короткі повідомлення

УДК 577.151.042: 577.152.311

СПОСОБ ИДЕНТИФИКАЦИИ БУТИРИЛХОЛИНЭСТЕРАЗЫ ИЗ СЫВОРОТКИ КРОВИ ЛОШАДИ

Ю.Г.Жуковский В.А.Жуковская Л.П.Кузнецова Е.Р.Никитина Е.Е.Сочилина

Учреждение Российской Академии наук «Институт эволюционной физиологии и биохимии им. И. М. Сеченова РАН», Санкт-Петербург

E-mail: lpkuz@iephb.ru

При промышленном производстве холинэстераз и в лабораторной практике иногда возникает необходимость в идентификации этих энзимов. Это может быть связано с нарушениями маркировки в процессе производства энзимов, а также при контроле и хранении готовой продукции.

Предложен способ идентификации, позволяющий отличить бутирилхолинэстеразу из сыворотки крови лошади от холинэстераз из других биологических источников: ацетилхолинэстераз — из электрического органа электрического ската и угря, из эритроцитов верблюда, лошади и человека; бутирилхолинэстераз — из сыворотки крови и из мозговой ткани голубя; пропионилхолинэстераз — из сыворотки крови и из мозговой ткани. Способ основан на различной чувствительности холинэстеразного домена (каталитического центра) этих энзимов к двум обратимым фосфониевым ингибиторам: $(C_6H_5)_3 P^+- CH_3 \cdot I^-$ (1) и $(C_6H_5)_3 P^+- CH_2 CH_2 CH_2 CH_3 \cdot Br^-$ (2). Для каждого энзима определяют концентрацию ингибитора (C_1 для ингибитора-1 и C_2 для ингибитора-2), которая уменьшает энзиматическую активность в 2 раза, затем вычисляют величину отношения C_1/C_2 . Если эта величина больше, чем 4, можно сделать вывод о том, что идентифицируемым энзимом является бутирилхолинэстераза из сыворотки крови лошади.

Ключевые слова: ацетилхолинэстераза, бутирилхолинэстераза, пропионилхолинэстераза, фосфониевые ингибиторы.

При промышленном производстве холинэстераз и в лабораторной практике иногда возникает необходимость в идентификации этих энзимов. Это может быть связано с нарушениями маркировки в процессе производства энзимов, а также при контроле и хранении готовой продукции.

Широко известна возможность идентификации типов холинэстераз путем сравнительной оценки их способности гидролизовать при оптимальных условиях холиновые эфиры «стандартного набора»: ацетилхолин, пропионилхолин, бутирилхолин и ацетил-β-метилхолин. Так, ацетилхолинэстеразы с наибольшей скоростью гидролизуют субстрат ацетилхолин, пропионилхолинэстеразы — субстрат бутирилхолин, ацетил-β-метилхолинэстеразы — субстрат ацетил-β-метилхолинэстеразы — субстрат ацетил-β-метилхолин [1]. Этот спо-

соб позволяет идентифицировать типы холинэстераз, но не пригоден для надежной идентификации индивидуальной холинэстеразы внутри одного типа. Это прежде всего связано с недостаточно выраженной субстратной внутритиповой специфичностью холинэстераз.

Известен способ определения различий между ацетилхолинэстеразами и бутирилхолинэстеразами и бутирилхолинэстеразами путем сравнения чувствительности идентифицируемого энзима к различным ингибиторам [2]. Он дает возможность, например, отличить ацетилхолинэстеразу эритроцитов лошади от бутирилхолинэстеразы сыворотки крови лошади: первый энзим намного более чувствителен к параоксону, чем к изопестоксу, а второй, наоборот, имеет большую чувствительность к изопестоксу, чем к параоксону. Существует также способ идентификации индивидуальной

ацетилхолинэстеразы среди энзимов этого же класса [3], позволяющий отличить ацетилхолинэстеразу из электрических рыб от ацетилхолинэстеразы эритроцитов человека, лошади и верблюда. Он основан на различиях в чувствительности этих энзимов к обратимому ингибирующему действию пяти фосфониевых соединений.

