Общие проблемы альгологии

А.А. ВОЙЦЕХОВИЧ, Т.И. МИХАЙЛЮК, Т.М. ДАРИЕНКО

Ин-т ботаники им. Н.Г. Холодного НАН Украины, ул. Терещенковская, 2, 01001 Киев, Украина

ФОТОБИОНТЫ ЛИШАЙНИКОВ. 2: ПРОИСХОЖДЕНИЕ И КОРРЕЛЯЦИЯ С МИКОБИОНТОМ

Данная работа представляет собой продолжение обзора, посвящённого фотобионтам лишайников (Войцехович и др., 2011). Установлено, что их состав тесно коррелирует с определёнными таксономическими группами лишайникообразующих грибов. Не менее 55 % их видов ассоциируются с Trebouxia Puym. и Asterochloris Tscherm.-Woess, около 40 % — с Cyanoprokaryota, около 8 % — с Trentepohliales, около 20 % — с остальными зелёными водорослями. При этом известны случаи нестабильного состава фотобионтов и временного наличия нескольких видов фотобионтов в одном слоевище. Некоторые лишайники постоянно содержат несколько видов фотобионтов, относящихся к разным таксономическим группам. Поскольку симбиотические отношения у разных групп лишайников находятся на разных ступенях специализации, их избирательность различна. Наиболее высоких ступеней специфичности состава фотобионтов достигли лишайники с Trebouxia и Asterochloris. Обсуждаются происхождение фотобионта в лишайниковом слоевище и основные пути его получения в процессе размножения лишайников - от материнского слоевища (при вегетативном размножении) и из окружающей среды (при размножении с помощью спор). Состав фотобионтов лишайников определяет основные жизненные стратегии лишайниковой ассоциации, а также существенно влияет на их эколого-географические особенности. Кроме основного фотобионта в слоевище могут присутствовать дополнительные фотобионты (в цефалодиях), а также гимениальные и эпитециальные водоросли. Водоросли лихеноэпифиты обрастают слоевище лишайника, могут проникать в его структуры и, вероятно, служить источником «потенциальных» фотобионтов.

Ключевые слова: лишайники, фотобионт, микобионт, симбиоз, коэволюция, избирательность, специфичность, паразитизм, дополнительный фото бионт.

Введение

Целью данной части обзора является выявление взаимосвязи между таксономической принадлежностью обоих бионтов лишайниковой ассоциации, уровня избирательности микобионта различных групп лишайников, происхождения и способов получения фотобионта лишайникообразующим грибом, а также рассмотрение вопросов, связанных с дополнительными и «потенциальными» фотобионтами.

© А.А. Войцехович, Т.И. Михайлюк, Т.М. Дариенко, 2011

1. Существует ли корреляция между таксономическим положением мико- и фотобионта?

Долгое время считалось, что каждому виду лишайника соответствует отдельный вид фотобионта, однако позже было установлено, что разнообразие водорослей-фотобионтов значительно ниже разнообразия лишайникообразующих грибов, поскольку один и тот же вид фотобионта может встречаться в разных лишайниках (Tschermak-Woess, 1989). Более того, состав фотобионтов одного и того же вида лишайникообразующего гриба может быть непостоянным или включать несколько видов (или даже родов) фотобионтов одновременно (Geitler, 1955). Эти и другие вопросы, связанные со специфичностью фотобионтного состава и избирательностью микобионта, являются наиболее актуальными, т.к. их решение позволит установить особенности коэволюции обоих компонентов лишайниковой ассоциации.

За последние несколько лет наметилась общая тенденция в изучении коэволюционных взаимоотношений лишайникообразующих грибов и их фотобионтов с помощью молекулярно-филогенетических методов. На сегодняшний день в этом отношении довольно хорошо изучены лишайниковые семейства *Physciaceae* (Bhattacharya et al., 1996; Friedl et al., 2000; Dahlkild et al., 2001; Helms et al., 2001), *Cladoniaceae* (Piercey-Normore, De Priest, 2001; Yahr et al., 2004), *Teloschistaceae* (Beck, 2002; Honegger et al., 2004; Nyati, 2006), *Graphidaceae* (Nakano, 1988), а также рода *Letharia* (Th. Fr.) Zahlbr. (Kroken, Taylor, 2000), *Lecanora* Ach. (Blaha et al., 2006), *Umbilicaria* Hoffm. (Romeike et al., 2002).

Отдельные работы посвящены исследованию разнообразия трентеполиальных фотобионтов определённых видов, родов и семейств лишайников (Skuja, Ore, 1933; Meier, Chapman, 1983; Rands, Davis, 1993). Более подробные данные об основных семействах лишайников и их фотобионтах представлены в таблице. Система порядков и семейств лишайников дана в соответствии с «Outline of Ascomycota» (Lumbsch, Huhndorf, 2007).

Анализ имеющихся данных о составе фотобионтов 635 видов лишайников показал, что около 40 % видов лихенизированных грибов ассоциируются с *Trebouxia*, 15,4 % — с *Asterochloris*, 38,7 % — с представителями *Cyanoprokaryota* (в основном с *Nostoc* Vaucher ex Bornet et Flahault (11,3 %), *Stigonema* C. Agardh ex Bornet et Flahault (8,5 %), *Scytonema* C. Agardh ex Bornet et Flahault (7,7 %), 7,6 % — с видами *Trentepohliales* (в основном с *Trentepohlia* Mart. (4,9 %), 20,4 % — с остальными зелёными водорослями (чаще всего с *Myrmecia* (3,5 %), *Diplosphaera* Bial. emend. Vischer, *Stichococcus* Nägeli, *Dictyochloropsis* Geitler emend. Tscherm.-Woess (по 2,7 %) 1 . Такое распределение нельзя

¹Приведенное соотношение в сумме превышает 100 %. Это объясняется способностью некоторых лишайникообразующих грибов к формированию слоевища с несколькими фотобионтами одновременно, а также непостоянством состава фотобионтов у определённых грибов с низкой избирательностью.

считать окончательным, т.к. оно во многом отражает степень изученности фотобионтов, точные данные относительно которых известны только для 3 % видов лишайников. Так, по некоторым данным (Tschermak-Woess, 1989), соотношение следующее: около 90 % видов лишайников ассоциированы с зелёными водорослями и 10 % — с цианопрокариотами. Непосредственно на *Trebouxia* (вероятно, *Trebouxia* s.str. + *Asterochloris*), по данным разных авторов, приходится более 20 % (DePriest, 2004), до 40 % (Honegger, 1991) и 50-70 % (Ahmadjian, 1982). Таким образом, несмотря на достаточно высокое разнообразие фотобионтов, большинство лихенизированных грибов избирает виды, являющиеся облигатными фотобионтами.

Однако, как показано в таблице, Trebouxia и Asterochloris не фотобионтами большинства являются типичными для лишайников. Так, виды класса Arthoniomycetes вступают в симбиоз с трентеполиальными водорослями, Lichinomycetes - с цианопрокариотами. Виды базидиальных лишайников ассоциируются с цианопрокариотами (Scytonema) и зелёными водорослями (Coccomyxa Schmidle, Gloeocystis Nägeli, Mesotaenium Nägeli u Pseudococcomyxa Korschikov). разнообразен фотобионтов Наиболее состав сем. Verrucariaceae (Eurotiomycetes), среди которых отмечены зелёные (Diplosphaera, Dilabifilum Tscherm.-Woess, Myrmecia Printz, Stichococcus и др.), бурые (Petroderma Kuck.) и желтозелёные (Xanthonema P.C. Silva, Heterococcus Chodat) водоросли. Центральным классом, включающим наибольшее число видов лишайников, является *Lecanoromycetes* (Ainsworth ..., 2007). Значительная часть его видов из семейств Thelotremataceae (Ostropales), Pertusariaceae (Pertusariales), Lecanoraceae, Parmeliaceae (Lecanorales), Physciaceae, Teloschistaceae (Teloschistales), Candelariaceae (Candelariales), Umbilicariaceae (Umbilicariales) ассоциирована с Trebouxia. Часть видов, относящихся к семействам Cladoniaceae и Stereocaulaceae (Lecanorales) с Asterochloris. Представители семейств Coenogoniaceae, Graphidaceae, Gvalectaceae И Porinaceae (Ostropales) томиримоф ассоциации преимущественно с трентеполиальными водорослями. Однако есть семейства, у представителей которых состав фотобионтов очень разнообразен и часто различные образцы одного и того же вида лишайника содержат разные фотобионты. K таким семействам Agyriaceae (Agyriales), Acarosporaceae (Acarosporales), Pilocarpaceae, Ramalinaceae и Stereocaulaceae (Lecanorales), a также Lecideaceae (Lecanoromycetidae families incertae sedis). Интересен в этом отношении порядок Peltigerales, содержащий лишайники, ассоциированные в основном с цианобионтом. В семействах Lobariaceae, Nephromataceae и Peltigeraceae цианобионт дополняет зелёный фотобионт, роль которого **Dictyochloropsis** (Lobariaceae) или Coccomyxa Pseudococcomyxa (Nephromataceae и Peltigeraceae). Итак, эта ассоциация содержит 2 фотобионта, один из которых образует фотобионтный слой лишайника, а другой находится в специализированных структурах цефалодиях. У видов рода Lobaria зелёная водоросль формирует

фотобионтный слой, а цианобионт находится в цефалодиях, расположенных на нижней или верхней стороне слоевища. У представителей рода *Peltigera* Willd., наоборот, цианобионт, как правило, находится в слоевище, а зелёный фотобионт — в цефалодиях. Однако в результате вегетативного размножения возможно возникновение лишайника с зелёным фотобионтом в слоевище и с цианобионтом в цефалодиях (Ahmadjian, 1993). Такие варианты одного и того же вида, называемые фотосимбиодемами, имеют различный цвет слоевища, но представляют собой один и тот же вид лишайника.

Таким образом, микобионт, как правило, проявляет избира-K фотобионту, потому определённую тельность отношению корреляцию между мико- и фотобионтом можно найти уже на уровне классов, порядков и семейств лишайников. В то же время, уровни избирательности микобионта у разных групп лишайников могут быть разными. Так, в работе А. Бэка с соавт. (Beck et al., 2002) представлено 5 уровней избирательности микобионта лишайников. К І (очень высокому) и II (высокому) уровням отнесены лишайникообразующие грибы, формирующие ассоциацию с одним штаммом или с одним видом водоросли-фотобионта. К лишайникам с такими уровнями избирательности можно отнести Xanthoria parietina (L.) Th.Fr., который формирует слоевище с Trebouxia arboricola² или ближайшими видами той же подгруппы (Nyati, 2006); изученные виды рода Pertusaria DC., ассоциирующиеся с *T. potteri* (Ahmadjian, 1993) и *Umbilicaria* – с T. simplex (Beck, 2002; Romeike et al., 2002). К лишайникообразующим грибам III (среднего) уровня избирательности относятся те, которые формируют постоянные ассоциации с разными видами одного рода водоросли-фотобионта. Этот уровень характерен для видов Cladonia P. Browne (ассоциированы с Asterochloris (Ahmadjian, 1993; Piercey-Normore, De Priest, 2001; Yahr et al., 2004), Megalospora Meyen (c Dictyochloropsis (Tschermak-Woess, 1984), Collema F.H. Wigg. (c Nostoc (Degelius, 1954) и др. Этот уровень избирательности, вероятно, также характерен для цефалодиальных лишайников, например для Peltigera aphtosa (L.) Willd., который формирует ассоциацию с видами Соссотуха (Jaag, 1933) и *Nostoc* (O'Brien et al., 2005).

IV (низкий) и V (очень низкий) уровни характерны для лишайников, избирающих фотобионты в пределах одного семейства или порядка (IV) или групп высшего таксономического уровня (V). Примерами низкой избирательности могут служить Stereocaulon ramulosum Räuschel (ассоциируется с видами родов Gloeocapsa Kütz., Nostoc, Scytonema, Stigonema (Lamb, 1951) или виды семейств Соеподопіасеае, Graphidaceae, Rocellaceae (формируют слоевище с представителями Trentepohliaceae (Santesson, 1952; Uyenko, 1965; Meier, Chapman, 1983)). Очень низкий уровень избирательности фотобионта характерен для видов рода Verrucaria Schrad., которые ассоциируются с

-

² Авторы видов водорослей приведены в таблице.

