически всех элементов (от лития до урана) и отсутствие ограничений на физическую форму образца, проведение работ с объектами малых размеров, а также выполнение усредненного, локального и послойного анализов [1].

Элементный анализ кремний – германиевых объектов проводили на промышленном лазерном масс-спектрометре ЭМАЛ-2. Масс-спектрометр выполнен по классической схеме Маттауха-Герцога с фокусировкой по энергиям и по массам, с использованием лазерно-плазменного источника ионов. Ионно-оптический тракт прибора отъюстирован по методике [2] с применением компенсирующего магнитного поля перед α -щелью. Разрешающая способность прибора составляла М/ Δ M > 5000 на изотопах свинца при величинах G, α , β щелей – 0,05, 0,5 и 1,5 мм соответственно, и величине тока отклоняющего магнита – 4,2 А.

Для контроля правильности результатов анализа кремний – германиевых проб использовали стандартный образец кремния (Si 7), а также калибровочный кремний – германиевый образец-слиток с содержанием германия 1.2 масс. %. Расчёт концентраций в образцах проводился как с использованием стандартного образца, так и безэталонным способом по балансу составляющих в массовых спектрах, путём определения доли ионного тока каждого элемента из полного ионного тока. Результаты исследований приведены в табл. 1.

© Г.В. Бокучава, В.Д. Вирич, Г.Ш. Дарсавелидзе, А.Ю. Журавлёв, В.В. Левенец, Н.А. Семёнов, С.В. Стригуновский, А.А. Сущая, Б.М. Широков АВИАЦИОННО-КОСМИЧЕСКАЯ ТЕХНИКА И ТЕХНОЛОГИЯ, 2010, № 4 (71)

		•	-	
Образцы	Образец № 1-0	Образец № 1-01	Образец № 2-1	Образец № 2-5
Элементы	вес. %	вес. %	вес. %	вес. %
В	∠1·10 ⁻⁵	7·10 ⁻⁴	∠5.10 ⁻⁵	7.10^{-3}
С	0,0001	0,002	0,005	0,003
Ο	0,007	0,001	0,035	0,002
Al	∠2·10 ⁻⁶	∠2·10 ⁻⁵	0,0009	0,0008
Si	остаток	остаток	остаток	остаток
Ge	0,001	1,2	10	16
Р	0,0002	0,0005	0,0015	0,0007

Таблица 1

Элементный состав исследуемых образцов

Морфологию поверхности полученных пленок исследовали с помощью растрового электронного микроскопа микроанализатора РЭММА-200 с использованием методик анализа изображений во вторичных, поглощённых и отражённых электронах [3]. С помощью «вариации глубины фокуса» оценивались размеры морфологических особенностей полученных покрытий. Все измерения проводились с учётом коррекции угла наклона образца, а использование тест-объектов позволило контролировать и свести к минимуму искажения изображения [4]. Морфологию изучали во всём диапазоне получаемых концентраций и фазового состава. Наиболее характерные изображения поверхности представлены на рис. 1 и 2 соответственно.

Рис. 1. Поверхность поликристаллической пленки: а – (×450), обр. № 12-34; б – (×4500), обр. № 12-34

Рис. 2. Поверхность эпитаксиальной пленки (×4100), образец № 2-5

Микрорентгеноспектральные исследования распределения элементов по глубине слоев на тонких образцах (≤ 5мкм) проводили на "косых" металлографических шлифах [6] с учетом глубины образования области генерации характеристического рентгеновского излучения [7]. В качестве эталонов использовались образцы сплавов с известным составом и многослойные пленочные структуры чистых элементов.

На рис. 3 представлено распределение элементов по толщине Si-Ge пленки (обр. № 2-5)

Рис. 3. Распределение элементов в образце № 2-5

С помощью методики "вариации ускоряющего напряжения" [5] и пленочных стандартов известной толщины оценивались толщины эпитаксиальных и поликристаллических пленок при анализе состава поверхности.

На рис. 4 представлено распределение элементов по поверхности Si-Ge пленки (обр. № 2-5) (усреднение состава по 5 зонам на поверхности образца).

На образцах эпитаксиальных структур проводились исследования ядерно-физическим методом равномерности распределения легирующей примеси Р по глубине полученных плёнок. Для этого на фрагментах центральных частей образцов было проведено трехкратное послойное травление в плавиковой кислоте. После каждого травления производилось определение толщины оставшегося слоя и измерение концентрации Ge и P.

Рис. 4. Распределение элементов по поверхности образца № 2-5

Результаты измерений (для обр.№1.16) представлены в табл. 2.

Таблица 2

	Толщина оставшего- ся слоя	Концентрация Ge, ат. %	Концен- трация Р, ат. %
Поверх- ность слоя	17	4,8	7,8·10 ⁻³
Первое стравли- вание	13	5,0	7,6.10-3
Второе стравли- вание	10	4,7	7,2.10-3
Третье стравли- вание	6	4,9	7,1.10-3

Определение равномерности распределения элементов по толщине осажденного слоя

Как видно из табл. 2, германий распределён равномерно по глубине образца, а концентрация фосфора у поверхности образца выше, чем в глубинных слоях.

На образцах, вырезанных из плёнок 1.11 и 1.17, при осаждении которых в качестве подложек использовалась кремниевая пластинка, ядерно-физическим методом исследовалась граница раздела подложка-пленка. Профиль распределения кремния для образца 1.17 приведен на рис. 5.

Рис. 5. Профиль распределения кремния в образце № 1.17

Как следует из рис. 5, ширина перехода между слоем кремний-германиевого сплава и кремниевой подложкой не превышает 400 Å. Аналогичный результат получен для образца 1.11.