Особенности каталитических свойств активного центра холинэстераз по отношению к различным ингибиторам, в том числе и к обратимым фосфониевым, активно изучаются [4, 5]. Накоплен значительный экспериментальный материал, анализ которого дает возможность приблизиться к решению вопроса об идентификации некоторых энзимов.

В настоящей работе описан способ, дающий возможность отличить бутирилхолинэстеразу из сыворотки крови лошади от холинэстераз, выпускаемых промышленным способом из других биологических источников (бутирилхолинэстераза, пропионилхолинэстераза). Способ основан на сравнении чувствительности холинэстераз к обратимому ингибирующему действию двух фосфониевых соединений: $(C_6H_5)_3P^+$ — $CH_3\cdot I^-$ и $(C_6H_5)_3P^+$ — $CH_2CH_2CH_3\cdot Br^-$.

В работе в качестве субстратов применяли ацетилхолин, бутирилхолин и ацетилтиохолин йодистые (Chemapol, Чехия).

Как обратимые ингибиторы использовали два фосфониевых соединения, синтез которых описан в работах [6, 7]:

$$(C_6H_5)_3P^+-CH_3\cdot I^-$$
 (ингибитор 1);

$$(C_6H_5)_3P^+-CH_2CH_2CH_3\cdot Br^-$$
 (ингибитор 2).

Использовали частично очищенные лиофилизированные препараты ацилхолинэстераз (НФ 3.1.1.8): бутирилхолинэстеразы из сыворотки крови лошади (БуХЭЛ) и голубя (БуХЭГ) с удельной активностью 9,6 Е/мг и 12 Е/мг соответственно, бутирилхолинэстеразу из мозговой ткани (БуХЭБг) — 18 Е/мг; пропионилхолинэстеразы (НФ 3.1.1.8) из мозговой ткани (ПХЭ № 1) и из сыворотки крови (ПХЭ № 2) — 53 E/мг и 0,7 E/мг соответственно; ацетилхолинэстеразы (НФ 3.1.1.7) из электрического органа электрического ската Torpedo marmorata (AXЭС) — 1 000 Е/мг и электрического угря Electrophorus electricus (АХЭУ) — 1 000 Е/мг (Sigma, США), из эритроцитов верблюда (AXЭВ) — 0.02 E/мг, лошади (АХЭЛ) — 1,2 Е/мг и человека (AX94) - 6,1 E/мг. Препараты холинэстераз изготовлены в Пермском НИИВС.

Удельную активность энзимов определяли методом потенциометрического титрова-

ния с использованием в качестве субстрата 2 мМ ацетилхолина для ацетилхолинэстераз и 2 мМ бутирилхолина для ацилхолинэстераз (25 °C, 0.1 М хлорид калия, pH 7.5).

Скорость холинэстеразного гидролиза ацетилтиохолина в отсутствие и в присутствии ингибитора устанавливали фотометрическим методом Эллмана [8] при температуре 25 °C, рН 7,5. Реакционная смесь состояла из 1 мл 1 мМ раствора 5,5'-дитиобис-(2-нитробензойной кислоты) в 100 мМ фосфатном буфере (рН 7,5), 1 мл раствора энзима (0,2 Е/мл), 1 мл 0,5 М раствора хлорида калия, 1 мл воды в контрольной пробе или 1 мл раствора ингибитора в опытной пробе и 1 мл 2,5 мМ раствора ацетилтиохолина.

С помощью фотоэлектроколориметра $\Phi \ni K$ -56 (светофильтр № 3) измеряли время в секундах, за которое оптическая плотность реакционной смеси возрастает на величину 0,1 ($t_{\rm k}$ — в контрольном опыте без ингибитора, $t_{\rm on}$ — в опыте с ингибитором). Подбирали такую концентрацию ингибитора, при которой энзиматическая активность уменьшится вдвое, т. е. $t_{\rm on}$ / $t_{\rm k}$ = 2.