Dilabifilum incrustans (Ettl, Gärtner, 1995), Diplosphaera chodatii (Geitler, 1960), Heterococcus caespitosus (Tschermak, 1941; Zeitler, 1954; Sanders, 2004), Petroderma maculiforme (Wynne, 1969; Moe, 1997; Sanders, 2004). Кроме того, известны лишайники, например базидиолишайник Multiclavula mucida (Pers.) R.H. Petersen, которые могут содержать несколько фотобионтов одновременно — виды родов Mesotaenium, Coccomyxa, Gloeocystis (Geitler, 1955).

Наивысшим уровнем избирательности к фотобионту обладают преимущественно лишайникообразующие грибы, ассоциированные с облигатными фотобионтами. Само явление избирательности микобионта легко объясняется различными физиолого-биохимическими и экологическими особенностями водорослей, которые значительно у цианопрокариотических эвкариотических отличаются И ставителей (Войцехович и др., 2011), потому многие лишайникообразующие грибы проявляют избирательность, в первую очередь в рамках принадлежности фотобионтов к определённой таксономической группе водорослей. Высокая степень избирательности фотобионта, вероятно, указывает на высокую специализацию симбиотических отношений у этих лишайников и является следствием достаточно продолжительной коэволюции обоих компонентов лишайниковой

Лишайники с разными фотобионтами в определённой степени различаются своими эколого-географическими особенностями (Войцехович и др., 2011), а также отчасти морфолого-анатомическим строением слоевища. Так, лишайники с цианобионтом, периодически нуждающиеся В капельно-жидкой воде (Honegger, 1991, 2006), произрастают во влажных местообитаниях, где скапливается вода уступы, выемки скал, почва и т.д. (Lange et al., 1998). Значительная часть лишайников с цианобионтом характеризуется гомеомерным типом слоевища, в котором водоросли не образуют оформленного слоя, а беспорядочно разбросаны по слоевищу и окутаны гифами. У таких гомеомерных слоевищ коровый слой либо совсем отсутствует, либо выражен слабо. Однако у цианолишайников встречается и другой тип слоевища - гетеромерный, как, например, у Peltigera. Это сложно устроенное слоевище с развитыми коровыми слоями и оформленным слоем фотобионта. Такие лишайники интересны ещё и тем, что некоторые из них имеют второй фотобионт - зелёную водоросль (Vitikainen, 1994). Учитывая, что цианопрокариоты и зелёные водоросли имеют различную стратегию получения воды (Lange et al., 1998), вероятно, эта группа лишайников проблему водного баланса «решила» вполне успешно, используя в разных условиях тот фотобионт, который наиболее подходит для успешного существования. Несмотря на то, что в классических работах по лихенологии представители Peltigerales, наряду с остальными цианолишайниками, считаются одними из наиболее древних. Есть мнение, что данная группа является достаточно молодой и прогрессивной (Goward, 2009). Очевидно, именно благодаря сложной

организации слоевища, объединяющего в себе двух фотобионтов с принципиально разными свойствами и жизненными стратегиями, представители *Peltigerales* смогли приспособиться к условиям меняющейся среды обитания.

Достаточно простая организация слоевища характерна также для многих лишайников с трентеполиальным фотобионтом. Так, у некоторых родов (*Coenogonium* Ehrenb., *Racodium* Fr.) формируется лишь футляр гиф, оплетающих нити водорослей (Honegger, 2008). Лишайники с трентеполиальными фотобионтами наиболее разнообразны в местах с влажным тропическим климатом, где также находится центр разнообразия свободноживущих представителей *Trentepohliales* (Rindi et al., 2009). Эти лишайники колонизируют кору и листья тропических растений, часто являются эндофитами и эндопаразитами высших растений, а также образуют разрастания на скалах и фасадах зданий (Lakastos et al., 2006).

Многие лишайникообразующие грибы, вступающие в симбиоз с зелёными водорослями (за исключением *Trebouxia* и *Asterochloris*) или водорослями других групп, характеризующиеся низкой избирательностью к фотобионту, также образуют неоформленное слоевище. Так, слоевище большинства базидиальных лишайников представляет собой мицелий, оплетающий клетки водорослей (Oberwinkler, 1984). Просто устроенный тип слоевища, часто называемый лепрозным, характерен для представителей родов *Lepraria* Ach., *Staurothele* Norman, *Verrucaria*. Такие лишайники могут колонизировать различные субстраты, развиваясь в основном на почве, мёртвой древесине, куртинах мхов, реже на скалах, где часть видов может развиваться эндолитно.

Гетеромерное слоевище в наиболее простых своих вариантах может быть характерным для некоторых лишайников с трентеполиальным (Graphis Adans., Dirina Fr., Roccella DC.), или другим зелёным фотобионтом. Однако наиболее сложно устроенное гетеромерное слоевище характерно для лишайников, содержащих Trebouxia и Asterochloris. Исключение составляют лишь некоторые цефалодиальные лишайники. При гетеромерном типе слоевища слой фотобионта четко очерчен, имеются в разной степени развитые коровые слои, а также сердцевинная часть и, часто, специальные органы прикрепления к субстрату. Среди них традиционно выделяют лишайники с накипным, листоватым и кустистым слоевищем, хотя между ними также существуют переходные типы. Наиболее сложные с анатомической точки зрения тела лишайников имитируют листья высших растений. В их слоевищах выделяют параплектенхимные слои (нижний и верхний коровые), которые по строению напоминают паренхиму цветковых растений (Кондратюк, Мартиненко, 2006), слои гиф, окутывающие клетки фотобионтов наподобие губчатой паренхимы листьев растений (Honegger, 2008) и специальные органы – цифеллы и псевдоцифеллы, функциям близкие к устьицам (Кондратюк, Мартиненко, 2006). Уровень симбиотических отношений у таких лишайников также следует

считать высокоорганизованным, по сложности близким к эктомикоризе высших растений и базидиальных грибов (Honegger, 1991). Такие симбиотические отношения являются следствием длительного совместного проживания водоросли и гриба (Honegger, 1991). Лишайники с *Trebouxia*, как правило, колонизируют поверхности скал, хотя ряд видов растёт на коре деревьев, а реже — на почве. Эти лишайники распространены очень широко. Они колонизируют субстраты не только умеренной зоны, но и аридных, и холодных регионов (Galloway, 2008).

Представители *Cladoniaceae* также характеризуются достаточно высокой степенью избирательности микобионта, ассоциированного с облигатным фотобионтом из рода *Asterochloris*. Эти лишайники образуют сложно устроенные (от чешуйчатого до кустистого) слоевища и распространены в основном на почве, куртинах мхов или у основания стволов деревьев.

Состав фотобионтов лишайниковой ассоциации, как правило, не является случайным, тесно коррелирует с определёнными группами лишайникообразующих грибов. Высокое разнообразие лишайников и их полифилетичность приводят к тому, что изби-рательность их очень различна, а симбиотические отношения в ассоциации находятся на разных ступенях развития. Наиболее высоких ступеней специализации и специфичности фотобионта, очевидно, достигли лишайники с *Trebouxia* и *Asterochloris*, хотя достаточно сложно устроенные ассоциации существуют и среди цефалодиальных лишайников, а также некоторых лишайников с трентеполиальным фотобионтом.

2. Способы получения водоросли-фотобионта лишайникообразующим грибом

Каково происхождение фотобионтов, что является источником фотобионта и существует ли какой-либо обмен фотобионтами в лишайниковых популяциях — эти вопросы впервые были подняты более 20 лет назад (Friedl, 1987; Ott, 1987; Ihda et al., 1993; Beck et al., 1998; Helms, 2003), но до сих пор остаются нераскрытыми в полном объёме. Как было показано выше, для большинства лишайников определённая коспецифичность компонентов, ЧТО обусловливает присутствие в слоевище лишь одного определённого вида фотобионта. Между тем, известны случаи, когда в одном и том же слоевище представлено несколько фотобионтов одновременно. Например, некоторые виды семейств Parmeliaceae (Bhattacharya et al., 1996) и Physciaceae (Helms et al., 2001) могут содержать в своём слоевище несколько разных видов рода *Trebouxia*. Существуют также сведения о некоторой нестабильности состава фотобионтов у одного и того же вида лишайника. Чтобы объяснить этот и другие случаи, необходимо рассмотреть основные пути получения фотобионта микобионтом.

Так, существует два основных пути получения фотобионта — от материнского слоевища лишайника и из окружающей среды (Окснер,

1937). Первый случай реализуется в процессе вегетативного размножения лишайников, при формировании изидий и соредий, представленных в виде грибных гиф, оплетающих несколько клеток фотобионта. Такой способ получения фотобионта является наиболее простым и продуктивным для многих видов лишайников. Однако вегетативное размножение встречается далеко не у всех лишайников и служит для распространения лишайника на близкие расстояния с целью колонизации уже освоенной территории (Ott, 1987).

Второй путь получения фотобионта — из окружающей среды, осуществляется при половом и бесполом размножении лишайников, когда спора, попав в благоприятную среду, прорастает в ростовую трубку. Разрастаясь, ростовая трубка разветвляется и формирует гифы первичного слоевища. Если вблизи первичного слоевища нет подходящих водорослей, то оно обычно быстро отмирает. Отыскав соответствующую водоросль в окружающем пространстве, гифы первичного слоевища обволакивают её и начинают процесс релихенизации, т.е. формирования тела лишайника. Существует определённая закономерность: виды, которые продуцируют соредии, редко имеют плодовые тела и, наоборот, виды с плодоношением обычно редко формируют соредии (Окснер, 1937; Poelt, 1970, 1972). Таким образом, в реализации этих двух путей размножения, а значит и получения фотобионта, существует некоторая специализация среди лишайников.

Для лишайников, ассоциированных с факультативным фотобионтом, оба пути получения фотобионта являются эффективными. Для таких лишайникообразующих грибов источником фотобионтов могут выступать популяции свободноживущих водорослей. Так, например, жизненный цикл тропического лишайника Strigula sp. проходит стадию, которой он колонизирует свободноживущую водоросль рода Cephaleuros Kunze ex E.M. Fries (Chapman, Waters, 2001). Во многих случаях нелихенизированные водоросли встречаются в тех же биотопах, что и лишайники, в состав которых они входят (Ahmadjian, 1962; Tschermak-Woess, 1976; Galun et al., 1984). Для многих лишайников совместное произрастание с потенциальными фотобионтами в одних и тех же биотопах связано с необходимостью их поиска в окружающей среде, а также совпадением экологических оптимумов лихенизированных и свободноживущих популяций одного и того же вида фотобионта. Таким образом, биология фотобионта в какой-то степени определяет распространение и экологические предпочтения всей лишайниковой ассоциации, что особенно ярко проявляется лишайников с факультативным фотобионтом.

У лишайников, ассоциированных с облигатным фотобионтом, например *Trebouxia*, также реализуются два пути получения фотобионта, однако с некоторыми особенностями. Поскольку фотобионт таких лишайников очень редко встречается в свободноживущем состоянии в природе, то получить его из окружающей среды непросто. Наиболее реальным путём получения фотобионта для плодоносящих лишайников

с *Trebouxia* является получение его из слоевища другого лишайника – т.е. лишайниковый паразитизм, широко распространённый среди лихенизированных грибов (Friedl, 1987; Ott, 1987, Timdal, 1991; Ott et al., 1995; Beck et al., 1998; и др.). Спора лишайника, попадающая на субстрат, где нет представителей *Trebouxia*, прорастает и формирует подслоевише. В ЭТОМ состоянии лишайник может находиться длительное время, иногда до нескольких лет, как это происходит у некоторых видов Aspicilia A. Massal. (Окснер, 1937). Может даже временно быть сапрофитом, как это описано для Xanthoria parietina (Ott, 1987), пребывая в ожидании подходящего источника фотобионта чужой соредии или изидии. В другом случае, если спора попадает на слоевище другого лишайника, ассоциированного с *Trebouxia*, размикобионта внедряются в растаясь, гифы молодого лишайника-хозяина и используют часть клеток его фотобионта для формирования собственного слоевища.