Выводы

1. Методами МРСА, ЭМАЛ и ЯФМ исследован состав и распределение основных (Si, Ge) и примесных (P, B) элементов в эпитаксиальных пленках. Неравномерность распределения германия не превышает 5 – 7%.

2. Ядерно-физическими методами показано, что ширина перехода подложка – пленка (Si-SiGe) составляет около 400 А°.

Литература

1. Быковский Ю.А. Лазерная масс-спектрометрия / Ю.А. Быковский, В.Н. Неволин. - М.: Энергоатомиздат, 1985. – 128 с.

2. Белоусов В.И. Влияние юстировки массспектрометра ЭМАЛ-2 на правильность и воспроизводимость результатов анализа / В.И. Белоусов, И.Д. Ковалев, А.М. Потапов // Высокочистые вещества. – 1994. – № 3. – С. 121- 128.

3. Ньюбэри Д. Формирование изображения в растровом электронном микроскопе / Д. Ньюбэри // Практическая растровая электронная микроскопия. – М.: Мир, 1978. – С. 113-169.

4. Everhart T.E. Factors affecting contrast and resolution in the scanning electron microscope / T.E. Everhart, O.C. Wells, C.W. Oatley // Electron. Control. – 1959. – N_{2} 7. – P. 97-111.

5. Reed S.J.B. The backscattering correction for quantitative electron probe microanalysis with electrons incident at 45°/ S.J.B. Reed / /Journal of Physics D: Applied Physics. – 1971. – V.4, N 12. – P. 1910-1912. 6. Приборы и методы физического металловедения. Вып. 1 / под ред. Ф. Вейнберга. – М.: Мир, 1973. – С. 216- 217. 7. Васичев Б.Н. Электроннозондовый микроанализ тонких плёнок / Б.Н. Васичев. – М.: Металлургия, 1977. – С. 115-117.

Поступила в редакцию 12.05.2010

Рецензент: д-р техн. наук, зам. директора ИФТТМТ В.А. Белоус, Национальный научный центр «Харьковский физико-технический институт», Харьков, Украина.

СКЛАД ТА МОРФОЛОГІЯ КРЕМНІЄВИХ І КРЕМНІЙ-ГЕРМАНІЄВИХ ПЛІВОК, ЛЕГОВАНИХ БОРОМ І ФОСФОРОМ НА МОНОКРИСТАЛАХ SI I SI-GE

Г.В. Бокучава, В.Д. Віріч, Г.Ш. Дарсавелідзе, О.Ю. Журавльов, В.В. Левенець, М.О. Семенов, С.В. Стригуновський, А.А. Суща, Б.М. Широков

Методами лазерної мас-спектрометрії, мікрорентгеноспектрального аналізу, растрової мікроскопії і ядерно-фізичних досліджень вивчені морфологія, склад епітаксійних плівок, визначені профілі розподілу основних (Si, Ge) і легуючих (P, B) елементів. Отримано профілі розподілу елементів на границі розподілу підложка-плівка. Показано, що залежно від умов одержання можуть бути реалізовані полікристалічні та епітаксійні варіанти структури в широкому діапазоні концентрацій основних елементів і домішок, що вводяться (P і B).

Ключові слова: кремній, германій, плівки, морфологія поверхні, дослідження, легування, склад, розподіл елементів.

STRUCTURE AND MORPHOLOGY SILICON AND SILICON-ГЕРМАНИЕВЫХ ПЛЕНОК ALLOYED BY A PINE FOREST AND PHOSPHORUS ON MONOCRYSTALS SI AND SI-GE

G.V. Bokuchava, V.D. Virich, G.S. Darsavelidze, A.J. Zhuravlyov, V.V. Levenets, N.A. Semyonov, S.V. Strigunovskij, A.A. Sushchaja, B.M. Shirokov

Morphology and composition epitaxial films with methods laser mass spectrometry, microprobe analysis, raster microscopy and nuclear-physical are investigated. Profiles of distribution of basic (Si, Ge) and impurity (P, B) elements are defined. Profiles of distribution of elements on border the substrate-film are obtained. It is shown, that depending on conditions of obtaining can be realized polycrystalline and epitaxial variants of structure in a wide range of concentration of basic elements and entered impurity (P and B).

Keywords: silicon, germanium, films, morphology of a surface, research, alloying, composition, distribution of elements.

Бокучава Гурам Варламович – д-р физ.-мат. наук, проф., директор Сухумского физико-технического института, Тбилиси, Грузия.

Вирич Владимир Дмитриевич – младший научный сотрудник, Национальный научный центр «Харьковский физико-технический институт», Харьков, Украина.

Дарсавелидзе Георгий Шотаевич – д-р физ.-мат. наук, проф., начальник лаборатории Сухумского физико-технического института, Тбилиси, Грузия.

Журавлёв Александр Юрьевич – младший научный сотрудник, Национальный научный центр «Харьковский физико-технический институт», Харьков, Украина.

Левенец Владимир Викторович – канд. техн. наук, начальник отдела, Национальный научный центр «Харьковский физико-технический институт», Харьков, Украина.

Семёнов Николай Александрович – заместитель начальника отдела, Национальный научный центр «Харьковский физико-технический институт», Харьков, Украина.

Стригуновский Сергей Васильевич – инженер-исследователь, Национальный научный центр «Харьковский физико-технический институт», Харьков, Украина.

Сущая Алина Анатольевна – инженер-исследователь, Национальный научный центр «Харьковский физико-технический институт», Харьков, Украина.

Широков Борис Михайлович – д-р техн. наук, старший научный сотрудник, начальник отдела, Национальный научный центр «Харьковский физико-технический институт», Харьков, Украина, e-mail: shirokov@kipt.kharkov.ua.