С целью идентификации БуХЭЛ была исследована чувствительность холинэстераз, полученных промышленным способом, к фосфониевым соединениям, из которых выбраны два — ингибитор 1 и ингибитор 2. В таблице приведены их концентрации, уменьшающие холинэстеразную активность в два раза $(C_1$ — для ингибитора **1** и C_2 — для ингибитора 2). Из данных таблицы следует, что наименьшую чувствительность к обоим ингибиторам проявляет только БуХЭБг ($C_1 = C_2 =$ 1 200 мкM), а наибольшую — AXЭЧ (52 и 120 мкМ). Значения C_1 и C_2 для БуХЭЛ не выделяются среди таковых для других холинэстераз. БуХЭЛ проявляет примерно одинаковую чувствительность к ингибитору 1 наряду с БуХЭГ, ПХЭ №1, ПХЭ №2, АХЭЛ и АХЭС (300-430 мкМ), и все они уступают в чувствительности АХЭВ, АХЭЧ и АХЭУ (120-200 мкМ). Что касается ингибитора 2, то БуХЭЛ, наряду с АХЭЧ и АХЭВ, наиболее чувствительны к нему (40-82 мкМ) и существенно отличаются по этому показателю от остальных холинэстераз (150-600 мкМ). Из вышесказанного следует, что концентрации C_1 и C_2 не позволяют надежно отличить БуХЭЛ от других холинэстераз. Однако, если сравнить действие ингибиторов 1 и 2 на каждый энзим, отчетливо видно, что только у БуХЭЛ наблюдается особенно большая разница в их действии: величина C_1 превышает C_2 в 9,5

раза ($C_1/C_2=9,5$). Для остальных холинэстераз величины C_1/C_2 колеблются от 0,7 до 2,5. Выявленная особенность в чувствительности БуХЭЛ к ингибиторам 1 и 2 позволяет надежно отличить этот энзим от холинэстераз, производимых из других биологических источников.

Принимая во внимание вышеизложенное, идентификацию БуХЭЛ предлагается

осуществлять таким образом. Подбирают такую концентрацию ингибитора $[C_1 - для (C_6H_5)_3P^+-CH_3\cdot I^-$ и $C_2 - для$ ингибитора $(C_6H_5)_3P^+-CH_2CH_2CH_3\cdot Br^-]$, которая уменьшает холинэстеразную активность в два раза, затем вычисляют величину отношения C_1/C_2 и в том случае, если эта величина больше, чем 4, делают вывод, что идентифицируемым энзимом является БуХЭЛ.

Концентрации ингибиторов 1 (C_1) и 2 (C_2), при которых холинэстеразная активность уменьшается в 2 раза, и величины их отношения ($\mathrm{C}_1/\mathrm{C}_2$) (Погрешность 10%; n=5; P=0.95)

Энзим	С ₁ , мкМ	С2, мкМ	$\mathrm{C}_1/\mathrm{C}_2$
БуХЭЛ	380	40	9,5
БуХЭГ	430	280	1,5
БуХЭБг	1200	1200	1,0
ПХЭ №1	430	600	0,7
ПХЭ №2	380	280	1,4
АХЭВ	200	80	2,5
АХЭЛ	380	150	2,5
АХЭЧ	120	52	2,3
АХЭС	300	360	0,8
АХЭУ	180	210	0,9

ЛИТЕРАТУРА

- Usdin E. Anticholinesterase agents. Intern. Encyclopedia Pharmac. Ther. — Pergamon Press, 1970. — V. 1. — P. 133.
- 2. *Aldridge W. N.* The differentiation of true and pseudo cholinesterase by organophosphorus compounds // Biochem. J. 1953. V. 53, N 1. P. 62-67.
- 3. Жуковский Ю. Г., Кузнецова Л. П., Сочилина Е.Е., Никитина Е.Р. Способ идентификации ацетилхолинэстераз из различных биологических источников // Біотехнологія. $2010.-\mathrm{T}.3, \, \mathrm{N}\!\!_{2}\, 1.-\mathrm{C}.58-61.$
- 4. Бресткин А. П., Кузнецова Л. П., Моралёв С. Н., Розенгарт Е. В., Эпштейн Л. М. Холинэстеразы наземных животных и гид-

- робионтов. Владивосток: ТИНРО-центр, 1997. 466 с.
- 5. Басова Н. Е., Розенгарт Е. В., Суворов А. А. Фосфониевые обратимые ингибиторы холинэстераз разных животных // Докл. акад. наук. 2010. Т. 434, № 3. С. 407–411.
- 6. Houben-Weyl: Methoden der Organischen Chemie. 1958. Bd. XII/I. P. 75-82.
- 7. *Органикум*. Практикум по органической химии / Пер. с нем. Потапова В. М., Пономарёва С. В. М.: Мир, 1979. Т. 1. С. 277–278.
- 8. Ellman G. L., Courtney K. D., Andres V. Jr., Featherstone R. M. A new and rapid colorimetric determination of acetylcholinesterase activity // Biochem. Pharmacol. 1961. V. 7, N 1. P. 88–95.