Вероятность того, что спора попадёт на слоевище лишайника с совместимым фотобионтом невелика, потому в литературе приводится значительное количество фактов непостоянства фотобионтного состава одного и того же вида лишайника. Так, например, из 32 исследованных образцов лишайника X. parietina были выделены 5 видов фотобионтов, из которых 3 вида - это группа видов морфологически и генетически близких к Trebouxia arboricola и два других вида – представители рода Asterochloris (Ahmadjian, 1993; Archibald, 1975; Friedl, 1993; Nyati, 2006). Виды X. parietina и X. polycarpa (Hoffm.) Rieber, формирующие слоевища с T. arboricola и T. decolorans, на начальных стадиях своего развития используют фотобионт лишайника Physcia (Trebouxia impressa), на котором они поселяются (Nyati, 2006). Caloplaca coronata (Krempelh. ex Körber) J. Steiner паразитирует на слоевищах лишайников Aspicilia (фотобионт – Trebouxia), Catapyrenium Flot. (Myrmecia), Rinodina (Ach.) Gray (Trebouxia) и Verrucaria (Dilabifilum, Diplosphaera, Myrmecia и др.); Caloplaca tetraspora (Nyl.) Н. Olivier определена как паразит лишайника Cladonia pyxidata (L.) Hoffm. (Ходосовцев и др., 2004). Diploschistes muscorum (Scop.) R. Sant. на ранних стадиях своего развития поселяется на эпигейном лишайнике Cladonia sp., захватывает его фотобионт, относящийся к роду Asterochloris, а затем формирует слоевище с Trebouxia showmanii (Friedl, 1987).

Таким образом, довольствуясь «случайным» фотобионтом, молодой микобионт паразитирует на взрослом лишайнике-хозяине. Так может продолжаться до тех пор, пока вблизи его слоевища не появится источник подходящего фотобионта (будь-то слоевище другого лишайника или изидии и соредии).

Следовательно, один и тот же лишайник на различных стадиях своего развития характеризуется разным уровнем избирательности фотобионта, поэтому в его слоевище в процессе онтогенеза могут сменяться несколько разных видов фотобионтов.

Приуроченность видов фотобионтов к семействам, порядкам, классам и отделам лишайникообразующих грибов

Семейство лишайников	Вид фотобионта*			
	Ascomycota			
Arthoniomycetes				
Порядок Arthoniales				
Arthoniaceae	Phycopeltis sp. 119, Trentepohlia umbrina (Kütz.) Bornet. 82,			
	Trentepohlia sp. ^{93, 119}			
Chrysotrichaceae	Trentepohlia sp. ^{23,78} , Chlorella ellipsoidea Gerneck (= Chloroidium			
	cf. ellipsoideum (Gerneck) Darienko et al.)2, 145			
Roccellaceae	Phycopeltis sp. ^{23, 119, 153, 160, 209} , Trentepohlia umbrina ^{23, 82} , T. cf.			
	odorata (F.H. Wigg.) Wittr. ¹⁷⁵ , Trentepohlia sp. ^{75, 76, 77, 93, 203}			
	Dothideomycetes families incertae sedis			
Arthopyreniaceae	Hyella caespitosa Bornet et Flahault ^{2, 96, 100, 101, 166, 183}			
Mycoporaceae	Palmella sp. ²			
Microyhyriaceae	Cephaleuros sp. 153			
Pyrenotrichaceae	<i>Scytonema</i> sp. ^{44, 71, 148, 188}			
Trypetheliaceae	Trentepohlia sp. 114			
	Eurotiomycetes			
	Порядок Pyrenulales			
Monoblastiaceae	Trentepohlia sp. 119			
Pyrenulaceae	Trentepohlia cf. umbrina ^{8, 119}			
T 7	Порядок Verrucariales			
Verrucariaceae	Chlorella luteoviridis Chodat (= Heterochlorella cf. luteoviridis) ¹²⁹ ,			
	Chlorella sp. 129, Coccobotrys verrucariae Chodat emend. Vischer ³¹ ,			
	¹⁹⁶ , <i>Diplosphaera chodatii</i> Bial. emend. Vischer ^{4, 9, 11, 64, 165, 191, 197, 210} , <i>Dilabifilum incrustans</i> (Vischer) TschermWoess ^{22, 45, 96, 181} , <i>D</i> .			
	arthopyreniae (Vischer & K.W. Klem.) TschermWoess ¹⁸³ ,			
	Heterococcus caespitosus Vischer ^{136, 137, 151, 175, 210} , Myrmecia			
	biatorellae (TschermWoess & Plessl) J.B. Petersen ^{2, 4, 26, 64, 65, 146} ,			
	186, 210, Myrmecia sp. 21, Petroderma maculiforme (Wollng.) Kuck. 123,			
	^{138, 151, 152, 204} , Stichococcus mirabilis Lagerh. ¹⁰ , S. bacillaris Nägeli ⁶² ,			
	Stichococcus sp. ^{2, 165, 210} , Trochiscia granulata (Reinsch) Hansg. ^{2, 175,}			
	¹⁹¹ , Trochiscia sp. ^{4, 191} , Xanthonema montanum (Vischer) P.C. Silva			
	136, 137, 151, 210			
Strigulaceae	Cephaleuros virescens Kunze ex Fr. ^{2, 30, 117, 119, 153}			
	Порядок Mycocaliciales			
Mycocaliciaceae	Chlorella cf. ellipsoidea (= Chloroidium cf. ellipsoideum) ¹⁴⁵ ,			
	Dictyochloropsis symbiontica TschermWoess 186			
Lecanoromycetes				
	Порядок Acarosporales			
Acarosporaceae	Dictyochloropsis reticulata (TschermWoess) TschermWoess ¹⁸⁵ ,			
	• • • • • • • • • • • • • • • • • • • •			
	Dictyochloropsis symbiontica TschermWoess 186 Lecanoromycetes Порядок Acarosporales			

	Порядок Agyriales
Agyriaceae	Asterochloris phycobiontica TschermWoess ^{153, 155, 186} , Chlorella
	ellipsoidea (= Chloroidium ellipsoideum) ¹⁵⁹ , Ch. cf. ellipsoidea (=
	Chloroidium cf. ellipsoideum) 33 , Ch. saccharophila Gerneck (= Ch.
	saccharophillum (Gerneck) Darienko et al.)45, Coccobotrys lecideae
	Warén ⁴⁵ , Coccomyxa sp. ² , Diplosphaera chodatii ²¹⁰ , Nostoc sp. ¹⁰⁸ ,
	Pseudochlorella pyrenoidosa (Zeitler) J.W.G. Lund ^{26, 210} , Scytonema
	sp. 108, cf. Stigonema 108, Trebouxia sp. 39
	Порядок Baeomycetales
Baeomycetaceae	Coccomyxa sp. 139, 143, Coccomyxa icmadophilae Jaag ⁸⁹ , Elliptochloris
	bilobata TschermWoess 190
	Порядок Ostropales
Coenogoniaceae	Physolinum sp. 121, 144, P. monile (De Wildeman) Printz 193
	Trentepohlia abietina (Flot.) Hansg. 193, T. arborum (C. Agardh)
	Har. 193, T. aurea (L.) Mart. 193, T. elongata (Felles) De Toni 193, T.
	odorata ¹⁹³ , T. umbrina ¹⁹³ , Trentepohlia sp. ^{23, 161}
Graphidaceae	Phycopeltis sp. 119, Printzina lagenifera (E.M. Hildebr.) Tompson et
•	Wujek ¹²⁵ , Trentepohlia annulata F. Brand ¹⁹⁵ , T. umbrina ⁸² ,
	Trentepohlia sp. 191
Gyalectaceae	Gloeocystis sp. ^{4, 194} , Trentepohlia aurea ^{147, 175}
Porinaceae	Phycopeltis sp. ^{119, 150} , Trentepohlia sp. ⁹³
Styctidaceae	Scytonema sp. 74, Trentepohlia sp. 99
Thelotremataceae	Trebouxia excentrica P.A. Archibald (= Asterochloris excentrica
Theotremataceae	(P.A. Archibald) Skaloud et Peksa)) ¹⁶⁹ , <i>T. irregularis</i> Hildreth et
	Ahmadjian (= Asterochloris irregularis (Hildreth et Ahmadjian)
	Skaloud et Peksa) ^{13, 50} , <i>Trebouxia asymmetrica</i> Friedl et G.
	Gärtner ^{13, 50, 53} , <i>T. crenulata</i> P.A. Archibald ^{13, 50} , <i>T. gigantea</i> ^{13, 50}
Phlyctidaceae	Dictyochloropsis reticulata 180, 185
Тіпуспиасеае	Порядок Pertusariales
Coccotremataceae	Calothrix sp. 24
Icmadophilaceae	Coccomyxa icmadophilae 89, 209, Trebouxia impressa Ahmadjian 87
	Trebouxia gigantea 13
Megasporaceae	
Ochrolechiaceae	Asterochloris phycobiontica 45, Diplosphaera chodatii 45
Pertusariaceae	Trebouxia cf. asymmetrica ¹⁵⁹ , T. jamesii ¹⁵⁹ , T. potteri Ahmadjian
	et Gärtner ^{13, 85, 167} , <i>Trebouxia</i> sp. ⁶⁸
TT 11	Ostropomycetidae families incertae sedis
Hymeneliaceae	Trebouxia jamesii ssp. angustilobata Beck ²⁰ , T. australis Beck ²⁰ , T.
	jamesii ¹⁹ , T. simplex ²⁰ , Trentepohlia aurea ^{2, 175}
Protothelenellaceae	Elliptochloris bilobata ¹⁹⁰ , Leptosira thrombii TschermWoess ¹⁵⁷ , ¹⁷⁹ , ¹⁸²
Schaereriaceae	Trebouxia jamesii 13
	Порядок Lecanorales
Catillariaceae	Dictyochloropsis reticulata ¹⁷⁸ , Gongrosira sp. ¹⁴¹ , Myrmecia biato-
	rellae 45, Trebouxia simplex 20
Cladoniaceae	Trebouxia erici Ahmadjian (= Asterochloris erici (Ahmadjian)
	Skaloud et Peksa) ^{6, 13} , T. excentrica (= Asterochloris excentrica) ^{13,}
	^{169, 207} , T. glomerata (Warén) Ahmadjian (= Asterochloris glomerata
	(Warén) Skaloud et Peksa) ^{14, 85, 120, 126, 168, 197, 198} , T. irregularis (=
	Asterochloris irregularis) ¹³ , T. magna P.A. Archibald (=

	4		
	Asterochloris magna (P.A. Archibald) Skaloud et Peksa) ¹⁴ ,		
	T. pyriformis P.A. Archibald (= Asterochloris glomerata (Warén)		
	Skaloud et Peksa) ^{14, 120} , Asterochloris sp. 34, 140, 205, Chlorella cf.		
	ellipsoidea (= Chloroidium cf. ellipsoideum) ³¹ , Nostoc sp. ⁹¹ ,		
	Stigonema sp. 91, 92, Trebouxia impressa 13		
Gypsoplacaceae	Trebouxia impressa 140		
Lecanoraceae	Trebouxia arboricola Puym. 17, T. australis 20, T. gigantea 13, T.		
	jamesii ¹⁸ , T. incrustata ^{14, 20, 66, 68} , T. showmanii (Hildreth et		
	Ahmadjian) G. Gärtner ⁴⁵ , T. simplex ^{20, 67} , T. suecica Beck ²⁰ ,		
	T. potteri ^{5, 85} , Trebouxia sp. ^{39, 66}		
Parmeliaceae	Trebouxia excentrica (= Asterochloris excentrica) ^{13, 51} , T. irre-		
	gularis (= Asterochloris irregularis) ^{13, 51} , Trebouxia sp. (=		
	Asterochloris sp.) ¹⁴⁰ , Trebouxia aggregata (P.A. Archibald) G.		
	Gärtner 45, T. arboricola ^{13, 19, 52, 53} , T. anticipata Ahmadjian ex		
	P.A. Archibald 45, T. crenulata ^{13, 14, 57, 120} , T. corticola		
	(P.A. Archibald) G. Gärtner ¹³² , T. gigantea ^{13, 51, 52, 85} , T. gelati-		
	nosa Ahmadjian ex P.A. Archibald ^{12, 13, 14, 51, 52, 53, 120, 162} , T. jamesii		
	13, 41, 51, 106, 149, T. higginsiae (Hildreth et Ahmadjian) G. Gärtner		
	132, T. impressa ^{13, 41, 53, 58, 87, 149} , T. incrustata ²⁰ , T. showmanii ⁸⁶ , T.		
	simplex 67, 133, T. suecica ²⁰ , T. usneae (Hildreth et Ahmadjian) G.		
	Gärtner ¹³		
Pilocarpaceae	Elliptochloris sp. ²⁶ , Pseudochlorella pyrenoidosa ²¹⁰ , Scytonema sp. ¹⁵³		
Psoraceae	Myrmecia biatorellae ^{55, 63, 200}		
Ramalinaceae	Dictyochloropsis reticulata ^{2, 210} , D. splendida Geitler ¹⁸⁹ , Gloeocystis		
Tumumucuc	sp. ² , Myrmecia biatorellae ^{2, 45} , Nostoc sp. ³³ , Scytonema sp. ¹¹⁰ ,		
	Trebouxia asymmetrica ²¹ , T. corticola ¹³ , T. galapagensis (Hildreth		
	et Ahmadjian) G. Gärtner ^{57, 85} , <i>Trebouxia</i> sp. ³⁴ , <i>T. jamesii</i> ³⁴ , <i>T.</i>		
	potteri ¹⁴⁶		
Stereocaulaceae	Anabaena sp. ⁴² , Aphanocapsa sp. ⁴² , Calothrix parietina (Nägeli)		
Stereocaulaceae	Thur. 112, Gloeocapsa sp. 23, 109, Microcystis sp. 9, Nostoc sp. 74, 109, 112,		
	113, 134, <i>Pseudochlorella</i> sp. 26, 191, <i>Scytonema</i> sp. 56, 74, 109, 112, 113, 134, 191,		
	Stigonema mesentericum Geitler ¹²⁴ , Stigonema sp. ^{23, 42, 74, 109, 112, 113,}		
	134. 191, Stichococcus bacillaris 145, Trebouxia arboricola 13, T.		
	excentrica (= Asterochloris excentrica) ¹³ , T. glomerata (= Astero-		
	chloris glomerata) ^{6, 9, 14, 85} , T. irregularis (= Asterochloris		
	irregularis) ^{13, 21} , Trebouxia sp. (= Asterochloris sp.) ¹⁴⁰		
	Порядок Peltigerales		
Coccocarpiaceae	Hyphomorpha antillarum Borzi ^{70, 191} , H. perrieri Fremy ^{70, 191} , Nostoc		
	sp. ⁷⁷ , Rivulariaceae ⁷⁷ , Scytonema sp. ^{16, 23, 54, 153} , Stigonema sp. ⁷⁰		
Collemataceae	Nostoc commune Vaucher sensu Elenkin ³⁸ , N. muscorum C.		
	Agardh. ³⁸ , <i>N. sphaericum</i> Vaucher ^{36, 38} , <i>Nostoc</i> sp. ²¹		
Pannariaceae	Myrmecia biatorellae ² , Nostoc sphaericum ¹⁵⁶ , Nostoc sp. ^{47, 74, 94, 98} ,		
	<i>Scytonema</i> sp. ^{2, 9, 15, 23, 142}		
Placynthiaceae	Calothrix orsiniana Thur. ^{2, 60} , Calothrix sp. ⁸⁰ , Nostoc sp. ⁷⁰ ,		
	Scytonema sp. ^{2, 70, 79,80} , Tolypothrix sp. ⁸⁰		
Lobariaceae	Chlorella sphaerica TschermWoess ⁴⁵ , Dictyochloropsis reticulata		
	185, 192, D. symbiontica ¹⁸⁹ , Dictyochloropsis sp. ²⁰⁶ , Myrmecia		
	biatorellae ²⁶ , Nostoc commune ⁹⁷ , N. muscorum ⁹⁷ , N. punctiforme		
	(Kütz.) Hariot ¹³¹ , <i>Nostoc</i> sp. ⁹⁵		

Nephromataceae	Coccomyxa sp. ²⁰¹ , Nostoc sp. ²⁰¹	
Peltigeraceae	Pseudococcomyxa ellipsoidea Hindák ²⁰⁹ , Coccomyxa glaronensis	
	Jaag (= Pseudococcomyxa solorinae-saccatae (Chodat) Kostikov et	
	al.) ^{26, 89} , C. mucigena Jaag (= Pseudococcomyxa mucigena (Jaag)	
	Kostikov et al.)89, C. ovalis Jaag (= Pseudococcomyxa solorinae	
	saccatae (Chodat) Kostikov et al.)89, C. peltigerae variolosae Jaag	
	(= Pseudococcomyxa peltigerae variolosae (Jaag) Kostikov et al.) ⁸⁹ .	
	²⁰⁹ , C. peltigerae venosae Jaag ⁸⁹ , C. peltigerae Warén (=	
	Pseudococcomyxa peltigerae (Waren) Kostikov et al.) ^{89, 197} , C.	
	simplex Mainx (= Pseudococcomyxa simplex (Mainx) Fott) ² , C.	
	solorinae Chodat ⁴⁵ , C. solorinae bisporae Jaag (= Pseudococcomyxa	
	solorinae bisporae (Jaag) Kostikov et al.) ⁸⁹ , C. solorinae croceae	
	Chodat (= Pseudococcomyxa solorinae croceae (Chodat) Kostikov	
	et al.) ^{31, 89} , C. solorinae saccatae (= Pseudococcomyxa solorinae	
	saccatae (Chodat) Kostikov et al.) ^{31, 89} , C. tiroliensis Jaag (=	
	Pseudococcomyxa solorinae croceae (Chodat) Kostikov et al.) ^{26, 89} ,	
	Nostoc commune ¹³¹ , N. punctiforme ^{115, 120, 122, 131, 199} , N. muscorum	
	122, Nostoc sp. 116	
Magalagnaragaa	Порядок Teloschistales	
Megalosporaceae	Dictyochloropsis reticulata ⁴⁵ , D. symbiontica ¹⁸⁹ Stichococcus bacillaris ¹⁴⁵ , Trebouxia arboricola ³⁵ , T. corticola ¹³ , T.	
Physciaceae	decolorans Ahm. ^{6, 13} , T. flava P.A. Archibald ^{13, 45, 105} , T. higginsiae	
	13, 53, <i>T. impressa</i> ^{6, 13, 17, 18, 35, 149} , <i>T. incrustata</i> ⁶⁸ , <i>Trebouxia</i> sp. 68, 174	
Teloschistaceae	Trebouxia italiana P.A. Archibald (= Asterochloris italiana (P.A.	
Terosemstaceae	Archibald) Skaloud et Peksa) ¹⁴ , T. irregularis (= Asterochloris	
	irregularis) ¹³ , T. aggregata ^{14, 45} , T. asymmetrica ²¹ , T. arboricola ^{13, 127} ,	
	128, T. crenulata ^{13, 14} , T. decolorans ^{6, 40, 127, 128} , T. gelatinosa ¹²⁸ , T.	
	gigantea ^{13, 53} , T. impressa ¹²⁸ , T. potteri ¹²⁸	
	Lecanoromycetidae families incertae sedis	
Brigantiaceae	Dictyochloropsis reticulata ⁴⁵ , Nostoc sp. ¹⁰⁸ , Stigonema sp. ¹¹¹	
Lecideaceae	Trebouxia excentrica (= Asterochloris excentrica) ¹³ , T. glomerata (=	
	Asterochloris glomerata) ⁸⁵ , T. irregularis (= Asterochloris	
	irregularis) ¹³ , T. magna (= A. magna) ²⁰ , Chlorella sp. ^{2, 191, 209} ,	
	Coccobotrys lecideae Warén ^{2, 31, 45} , Chlorosarcinopsis minor	
	(Gerneck) Herndon ^{141, 191} , Gloeocapsa sanguinea (C. Agardh)	
	Kütz. ^{25, 47} , Gloeocapsa sp. ^{74, 83, 84} , Gloeocystis botryoides (Kütz.) Nägeli ¹⁰⁷ , Stigonema sp. ^{25, 74, 83, 84} , Trebouxia jamesii ssp.	
	angustilobata ²⁰ , T. aggregata ⁸⁵ , T. arboricola ¹³ , T. jamesii ¹⁸ , ¹⁴⁹ , T.	
	simplex ²⁰ , T. suecuca ²⁰ , Trentepohlia sp. ²³	
Rhizocarpaceae	Elliptochloris bilobata ¹⁸⁶ , Trebouxia australis ²⁰ , T. gigantea ¹³ , T.	
	incrustata ²⁰ , T. jamesii ²⁰ , T. potteri ¹⁴⁶ , T. simplex ²⁰ , T. suecica ²⁰	
Vezdaeaceae	Leptosira obovata Vischer ¹⁸⁴	
	Порядок Candelariales	
Candelariaceae	Trebouxia suecica ²⁰	
L	1	

Порядок Umbilicariales				
Umbilicariaceae	Trebouxia brindabellae Beck ²⁰ , T. impressa ¹⁴⁹ , T. jamesii ¹⁴⁹ , T.			
	simplex ²⁰ , Trebouxia sp. ¹⁴⁹			
Lecanoromycetes genera incertae sedis				
Maronella laricina	Myrmecia biatorellae ²			
Lichinomycetes				
Порядок Lichinales				
Нерріасеае	Gloeocapsa sp. 70, 103, Scytonema hoffmannii C. Agardh ²⁰² , Scytonema sp. 9, 118, 142, 164			
Lichinaceae	Chroococcaceae ^{28, 29, 48, 69, 70, 81} , Chroococcidiopsis sp. ^{28, 29, 48} , Chroococcidiopsis-Myxosarcina-group ²⁹ , Calothrix pulvinata (Mert.) C. Agardh ⁷ , C. scopulorum (Weber et D. Mohr) C. Agardh ²³ , C. crustacea Schousboe ex Thur. ⁷ , Calothrix sp. ^{2, 70, 72} , Chroococcus muralis L.N. Gardner ⁵⁹ , Dichothrix baueriana (Grunow) Bornet et Flahault ⁷² , Dichothrix sp. ^{72, 81} , Entophisalidaceae ^{27, 29} , Gloeocapsa alpina (Nägeli) F. Brand ² , G. kuetzingiana Nägeli ^{2, 59, 90, 176} , G. magma (Bréb.) Komárek et Anagn. ² , G. rupestris Kütz. ² , G. sanguinea (C. Agardh) Kütz. ^{23, 59, 61, 90, 156, 158, 189} , Gloeocapsa sp. ^{23, 74, 135, 163, 191, 208} , Hormatonema sp. ^{29, 69} , Pleurocapsa sp. ⁶⁹ , Rivularia sp. ^{2, 73} , Scytonema sp. ^{70, 75} , Stigonema sp. ^{37, 59, 70} , Trebouxia arboricola ¹³			
Peltulaceae	Gloeocapsa sp. 118, Scytonema sp. 142			
1 010111100110	Ascomycota families incertae sedis			
Coniocybaceae	Dictyochloropsis splendida ¹⁸¹ , Nostoc sp. ⁹⁵ , Stichococcus bacillaris			
·	Nägeli ^{145, 170, 175} , S. pallescens Chodat (= Stichococcus bacillaris) ¹⁴⁵ , Stichococcus sp. ^{170, 171, 172} , Trebouxia arboricola ¹⁷³ , T. jamesii ¹³ , ¹⁷³ , T. simplex ¹⁹¹ , Trebouxia sp. ¹⁷⁴ , Trentepohlia umbrina ^{2, 145, 174, 191}			
Epigloeaceae	Gloeocystis polydermatica (Kütz.) Hindák ⁸⁸			
Mastodiaceae	Blidingia minima var. vextata ¹⁰² , Prasiola crispa (Ligthf.) Kütz. ¹⁰⁴ ,			
	Prasiola sp. 102			
	Prasiola sp. 102 Ascomycota genera incertae sedis			
Normandina pulchella				
Normandina pulchella	Ascomycota genera incertae sedis			
Normandina pulchella	Ascomycota genera incertae sedis Nannochloris normandinae TschermWoess ¹⁸⁷			
Normandina pulchella	Ascomycota genera incertae sedis Nannochloris normandinae TschermWoess ¹⁸⁷ Basidiomycota			
Normandina pulchella Clavariaceae	Ascomycota genera incertae sedis Nannochloris normandinae TschermWoess ¹⁸⁷ Basidiomycota Basidiomycetes			
	Ascomycota genera incertae sedis Nannochloris normandinae TschermWoess ¹⁸⁷ Basidiomycota Basidiomycetes Порядок Agaricales Соссотуха sp. ^{64, 191} (вероятно, Radiococcaceae gen. sp.) ¹³⁰ ,			