СПОСІБ ІДЕНТИФІКАЦІЇ БУТИРИЛХОЛІНЕСТЕРАЗИ ІЗ СИРОВАТКИ КРОВІ КОНЯ

Ю. Г. Жуковський В. А. Жуковська Л. П. Кузнецова О. Р. Нікітіна О. О. Сочиліна

Установа Російської Академії наук «Інститут еволюційної фізіології і біохімії ім. І. М. Сєченова РАН», Санкт-Петербург

E-mail: lpkuz@iephb.ru

Під час промислового виробництва холінестераз в лабораторній практиці іноді виникає необхідність в ідентифікації цих ензимів. Це може бути пов'язано з порушеннями маркування в процесі виробництва ензимів, а також контролю та зберігання готової продукції.

Запропоновано спосіб ідентифікації, що дозволяє відрізнити бутирилхолінестеразу із сироватки крові коня від холінестераз з інших біологічних джерел: ацетилхолінестераз із електричного органа електричного ската і вугра, з еритроцитів верблюда, коня і людини; бутирилхолінестераз — із сироватки крові та мозкової тканини голуба; пропіонілхолінестераз — із сироватки крові та мозкової тканини. Спосіб ґрунтується на різній чутливості холінестеразного домена (каталітичного центру) цих ензимів до двох оборотних фосфонієвих інгібіторів: $(C_6H_5)_3P^{+-}$ $CH_3\cdot I^{-}$ (1) і $(C_6H_5)_3P^+-\ CH_2CH_2CH_3\cdot Br^-\ (2)$. Для кожного ензиму визначають концентрацію інгібітора $(C_1$ для інгібітора-1 і C_2 для інгібітора-2), яка зменшує ензиматичну активність у 2 рази, потім обчислюють величину відношення C_1/C_2 . Якщо ця величина більша за 4, можна зробити висновок про те, що ідентифікованим ензимом є бутирилхолінестераза із сироватки крові коня.

Ключові слова: ацетилхолінестераза, бутирилхолінестераза, пропіонілхолінестераза, фосфонієві інгібітори.

THE METHOD FOR IDENTIFICATION OF HORSE SERUM BUTYRYLCHOLINESTERASE

Yu. G. Zhukovskii V. A. Zhukovskaya L. P. Kuznetsova O. R. Nikitina O. O. Sochilina

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg

E-mail: lpkuz@iephb.ru

In the industrial production of cholinesterase and in laboratory practice, sometimes it needs to identificate these enzymes. It might be due to violations of labeling in enzyme production and control and storage of the readymade products as well.

A method for identification of horse serum butyrylcholinesterase out of cholinesterases from other biological sources such as acetylcholinesterases of the electric eel and numbfish electric tissues, out of the human, horse and camel erythrocytes; butyrylcholinesterases — of the pigeon blood serum and pigeon brain tissue; propionylcholinesterases — out of the serum and the brain tissue was suggested. The method is based on different sensitivity of cholinesterase domen (catalytic centre) of there enzymes to the two reversible phosphonium inhibitors: $(C_6H_5)_3P^+-CH_3\cdot I^-$ (1) and $(C_6H_5)_3P^+-CH_2CH_2CH_3\cdot Br^-$ (2). For this purpose inhibitor concentration (C_1 for inhibitor 1 and C_2 for inhibitor 2) decreasing enzymatic cleavage of each cholinesterase twofold was determined and then the value of relation C_1/C_2 was calculated. The identified cholinesterase was horse serum butyrylcholinesterase if the value C_1/C_2 was higher than 4.

Key words: acetylcholinesterase, butyrylcholinesterase, propionylcholinesterase, phosphonium inhibitors.