¹ Войцехович, 2008а	⁷⁰ Henssen, 1963	¹⁴² Poelt, 1969
² Окснер, 1974	⁷¹ Henssen, 1964	¹⁴³ Pott, 1972**
³ Acton, 1909	⁷² Henssen, 1969	¹⁴⁴ Rands, Davis, 1993
⁴ Ahmadjian, 1958	⁷³ Henssen, 1973	¹⁴⁵ Raths, 1938
⁵ Ahmadjian, 1959	⁷⁴ Henssen, Jahns, 1974	¹⁴⁶ Rehakova, 1968**
⁶ Ahmadjian, 1960	⁷⁵ Henssen, 1977	¹⁴⁷ Reinke, 1896
⁷ Ahmadjian, 1962	⁷⁶ Henssen et al., 1979	¹⁴⁸ Riddle, 1917
⁸ Ahmadjian, 1964	⁷⁷ Henssen, James, 1982	¹⁴⁹ Romeike et al., 2002
⁹ Ahmadjian, 1967	⁷⁸ Henssen et al., 1982	¹⁵⁰ Sanders, 2002
¹⁰ Ahmadjian, Heikkia,	⁷⁹ Henssen, 1984	¹⁵¹ Sanders, 2004
1970	80 Henssen, 1985	¹⁵² Sanders et al., 2004
¹¹ Ahmadjian, 1975 **	81 Henssen et al, 1985	¹⁵³ Santesson, 1952
¹² Ahmadjian, 1987	82 Hérisset, 1946	154 Scheidiegger, 1983**
¹³ Ahmadjian, 1993	83 Hertel, 1981	155 Scheidiegger, 1985
¹⁴ Archibald, 1975	⁸⁴ Hertel, 1985 **	¹⁵⁶ Schiman, 1958
¹⁵ Arvidsson, Galloway,	85 Hildreth, Ahmadjian, 1981	¹⁵⁷ Schiman, 1961
1981	⁸⁶ Ihda et al., 1993	¹⁵⁸ Schiman, 1985 **
¹⁶ Arvidsson, 1982	87 Ihda, Nakano, 1995	¹⁵⁹ Schmitt, Lumbsch, 2001
¹⁷ Beck et al., 1998	88 Jaag, Thomas, 1934	¹⁶⁰ Serusiaux, 1985
¹⁸ Beck, 1999	⁸⁹ Jaag, 1933	¹⁶¹ Skuja, Ore, 1933
¹⁹ Beck, Koop, 2001	⁹⁰ Jaag, 1945	¹⁶² Slocum et al., 1980
²⁰ Beck, 2002	⁹¹ Jahns, 1970	¹⁶³ Snyder, Wullstein, 1973
²¹ Beck et al., 2002	⁹² Jahns, 1972	¹⁶⁴ Schwendener, 1869**
²² Binz, Vischer, 1956	⁹³ James, Coppins, 1979	¹⁶⁵ Stahl, 1877**
²³ Bornet, 1873	⁹⁴ James, Henssen, 1975	¹⁶⁶ Swinscow, 1965
²⁴ Brodo, 1973	⁹⁵ James, Henssen, 1976	¹⁶⁷ Takeshita et al., 1989
²⁵ Brodo, 1984 **	⁹⁶ Johnson, John, 1990	¹⁶⁸ Takeshita et al., 1991
²⁶ Brunner, 1985	⁹⁷ Jordan, 1972	¹⁶⁹ Takeshita et al., 1992
²⁷ Bubrick, 1978	⁹⁸ Jorgensen, 1978	¹⁷⁰ Tibell, 1980
²⁸ Büdel, Henssen, 1983	⁹⁹ Jorgensen, Vezda, 1984	¹⁷¹ Tibell, 1982
²⁹ Büdel, 1985	100 Klement, Doppelbauer, 1952	¹⁷² Tibell, 1985
³⁰ Chapman, 1976	¹⁰¹ Klement, 1962	¹⁷³ Tibell, Beck, 2001
³¹ Chodat, 1913	102 Kohlmeyer, Kohlmeyer,	¹⁷⁴ Tibell, 2001
³² Coppins, James, 1979	1979	¹⁷⁵ Tschermak, 1941
³³ Coppins, James, 1984	¹⁰³ Kofarago-Gyelnik, 1940	¹⁷⁶ Tschermak-Woess, 1943
³⁴ Cordeiro et al., 2005	104 Kovacik, Pereira, 2001	¹⁷⁷ Tschermak-Woess, Plessl,
35 Dahlkild et al., 2001	¹⁰⁵ Kroken et al., 2003	1948
³⁶ Danilov, 1927	¹⁰⁶ Kroken, Taylor, 2000	¹⁷⁸ Tschermak-Woess, 1951
³⁷ De Bary, 1866	¹⁰⁷ Kupffer, 1924	¹⁷⁹ Tschermak-Woess, 1953
³⁸ Degelius, 1954	¹⁰⁸ Lamb, 1947	¹⁸⁰ Tschermak-Woess, 1969
³⁹ De Los Rios et al., 2002	¹⁰⁹ Lamb, 1951	¹⁸¹ Tschermak-Woess, 1970
⁴⁰ De Nicola, Di	¹¹⁰ Lamb, 1956	¹⁸² Tschermak-Woess, 1974**
Benedetto, 1962	¹¹¹ Lamb, 1974**	¹⁸³ Tschermak-Woess, 1976
⁴¹ Doering, Piercey-	¹¹² Lamb, 1977	184 Tschermak-Woess, Poelt,
Normore, 2009	113 Lamb, 1978	1976
⁴² Duvigneaud, 1955	114 Lambright, Tucker, 1980	¹⁸⁵ Tschermak-Woess, 1978
43 Ellis, 1975	¹¹⁵ Linkola, 1920	186 Tschermak-Woess, 1980
44 Eriksson, 1981	¹¹⁶ Lohtander et al., 2003	187 Tschermak-Woess, 1981
Limoton, 1701	Londandor et un, 2003	1501101111411 11 0055, 1701

⁴⁵ Ettl, Gärtner, 1995	117 Marche-Marchad, 1981	188 Tschermak-Woess et al.,
46 Follmann, Huneck,	¹¹⁸ Marton, Galun, 1976	1983
1968	¹¹⁹ Matthews et al., 1989	¹⁸⁹ Tschermak-Woess, 1984
⁴⁷ Forssell, 1884	¹²⁰ Meisch, 1981	¹⁹⁰ Tschermak-Woess, 1985
⁴⁸ Friedmann, 1982	¹²¹ Meier, Chapman, 1983	¹⁹¹ Tschermak-Woess, 1989
⁴⁹ Friedl, 1987	¹²² Miao et al., 1997	¹⁹² Tschermak-Woess, 1995
⁵⁰ Friedl, Gärtner, 1988	¹²³ Moe, 1997	¹⁹³ Uyenko, 1965
⁵¹ Friedl, 1989	¹²⁴ Nakano, 1971	¹⁹⁴ Vezda, 1965
⁵² Friedl, 1993	¹²⁵ Nakano, 1988	¹⁹⁵ Verseghy, 1961
⁵³ Friedl et al., 2000	126 Nakano, Iguchi, 1994	¹⁹⁶ Vischer, 1960
⁵⁴ Fujita, 1968	¹²⁷ Nyati, 2006	¹⁹⁷ Warén, 1918/1919**
⁵⁵ Galun et al., 1971	¹²⁸ Nyati et al., 2006	¹⁹⁸ Warén, 1920**
⁵⁶ Galloway et al., 1976**	¹²⁹ Nyati et al., 2007	¹⁹⁹ Watanabe, Kiyohara, 1963
⁵⁷ Gärtner, 1985	¹³⁰ Oberwinkler, 1984	²⁰⁰ Weber, 1965
⁵⁸ Gärtner, Ingolić, 1987	¹³¹ O'Brien et al., 2005	²⁰¹ Wetmore, 1960
⁵⁹ Geitler, 1933	¹³² Ohmura et al., 2006	²⁰² Wetmore, 1970
⁶⁰ Geitler, 1934	¹³³ Opanowich, Grube, 2004	²⁰³ Withrow, Ahmadjian, 1983
⁶¹ Geitler, 1937	¹³⁴ Ozenda, Clauzade, 1970**	²⁰⁴ Wynne, 1969
⁶² Geitler, 1938	¹³⁵ Paran et al., 1971	²⁰⁵ Yahr et al., 2004
⁶³ Geitler, 1963	¹³⁶ Parra, Redon, 1977	²⁰⁶ Yoshimura, 1971
⁶⁴ Geitler, 1955	¹³⁷ Pereira, 1992	²⁰⁷ Yoshimura et al., 1987
65 Geitler, 1960	¹³⁸ Peters, Moe, 2001	²⁰⁸ Zahlbruckner, 1926
⁶⁶ Guzov-Krzheminska,	¹³⁹ Peveling, Galun, 1976	²⁰⁹ Zehnder, 1949**
2006	¹⁴⁰ Piercey-Normore, De Priest,	²¹⁰ Zeitler, 1954
67 Hauck et al., 2007	2001	
⁶⁸ Helms et al., 2001	¹⁴¹ Plessl, 1963	
69 Henssen, Büdel, 1984		

^{*} Видовые названия водорослей приведены таким образом: оригинальные названия из соответствующей публикации (= современное название, приведенное согласно http://www.algabase.org./, а также отдельным публикациям (Костіков та ін., 2001; Darienko et al., 2010; Skaloud, Peksa, 2010); ** цит. по Tschermak-Woess, 1989.

В пользу гипотезы о получении фотобионта лишайниками с *Trebouxia* в результате паразитического образа жизни свидетельствует широкое распространение паразитизма именно среди леканоромицетовых лишайников (Ott, 1987), непостоянство их фотобионтного состава (Helms, 2003; Nyati, 2006; и др.), случаи развития нескольких фотобионтов в одном слоевище (Friedl, 1987; Friedl et al., 1988), а также тот же паразитирующих лишайников, имеющих фотобионта, что и их хозяева (Gorbushina et al., 2006). В результате анализа и обобщения более 40 литературных источников (Ott, 1987; Timdal, 1991; Hafellner, 2004; Nadyeina, 2009; и др.) выявлено 34 рода лишайникообразующих грибов, которые в своём развитии имеют паразитическую стадию и поселяются на слоевищах других лишайников с целью получения фотобионта. Среди этих паразитических лишайников преобладают представители класса Lecanoromycetes и его порядков

Candelariales (Candelariella Müll. Arg.), Teloschistales (Caloplaca Th. Fr., Fulgensia A. Massal., Xanthoria (Fr.) Th. Fr., Rhizocarpon Ramond ex DC., Rinodina, Rinodinella H. Mayrhofer et Poelt), Lecanorales (Parmelia Ach., Protoparmelia M. Choisy, Physcia (Schreb.) Michx., Psora Hoffm.) и Pertusariales (Schaereria Körb., Ochrolechia A. Massal.), ассоциированные с фотобионтом Trebouxia.

Интересной в плане иллюстрации поиска облигатного фотобионта является работа С. Отт (Ott, 1987), посвящённая исследованию жизненного цикла Xanthoria parietina. Автор описывает и экспериментально доказывает несколько путей релихенизации лишайника с совместимым фотобионтом. Проросшая спора лишайника образует сеть гиф. При встрече совместимого фотобионта рода *Trebouxia* (из чужой изидии или соредии) развивается нормальное слоевище. Если такой случай не представился, гриб вступает в ассоциацию с любой другой найденной водорослью, образуя зачаточное слоевище – ареолированную корку. В частности автором детально проиллюстрирована такая ассоциация с широко распространёнными аэрофитными водорослями рода Pleurococcus Meneghini (= Apatococcus Brand emend. Geitler, Desmococcus Brand emend. Vischer). В таком состоянии микобионт может существовать до тех пор, пока не встретит подходящий фотобионт в виде чужой изидии или соредии. Наконец, третий путь - прямая атака слоевища другого лишайника (в данном случае, представителя рода *Physcia*), несущего необходимый фотобионт. Так, при прорастании споры X. parietina на слоевище *Physcia* молодое слоевище *Xanthoria* формируется с клетками фотобионта атакуемого лишайника (лишайника-хозяина), химерное слоевище. Описаны интересные случаи паразитизма, при которых на слоевище *Physcia* образовывались апотеции *Xanthoria* или же в апотециях, сформированных *Physcia*, происходило замещение спор лишайника-хозяина спорами *Xanthoria*. И, наконец, при формировании наблюдалось обволакивание клеток фотобионта Xanthoria и распространение таким образом соредий паразитирующего лишайника, а не лишайника-хозяина.

Таким образом, жизненный цикл *X. parietina* показывает, что лишайники с облигатным фотобионтом проявляют низкую избирательность к фотобионту на ранних этапах развития и в дальнейшем получают совместимый фотобионт из чужой соредии или изидии, или прямой атакой другого лишайника.

В отличие от лишайников с факультативным фотобионтом, лишайники с облигатным не следуют в своём распространении за свободноживущей популяцией водоросли. Более того, эколого-географическое распространение ближайших родственников облигатных фотобионтов — представителей класса *Trebouxiophyceae*, не всегда совпадает с распространением лишайников, обладающих этим фотобионтом. Так, исследование криптогамных растений Эволю-ционного каньона (Израиль) показало очень высокое разнообразие цианопрокариот среди свободноживущих водорослей (около 77 %) и низкое —

зелёных (17 %), среди которых лишь один вид относится к классу *Trebouxiophyceae*, что является характерным для аридных регионов (Wasser et al., 1995). Тогда как лишайники с *Trebouxia*-образным фотобионтом (семейств Teloschistaceae и Lecanoraceae) составляют около 46 % исследованной лихенофлоры, а найденные виды Caloplaca приводятся как характерные для аридных местообитаний (Wasser et al., 1995). Таким образом, за счёт симбиоза с лишай-никообразующим грибом виды рода Trebouxia, вероятно, расширяют свои экологогеографические возможности, намного более ограниченные у других требуксиефициевых водорослей. Другой пример. Исследование крипто-Африки (Büdel et al., 2009) биоты пустынь значительное преобладание цианопрокариот в выявленной альгофлоре (66,7 %), тогда как на зелёные водоросли приходилось лишь 33,3 % найденных видов, из них на *Trebouxiophyceae* - 8 %. Между тем, среди лишайников из наиболее засушливого района преобладали виды родов Caloplaca, Melanelia Essl., Ramalina Ach., Teloschistes Norman, Xanthoria и Lecidella Körb., ассоциированные с фотобионтом Trebouxia.

Следовательно, выделение двух групп лишайников — ассоциированных с облигатным или факультативным фотобионтом, основывается не только на различии их фотобионтного состава, но и на принципиально разных жизненных стратегиях. В ассоциациях с фа культативным фотобионтом взаимоотношения водоросли и гриба не являются взаимозависимыми (Tschermak-Woess, 1989; Stenroos et al., 2006; Myllys et al., 2007). Водоросль может существовать самостоятельно, тогда как поведение микобионта может выходить за рамки симбиотических отношений, в некоторых случаях приводя к гибели фотобионта (Chapman, 1976). Такие примеры свидетельствуют о невысокой специализации обоих компонентов ассоциации, а также об относительной примитивности лихенобразующих грибов (Honnegger, 1991). Лишайниковые ассоциации с факультативным фотобионтом преимущественно населяют поверхность почвы (Collema, Peltigera, Placynthium (Ach.) Gray и др.), а также кору и листья деревьев (Coenogonium, Graphis, Opegrapha Ach., Strigula Fr. и др.).

Лишайники с *Trebouxia*, микобионт которых считается наиболее прогрессивным среди лихенизированных грибов (Hibbett et al., 2007; Hofstetter et al., 2007), содержат облигатный фотобионт. В таких ассоциациях симбиотические отношения являются не просто высокоспециализированными, но и взаимозависимыми. В случае образования спор (при бесполом и половом размножении) основной жизненной стратегией является паразитизм на других лишайниках, обусловленный высокой конкуренцией за субстрат и обладание фотобионтом. Основное место произрастания требуксиоидных лишайников – каменистый субстрат и кора деревьев, где они образуют обширные пёстрые многовидовые разрастания, в которых чётко прослеживаются активные конкурентные взаимоотношения между представителями нескольких видов.

3. Дополнительные и «потенциальные» фотобионты

Кроме водоросли-фотобионта в слоевище лишайника могут присутствовать также другие водоросли, часто не являющиеся фотобионтами. Так, при попытках выделения фотобионта из слоевища лишайника часто в первую очередь активно прорастают сопутствующие виды, а лишь затем — фотобионт, скорость роста которого часто невысока, особенно видов *Trebouxia*.

Среди сопутствующих видов следует отметить водоросли, присутствующие в цефалодиях. В образовании цефалодиев чаще всего принимают участие цианопрокариоты — Nostoc, Stigonema и значительно реже — зелёные водоросли — Coccomyxa, Pseudococcomyxa (Vitikainen, 1994; Lohtander et al., 2003), вероятно, являющиеся дополнительными фотобионтами. Однако состав водорослей в цефалодиях непостоянен, поэтому наряду с характерными для этих структур видами в них могут присутствовать и другие представители — Stichococcus, Diplosphaera и т.д. Существует предположение, что образование цефалодиев обусловлено внедрением в слоевище лишайника свободноживущих лихеноэпифитных водорослей, которые, раздражая грибной компонент, вызывают местные разрастания ткани (Окснер, 1937, 1974).

Особый интерес представляют т.н. «гимениальные» и «эпитециальные» водоросли, обнаруженные в перитециях, в слизи между сумками и эпитециальном слое апотециев некоторых лишайников. Эти водоросли характерны для лишайников c многоклеточными, неотъемлемым муральными, спорами И являются компонентом слоевища многих видов. Считается, что их клетки распространяются вместе со спорами и при их прорастании гифы микобионта уже имеют необходимые водоросли для формирования слоевища (Кондратюк, 2008). В то же время, состав гимениальных и эпитециальных водорослей неизвестен. Есть лишь данные, что по размеру и цвету они существенно отличаются от тех, что расположены в фотобионтном слое. Чаще всего водоросли представлены родами Diplosphaera Stichococcus (Ahmadjian, 1969; Ahmadjian, Heikkilä, 1970; Ahmadjian, Jacobs, 1970). Таким образом, на сегодняшний день неясно, что представляют собой эти водоросли - клетки из фотобионтного слоя или другие виды водорослей, и какова их роль в лишайниковой ассоциации.

Наконец, слоевище лишайников — благоприятный субстрат для свободноживущих водорослей. Наши исследования показали, что на лишайниковом слоевище развивается много лихеноэпифитных водорослей. Их видовой состав сходен с таковым водорослей-эпилитов, развивающихся на близлежащих субстратах (Михайлюк та ін., 2003; Дарієнко та ін., 2004; Войцехович та ін., 2009). Возможно, водорослилихеноэпифиты находят защиту в трещинах и складках слоевища лишайника от черезмерной инсоляции и сухости. Сравнение видового состава водорослей-эпифитов литофильных лишайников показало, что количество видов и их обилие зависят от строения слоевища, т.е.

степени его трещиноватости и гигроскопичности (Mikhailyuk, Kondratyuk, 2005). Вероятно, лихеноэпифитные водоросли отчасти являются источником цефалодиальных, эпитециальных и гимениальных водорослей, а также «потенциальными» фотобионтами лишайников с факультативным фотобионтом. Однако роль их в лишайниковой ассоциации до сих пор окончательно не выяснена.

Заключение

Состав фотобионтов лишайниковой ассоциации тесно коррелирует с определёнными группами лишайникообразующих грибов. Не менее 55 % их видов ассоциируются с Trebouxia и Asterochloris предварительным данным – до 70 %), около 40 % – с *Cyanoprokaryota*, около 8 % - с Trentepohliales, около 20 % - с остальными зелёными водорослями. Приведенное соотношение в сумме превышает 100 %. объясняется способностью некоторых лишайникообразующих грибов к формированию слоевища с несколькими фотобионтами одновременно, а также непостоянством состава фотобионтов у некоторых грибов с низкой избирательностью. Симбиотические отношения у разных групп лишайников находятся на разных ступенях специализации, их избирательность по отношению к фотобионту различна. Наиболее высоких ступеней специализации и специфичности фотобионта, очевидно, достигли лишайники с Trebouxia и Asterochloris, хотя достаточно сложно устроенные ассоциации существуют и среди цефалодиальных лишайников, а также некоторых лишайников с трентеполиальным фотобионтом.

Получение фотобионта в процессе размножения и развития лишайника, вероятно, реализуется двумя путями: от материнского слоевища (при вегетативном размножении лишайников) и из окружающей среды (при бесполом и половом размножении с помощью спор). При реализации второго пути микобионт, ассоциирующийся с факультативным фотобиотном, имеет возможность его поиска среди свободноживущих популяций наземных водорослей. Лишайники с облигатным фотобионтом могут получать его, паразитируя на слоевищах других лишайников. Многочисленные примеры непостоянства фотобионтного состава и случаи паразитизма среди лишайников с *Trebouxia*, а также исследования жизненных циклов некоторых видов лишайников подтверждают данную гипотезу. Состав фотобионтов лишайников определяет основные жизненные стратегии лишайниковой ассоциации и существенно влияет на их эколого-географические особенности.

Кроме основного фотобионта в слоевище некоторых лишайников присутствуют дополнительные фотобионты (в цефалодиях), а также гимениальные и эпитециальные водоросли, состав и роль последних неизвестны. Водоросли лихеноэпифиты, использующие слоевище лишайника как субстрат для прикрепления, вероятно, могут проникать в цефалодии, гимениальный и эпитециальный слои, а также служить источником «потенциальных» фотобионтов.

Войцехович А.О., Михайлюк Т.І., Дарієнко Т.М. // Зб. наук. праць. — Севастополь: Экосі-Гідрофізика, 2009. — С. 50–60.

Войцехович А.А., Михайлюк Т.И., Дариенко Т.М. // Альгология. – 2011. – 21, № 1. — С.

Дарієнко Т.М., Войцехович А.О., Кондратнок С. Я. // Укр. бот. журн. — 2004. — **61**, № 2. — С. 49–59.

Кондратнок С.Я., Мартиненко В.Г. Ліхеноїндикація. - Київ; Кіровоград, 2006. - 260 с.

Кондратнок С.Я. Індикація стану навколишнього середовища України за допомогою лишайників. — К.: Наук. думка, 2008. — 335 с.

Костіков І.Ю., Романенко П.О., Демченко Е.М.та ін. Водорості грунтів України (історія та методи дослідження, система, конспект флори). — К.: Фітосоціоцентр, 2001. — 300 с.

Михайлюк Т.И., Дариенко Т.М., Демченко Э.Н. // Новости системат. низш. раст. -2003. -37. -C. 53-71.

Окснер А.М. Визначник лишайників УРСР. – К.: Вид-во АН УРСР, 1937. – 341 с.

Окснер А.М. Определитель лишайников СССР. Вып. 2: Морфология, систематика и географическое распространение. — Л.: Наука, 1974. — 284 с.

Ходосовцев О.Є., Кондратюк С.Я., Макарова И.И., Окснер А.Н. Определитель лишайников России. 9. *Fuscideaceae, Teloschistaceae.* – СПб.: Наука, 2004. – 339 с.

Acton E. // Ann. Bot. (London). - 1909. - 23. - P. 573-578.

Ahmadjian V. // Bot. Not. - 1958. - 111. - P. 632-644.

Ahmadjian V. // PhD. Thesis. - Cambridge; Mass.: Harvard Univ. - 1959. - 300 p.

Ahmadjian V // Amer. J. Bot. - 1960. - 47. - P. 677-683.

Ahmadjian V. // Physiology and Biochemistry of Algae. – New York; London: Acad. Press, 1962.
 – P. 817–822.

Ahmadjian V. Further studies on lichenized fungi // Bryologist. - 1964. - 67. - P. 87-94.

Ahmadjian V. // Phycologia. - 1967. - 6. - P. 127-160.

Ahmadjian V. Lichen Synthesis // Ösrerr. Bot. Z. - 1969. - 116. - P. 306-311.

Ahmadjian V. // Progress in Phycological Research. Vol. 1. – Amsterdam: Elsevier Biomed. Press, 1982. – P. 179–233.

Ahmadjian V. // Plant Syst. Evol. - 1987. - 158. - P. 243-247.

Ahmadjian V. The Lichen Symbiosis. - New York: John Wiley and Sons, Inc., 1993. - 250 p.

Ahmadjian V., Heikkilä H. // Lichenologist. — 1970. — 4. — P. 259–267.

Ahmadjian V., Jacobs J.B. The ultrastructure of lichens. III. Endocarpon pusillum // Ibid. — P. 268–270.

Ainsworth et Bisby's Dictionary of Fungi. – CAB Intern., 2007. – 616 p.

Archibald P.A. // Phycologia. - 1975. - 14. - P. 1-125.

Arvidsson L. // Opera Bot. - 1982. - 67. - P. 1-96.

Arvidsson L., Galloway D.J. // Lichenologist. - 1981. - 13. - P. 27-39.

Beck A. // Lichenologist. - 1999. - 31, N 5. - P. 501-510.

Beck A. // Graz. - 2002. - 35, N 1. - P. 18-24.

Beck A., Koop H.U. // Symbiosis. - 2001. - 31. - P. 57-67.

Beck A., Friedl T., Rambold G. // New Phytol. - 1998. - 139. - P. 709-720.

Beck A., Kasalicky T., Rambold, G. // New Phytol. - 2002. - 153. - P. 317-326.

Bhattacharya D., Friedl T., Damberger S. // Mol. Biol. Evol. - 1996. - 13. - P. 978-989.

Binz A., Vischer W. // Verh. Natur. Ges. Basel. — 1965. — 67. — S. 195–217.

Blaha J., Baloch E., Grube M. // Biol. J. Lin. Soc. - 2006. - 88, N 2. - P. 283-293.

Bornet E. Recherches sur les Gonidies des Lichens Ann. Sci. Nat. 5° ser., Bot. – 1873. – 17. – P. 45–110.

```
Brodo I.M. // The Lichens. - New York: Acad. Press, 1973. - P. 401-441.
```

Brunner U. // Inaugural Dissert. Zurich. - Univ. Zurich., 1985. - 144 S.

Bubrick P. // Thesis. - Florida State Univ. Tallahassee, 1978. - 120 p.

Büdel B., Henssen A. // Phycologia. - 1983. - 22, N 4. - P. 367-375.

Büdel B. // Arch. Hydrobiol. Suppl. 71, Algol. Stud. - 1985. - 38. - P. 335-339.

Büdel B., Darienko T., Deutschwitz K. et al. // Microbiol. Ecol. - 2009. - 57, N 2. - P. 229-247.

Chapman R.L. // Phycologia. - 1976. - 67. - P. 191-196.

Chapman R.L., Waters D.A. // Symbiosis: Mechanisms and Model Systems. – Kluwer Acad. Press, 2001. – P. 361–371.

Chodat R. // Beitr. Kryptogam. Flora der Schweiz. - 1913. - 4, N 2. - 266 p.

Coppins B.J., James P.W. // Lichenologist. - 1979. - 11. - P. 27-34.

Coppins B.J., James P.W. // Ibid. - 1984. - 16. - P. 241-248.

Cordeiro L.M.C., Reis R.A., Cruz L.M. et al. // FEMS Microbiol. Ecol. - 2005. - 54. - P. 381-390.

Dahkild A., Källersjö M., Lohtander K., Tehler A. // Bryologist. - 2001. - 104, N 4. - P. 527-536.

Danilov A.N. Le Nostoc en йtat de symbiose // Rus. Arch. Protist. — 1927. — 6. — Р. 83—92.

Darienko T., Gustavs L., Mudimu O. et al. Chloroidium, a common terrestrial coccoid green alga previously assigned to Chlorella (Trebouxiophyceae, Chlorophyta) // Eur. J. Phycol. – 2010. – 45, N 1. – P. 79-95.

De Bary A. // Handbuch der Physiologischen Botanik. – Leipzig: Wilhelm Engelmann, 1866. – 2. – S. 136–170.

Degelius G. // Symb. Bot. Upsal. - 1954. - 13, N 2. - P. 1-499.

De Los Rios A., Ascaso C., Grube M. // Mycol. Res. - 2002. - 106. - P. 946-953.

De Nicola G.M., Di Benedetto G. // Boll. Ist. Bot. Univ. Catania Ser. - 1962. - 3, N 3. - P. 22-35.

De Priest P. // Ann. Rev. Microbiol. - 2004. - 58. - P. 273-301.

Doering M., Piercey-Normore M. // Lichenologist. - 2009. - 41, N 1. - P. 69-80.

Duvigneaud P. // Lejeunia Mem. - 1955. - 14. - P. 1-9.

Ellis E.A. // Bryologist. - 1975. - 78. - P. 471-482.

Eriksson O. // Opera Bot. - 1981. - 60. -P. 1-108.

Ettl H., Gärtner G. Syllabus der Boden-, Luft-, und Flechtenalgen. – Stuttgart, etc.: Gustav Fischer, 1995. – 710 S.

Follmann G., Huneck S. // Willdenowia. - 1968. - 5. - S. 3-29.

Forssell K.B.J. Lichenologische Untersuchungen // Flora. - 1884. - 67. - S. 177-189.

Friedmann E.I. // Science. - 1982. - P. 1045-1053.

Friedl T. // Lichenologist. - 1987. - 19. - P. 183-191.

Friedl T. // Plant. Syst. Evol. - 1989. - 164. - P. 145-159.

Friedl T. // Arch. Protist. - 1993. - 143. - P. 153-161.

Friedl T., Gärtner G. // Arch. Protist. - 1988. - 135. - P. 147-158.

Friedl T., Besendahl A., Pfeiffer P., Bhattacharya D. // Mol. Phyl. Evol. - 2000. - 14. - P. 342-352.

Fujita M. Fine structure of lichens // Misc. Bryol. Lichenol. - 1968. - 4. - P. 157-160.

Galloway D. J. // The Lichen Symbiosis. - Cambridge Univ. Press, 2008. - P. 315-335.

Galun M., Paran N., Ben-Shaul Y. // Protoplasma. - 1971. - 73. - P. 457-468.

Galun M., Bubrick P., Frensdorff A. // Lichenologist. - 1984. - 16, N 2. - P. 103-110.

Gärtner G. // Arch. Hydrobiol. Suppl., Algol. Stud., 1985. - 71, N 4. - S. 495-548.

Gärtner G., Ingolić E. // Plant. Syst. Evol. — 1987. — 158. — S. 225—234.

Geitler L. // Arch. Protist. - 1933. - 80. - S. 378-409.

Geitler L. // Ibid. - 1934. - 82. - S. 64-90.

```
Geitler L. // Arch. Protist. - 1937. - 88. - S. 161-179.
Geitler L. // Ibid. - 1938. - 90. - S. 101-112.
Geitler L. // Biol. Zentr. Band. - 1955. - 74. - S. 145-159.
Geitler L. // Encyclopedia of Plant Anatomy. - Berlin: Borntraeger, 1960. - P. 98-112.
Geitler L. // Österr. Bot. Z. - 1963. - 110. - S. 270-276.
Gorbushina A.A., Beck A., Schulte A. // Mycol. Res. - 2006. - 109. - P. 1288-1296.
Goward T. // Evansia. - 2009. - 26, N 4. - P. 153-162.
Guzow-Krzheminska B. // Lichenologist. - 2006. - 38, N 5. - P. 469-476.
Hafellner J. // Fritschiana (Graz). - 2004. - 49. - P. 29-41.
Hauck M., Helms G., Friedl T. // Lichenologist. - 2007. - 31, N 2. - P. 195-204.
Helms G. Taxonomy and symbiosis in associations of Physciaceae and Trebouxia: Dis. - Univ.
     Göttingen, Germany. - 2003. - 155 p.
Helms G., Friedl T., Rambold G., Mayrhofer H. // Lichenologist. - 2001. - 33. - P. 73-86.
Henssen A. // Symb. Bot. Ups. - 1963. - 18, N 1. - S. 1-123.
Henssen A. // Ber. Dtsch. Bot. Ges. - 1964. - 77. - S. 317-322.
Henssen A. // Nova Hedw. - 1969. - 15. - S. 543-550.
Henssen A. // Lichenologist. - 1973. - 5. - P. 444-456.
Henssen A. // Ibid. - 1977. - 9. - P. 17-29.
Henssen A. // Ibid. - 1984. - 16. - P. 265-271.
Henssen A. // Mycotaxon. - 1985. - 22. - P. 381-386.
Henssen A., Büdel B. // Nova Hedw. - 1984. - 79. - P. 381-140.
Henssen A., Jahns H.M. / Stuttgart, 1974. - 467 S.
Henssen A., James P.W. // Bull. Brit. Mus. Nat. Hist. Bot. - 1982. - 10. - P. 227-234.
Henssen A., Büdel B., Wessels D. // Mycotaxon. - 1985. - 22. - P. 169-180.
Henssen A., Renner B., Vobis G. // Lichenologist. - 1979. - 11. - P. 263-271.
Henssen A., Vobis G., Renner B. // Nord. Jord. Bot. - 1982. - 2. - P. 587-604.
Hérisset A. // C. R. Acad. Sci. – 1946. – 222. – P. 100–108.
Hertel H. // Bestimmungsschlüssel Europaischer Flechten. Ergänzungesheft II. - J. Cramer.
     Vadus, 1981. - S. 111-118.
Hibbett D.S., Binder M., Bischoff J.F. et al. // Mycol. Res. - 2007. - 111. - P. 509-547.
Hildreth K.C., Ahmadjian V. // Lichenologist. - 1981. - 13. - P. 65-86.
Hofstetter V., Miadlikowska J., Kauff F., Lutzoni F. // Mol. Phyl. Evol. - 2007. - 44. - P. 412-426.
Honegger R. // Ann. Rev. Plant Mol. Biol. - 1991. - 42. - P. 553-578.
Honegger R. // Fungi in the Environment. - Cambridge Univ. Press, 2006. - P. 185-200.
Honegger R. // The Lichen Symbiosis. - Cambridge Univ. Press, 2008. - P. 27-39.
Honegger R. Zippler U., Gansner H., Scherrer S. // Mycol. Res. - 2004. - 108. - P. 480-488.
Ihda T., Nakano T., Yoshimura I., Iwatsuki Z. // Arch. Protist. - 1993. - 143. - P. 163-172.
Ihda T., Nakano T. // Proc. NIPR Symp. Polar Biol. — 1995. — 8. — P. 205.
Jaag O. // Beitr. Kryptogamenflora Schweiz. Bot. Ges. - 1933. - 42. - 132 S.
Jaag O. // Beitr. Kryptogamenflora Schweiz. - 1945. - 9, N 3. - S. 1-560.
Jaag O., Thomas E. // Ber. Schweiz. Bot. Ges. - 1934. - 43. - S. 77-89.
Jahns H.M. // Lichenologist. - 1970. - 4. - P. 199-213.
```

Jahns H.M. // Ber. Deutsch. Bot. Ges. – 1972. – **85**. – S. 10–12. James P.W., Coppins B.J. // Lichenologist. – 1979. – **11**. – P. 253–262.

James P.W., Henssen A. // Ibid. - 1975. - 7. - P. 143-156.

James P.W., Henssen A. // Lichenology: Progress and Problems. – London: Acad. Press, 1976. – P. 22–77.

Johnson R.L., John D.M. // Brit. Phycol. J. - 1990. - 25. - P. 53-61.

Johrdan W.P. // J. Phycol. - 1972. - 8. - P. 112-117.

Jorgensen P.M. // Opera Bot. - 1978. - 45. - P. 1-19.

Jorgensen M., Vezda A. // Nova Hedw. - 1984. - 79. - P. 501-507.

Klement O. // Ber. Nat. Ges. Hann. - 1962. - 106. - S. 57-63.

Klement O., Doppelbauer H. // Ber. Deutsch. Bot. Ges. - 1952. - 65. - S. 129-144.

Kohlmeyer J., Kohlmeyer E. // Marine Mycology: The Higher Fungi. – New Yourk: Acad. Press, 1979. – P. 70–78.

Kofarago-Gyelnik V. // Rabenhorst's Kryptogamenflora. – Leipzig: Akad. Verlag., 1940. – Vol. 9. – S. 2–54.

Kovačik L., Pereira A.B. // Nova Hedw. - 2001. - 123. - P. 465-478.

Kroken S., Taylor J.W. // Bryologist. - 2000. - 103, N 4. - P. 645-660.

Kroken S., Glass N.L., Taylor O.C. et al. // Proc. Nat. Acad. Sci. U.S.A. – 2003. – **100**. – P. 15670–15675.

Kupffer K.R. // Natur. Ver. Riga. - 1924. - 58. - S. 111-123.

Lakastos M., Rascher U., Büdel B. // New Phytol. - 2006. - 172, N 4. - P. 679-695.

Lamb I.M. // Lilloa. - 1947. - 13. - P. 151-189.

Lamb I.M. // Can. J. Bot. - 1951. - 29. - P. 522-536.

Lamb I.M. // Lloydia. - 1956. - 19. - P. 157-162.

Lamb I.M. // J. Hatt. Bot. Lab. - 1977. - 43. - P. 191-200.

Lamb I.M. // Ibid. - 1978. - 44. - P. 209-216.

Lambright D.D., Tucker S.C. // Bryologist. - 1980. - 83. - P. 170-178.

Lange O.L., Belnap J., Reichenberger H. // Functional Ecol. - 1998. - 12. - P. 195-202.

Linkola K. // Ann. Soc. Zool. Bot. Fenn. Vanamo. - 1920. - 1. - S. 1-10.

Lohtander K., Oksanen I., Rikkinen J. // Lichenologist. - 2003. - 35. - P. 325-339.

Lumbsch H.T., Huhndorf S.M. // Myconet. - 2007. - 13. - P. 1-58.

Marche-Marchad J. // Cryptogam. Algol. - 1981. - 2. - P. 289-294.

Marton K., Galun M. // Protoplasma. - 1976. - 87. - P. 135-143.

Matthews S., Tucker S., Chapman R. // Bot. Gaz. - 1989. - 150, N 4. - P. 417-438.

Meier J.L., Chapman R.L. //Amer. J. Bot. - 1983. - 70. - P. 400-407.

Meisch J.-P. // Dissert., Univ. Innsbruck, Austria. - 1981.

Miao V.P.W., Rabenau A., Lee A. // Lichenologist. - 1997. - 29, N 6. - P. 571-586.

Mikhailyuk T., Kondratyuk S. // XVII Intern. Bot. Congr. – Abstracts. – Vienna, Auastria (17–23 July 2005). – P. 445.

Moe R. // Bull. California Lichen Soc. - 1997. - 4. - P. 7-11.

Myllys M., Stenroos S., Thell A., Kuusinen M. // New Phytol. - 2007. - 173. - P. 621-629.

Nadyeina O. // Mycol. Balcan. - 2009. - 6. - P. 37-53.

Nakano T. // Hikobia. - 1971. - 6. - P. 139-152.

Nakano T. // Lichenologist. - 1988. - 20, N 4. - P. 353-360.

Nakano T., Iguchi K. // Symbiosis. - 1994. - 17. - P. 65-73.

Nyati Sh. // Erlangung der naturwissenscheftlichen Doktorwürde. - Univ. Zürich, 2006. - 130 p.

Nyati Sh., Scherrer S., Honegger R. // Photobiont Diversity in Teloschistaceae (Lecanoromycetes): Erlang. Naturwiss. Doktor.— Univ. Zürich, 2006.— P. 14–45.

Nyati Sh., Beck A., Honegger R. // Plant Biol. - 2007. - 9. - P. 390-399.

```
Oberwinkler F. // Nova Hedw. - 1984. - 79. - P. 739-774.
```

O'Brien H.E., Miadlikowska J., Lutzoni F. // Eur. J. Phycol. — 2005. — 40. — P. 363—378.

Ohmura Y., Kawachi M., Kasai F., Watanabe M.M., Takeshita S. // Bryologist. - 2006. - 109. - P. 43-59.

Opanowich M., Grube M. // Lichenologist. - 2004. - 36. - P. 125-131.

Ott S. Reproductive strategies in lichens // Progress and problems in lichenology in the eighties.
 Bibl. Lichenol. - 1987. - 25. - P. 81-93.

Ott S., Meier T., Jahns H.M. // Canad. J. Bot. - 1995. - 73. - P. 595-602.

Paran N., Ben-Shaul Y., Galun M. // Arch. Microbiol. - 1971. - 76. - P. 103-113.

Parra O.O., Redon J. // Bol. Soc. Biol. Concept. - 1977. - 51. - P. 219-224.

Pereira I. Flora, Vegetacion y Ecologia de los Liquenes Acuaticas de Espana: Doctor. Thesis, Univ. Barcelona. – 1992. – 110 p.

Peters A., Moe R. // Bull. California Lichen Soc. - 2001. - 8. - P. 41-43.

Peveling E., Galun M. // New Phytol. - 1976. - 77. - P. 713-721.

Piercey-Normore M., De Priest P.T. // Amer. J. Bot. - 2001. - 88, N 8. - P. 1490-1498.

Plessl A. // Österr. Bot. Z. - 1963. - 110. - S. 194-269.

Poelt J. // J. Cramer, Lehre. - 1969. - S. 1-757.

Poelt J. // Dtsch. Bot. Ges. Neue Folge. - 1970. - 4. - S. 187-198.

Poelt J. // Bot. Notis. - 1972. - 25, N 1. - S. 77-81.

Rands D.G., Davis J.S. // J. Phycol. - 1993. - 29. - P. 819-825.

Raths H. // Ber. Schweiz. Bot. Ges. - 1938. - 48. - S. 13-30.

Reinke J. // Ver. Jahrb. Wiss. Bot. - 1896. - 29. - S. 171-179.

Riddle L.W. Pyrenothrix nigra gen. et spec. nov. // Bot. Gaz. - 1917. - 64. - P. 513-515.

Rindi F., Allali H.A., Lam D.W., Lopez-Bautista M. // Biodiversity Hotspots. - Nova Sci. Publ., Inc., 2009. - P. 1-25.

Romeike J., Friedl T., Helms G., Ott S. // Mol. Biol. Evol. - 2002. - 19. - P. 1209-1217.

Sanders W.B. // Amer. J. Bot. - 2002. - 89. - P. 1741-1746.

Sanders W.B. // Lichenologist. - 2004. - 36, N 5. - P. 269-275.

Sanders W.B., Moe R.L., Ascaso C. // Amer. J. Bot. - 2004. - 91. - P. 511-522.

Santesson R. // Symb. Bot. Upsal. - 1952. - 12, N 1. - P. 1-590.

Scheidigger C. // Nova Hedw. - 1985. - 41. - P. 191-218.

Schiman H. // Österr. Bot. Z. – 1958. – 104. – S. 409–430.

Schiman H. // Ibid. - 1961. - 108. - S. 1-4.

Schmitt I., Lumbsch H.T. // Mycotaxon. - 2001. - LXXVIII. - P. 407-411.

Serusiaux E. // Lichenologist. - 1985. - 17. - P. 1-19.

Skaloud P., Peksa O. Evolutionary inferences based on ITS rDNA and actin sequences reveal extensive diversity of the common lichen alga Asterochloris (Trebouxiophyceae, Chlorophyta) // Mol. Phyl. and Evol. – 2010. – 54. – P. 36-46.

Skuja H., Ore M. // Acta Horti Bot. Univ. Latv. - 1933. - 8. - S. 21-26.

Slocum R.D., Ahmadjian V., Hildreth K.C. // Lichenologist. - 1980. - 12. - P. 173-187.

Snyder J.M., Wullstein L.H. // Bryologist. - 1973. - 76. - P. 196-204.

Stenroos S., Hugnabba F., Myllys L. et al. // Cladistics. - 2006. - 22. - P. 230-238.

Swinscow T.D.V. // Lichenologist. - 1965. - 3. - P. 55-64.

Takeshita S., Nakano T., Iwatsuki Z. // Plant Syst. Evol. - 1989. - 165. - P. 49-54.

Takeshita S., Handa S., Nakano T., Iwatsuki Z. // Hikobia. - 1991. - 11. - P. 1-4.

Takeshita S., Okamoto T., Nakano T., Iwatsuki Z. Phycobionts of Diploschistes diacapsis (Lichenes) // J. Jap. Bot. – 1992. – 67, N 6. – P. 338–341.

```
Tibell L. // Symb. Bot. Upsal. - 1980. - 23. - P. 1-65.
```

Tibell L. Caliciales of Costa Rica // Lichenologist. - 1982. - 14. - P. 219-254.

Tibell L. / Flora of New Zealand lichens. - Hasselberg, Govern. Printer, 1985. - 662 p.

Tibell L. // Bryologist. - 2001. - 104. - P. 191-198.

Tibell L., Beck A. // Nord. J. Bot. - 2001. - 21, N 6. - P. 651-660.

Timdal E.A. // Opera Bot. - 1991. - 110. - P. 1-137.

Tschermak E. // Österr. Bot. Z. - 1941. - 90. -S. 233-307.

Tschermak-Woess E. // Wien. Bot. Z. - 1943. - 92. - S. 123-138.

Tschermak-Woess E. // Österr. Bot. Z. - 1951. - 98. - S. 213-226.

Tschermak-Woess E. // Ibid. - 1953. - 100. - S. 203-216.

Tschermak-Woess E. // Ibid. – 1969. – **116**. – S. 167–171.

Tschermak-Woess E. // Ibid. - 1970. - 118. - S. 443-455.

Tschermak-Woess E. // Lichenology: Progress and Problems. – London: Acad. Press, 1976. – P. 79–88.

Tschermak-Woess E. // Lichenologist. - 1978. - 10. - P. 69-79.

Tschermak-Woess E. // Plant Syst. Evol. - 1980. - 136. - P. 63-72.

Tschermak-Woess E. // Ibid. - 1981. - 137. - S. 317-323.

Tschermak-Woess E. // Ibid. – 1984. – **147**. – S. 299–307.

Tschermak-Woess E. // Herzogia. - 1985. - 7. - S. 105-109.

Tschermak-Woess E. The algal partner // CRC Handbook of Lichenology / Boca Raton, Fla.: CRC Press, 1989. – P. 39–92.

Tschermak-Woess E. // Bibl. Lichenol. - 1995. - 58. - P. 433-438.

Tschermak-Woess E., Plessl A. // Österr. Bot. Z. - 1948. - 95. - S. 103-109.

Tschermak-Woess E., Poelt J. // Lichenology: Progress and Problems. – London: Acad. Press, 1976. – P. 89–105.

Tschermak-Woess E., Bartlett J., Peveling E. // Plant. Syst. Evol. - 1983. - 143. - P. 109-115.

Uyenko F.R. // Trans. Amer. Microscop. Soc. - 1965. - 84. - P. 1-14.

Verseghy K. // Bot. Kozl. - 1961. - 49. - P. 95-102.

Vezda A. // Preslia. - 1965. - 37. - S. 237-249.

Vischer B. // Schweiz. Zeitsch. Hydrol. - 1960. - XXII. - S. 329-349.

Vitikainen O. // Acta Bot. Fenn. – 1994. – **152**. – 96 p.

Wasser S.P., Nevo E., Vinogradova O.N. et al. // Укр. бот. журн. — 1995. — **52**, N 3. — P. 354—371.

Watanabe A., Kiyohara T. / Studies in Microalgae and Photosynthetic Bacteria. — Tokyo: Japan Soc. Plant Physiol., 1963. — 189 p.

Weber W.A. // Univ. Colo. Stud. Ser. Biol. - 1965. - 16. - P. 1-26.

Wetmore C.M. // Publ. Mus. Mich. State Univ. Biol. Ser. - 1960. - 1. - P. 369-380.

Wetmore C.M. // Ann. Miss. Bot. Gard. - 1970. - 57. - P. 158-209.

Withrow K., Ahmadjian V. // Mycologia. - 1983. - 75. - P. 337-349.

Wynne L. // Univ. Calif. Publ. Bot. - 1969. - 50. - P. 1-16.

Yahr R., Vilgalys R., DePriest P.T. // Mol. Ecol. - 2004. - 13. - P. 3367-3378.

Yoshimura I. // J. Hatt. Bot. Lab. — 1971. — **34**. — P. 231—364.

Yoshimura I., Kurokawa T., Nakano T., Yamamoto Y. // Bull. Kochi Gakuen College. — 1987. — 18. — P. 335—343.

Zahlbruckner A. Lichenes (Flechten) // Die Natürlichen Pflanzenfamilien. II – Leipzig: Engelmann, 1926. – 8. – S. 61–270.

Zeitler I. // Österr. Bot. Z. – 1954. – 101. – S. 453–483.

Получена 12.06.09

Рекомендовала к печати О.Н. Виноградова

A.A. Voytsekhovich, T.I. Mikhailyuk, T.M. Darienko

N.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine,

2, Tereshchenkovskaya St., 01001 Kiev, Ukraine

LICHEN PHOTOBIONTS. 2: ORIGIN AND CORRELATION WITH MYCOBIONT

Composition of lichen photobionts closely correlates with some taxonomic groups of lichenforming fungi. More than 55 % of these fungi are associated with Trebouxia Puym. and Asterochloris Tscherm.-Woess, around 40 % with Cyanoprokaryota, about 8 % with Trentepohliales, and 20 % with other green algae. However, not all lichen associations are stable in long terms and therefore several photobiont species can be present in the same lichen thallus. Some lichens constantly include several photobiont species belonging to different taxonomic algal groups. Selectivity of various lichen groups is different because symbiotic relations of various lichens are situated on diverse specialization levels. Lichens with Trebouxia and Asterochloris reached the highest photobiont specificity levels. The origin of photobiont in lichen thallus and main ways of its obtainment in the process of lichen reproduction (from mother thallus (vegetative reproduction) and from environment (reproduction by spores)) are discussed. Lichen photobiont composition determines the main life strategies of lichen association as well as essentially influences on their ecogeographical peculiarities. Additional photobionts (in cephalodia) as well as hymenial (in hymenium) and epithecial (in epithecium) algae may be present in the thallus side by side with the main photobiont. Algae-lichenoepiphytes grown on lichen thalli, may penetrate into above mentioned lichen structures and perhaps serve source of "potential" photobionts.

Keywords: lichens, photobiont, mycobiont, symbiosis, coevolution, selectivity, parasitism, additional photobionts.