УДК 548.312.3

© 2008

Ю.О. Тітов, Н.М. Білявина, В.Я. Марків, член-кореспондент НАН України М.С. Слободяник, Я.А. Краєвська, В.П. Ящук

Кристалічна структура $BaLa_2Ti_3O_{10}$

The crystal slab perovskite-like structure of individual compound $BaLa_2Ti_3O_{10}$ synthesized by the heating of co-precipitated hydroxy-carbonates has been determined by X-ray powder diffraction, and its peculiarities are analyzed.

Підвищений інтерес на сьогодні до сімейства шаруватих перовскітоподібних сполук і фаз Діона–Якобсона загального складу $A[A^{I}_{n-1}B_{n}O_{3n+1}]$ (n — число шарів октаєдрів BO_{6} у перовскітоподібному блоці) обумовлений наявністю у них каталітичної активності і високої іонної провідності (A — лужні метали, A^{I} — лужноземельні метали, B–Nb, Ta) [1, 2] та комплексу дієлектричних властивостей (A–Ba, A^{I} –La–Sm, B–Ti) [3, 4].

Серед усіх синтезованих на даний час шаруватих титанатів типу $Ba[Ln_{n-1}Ti_nO_{3n+1}]$ (Ln = La-Sm) найбільш детально досліджено кристалічну структуру $BaNd_2Ti_3O_{10}$ [5, 6], яка утворена тришаровими перовскітоподібними блоками, що впорядковано чергуються з одношаровими блоками, в яких знаходяться катіони барію.

Відомі на сьогодні дані про структуру BaLa₂Ti₃O₁₀ [7] потребують уточнення, оскільки, за даними авторів цієї роботи одна із відстаней Ti-O (0,159 нм) у структурі BaLa₂Ti₃O₁₀ значно коротша, ніж типові відстані Ti-O в октаедрах TiO₆, а величина R-фактора становить майже 10%.

Метою даної роботи авторів було визначення кристалічної структури BaLa₂Ti₃O₁₀.

Дослідження кристалічної структури фаз BaLa₂Ti₃O₁₀ проведено методом порошку на зразках, які синтезовано термообробкою сумісноосаджених гідроксикарбонатів при 1520 К. Дифракційні спектри записано в дискретному режимі (крок сканування 0,03°, експозиція в точці 5 с) на мідному фільтрованому випромінюванні. Управління процесом зйомки та збором інформації, початкова обробка дифракційних спектрів, а також структурні розрахунки виконано з використанням апаратно-програмного комплексу [8]. Вимірювання інтенсивності сигналу другої оптичної гармоніки $I_{2\omega}$ лазерного випромінювання проведено на полікристалічних зразках за методикою роботи [9] з використанням ІАГ : Nd — лазера ($\lambda_{\omega} = 1,064$ мкм і $\lambda_{2\omega} = 0,532$ мкм). За еталонну речовину при оцінці центро- або нецентросиметричності структури використано порошок чотиришарового сегнетоелектрика La₄Ti₄O₁₄ тієї самої дисперсності, що і досліджувані зразки (~ 2 мкм).

Дифракційний спектр $BaLa_2Ti_3O_{10}$ проіндексовано в ромбічній сингонії. Систематика погасань відбиттів у спектрі вказує на належність кристалічної структури $BaLa_2Ti_3O_{10}$ до таких можливих груп симетрії: центросиметричної Cmcm або до однієї із нецентросиметричних полярних груп симетрії Cmc2₁ і C2cm.

З урахуванням проведених досліджень нами було уточнено три початкові моделі структури $BaLa_2Ti_3O_{10}$: центросиметрічної (Cmcm) та дві нецентросиметричні (пр. гр. Cmc2₁ i C2cm), при побудові яких використано координати і враховано характер розподілу атомів у центросиметричній (пр. гр. Cmcm) шаруватій перовскітоподібній структурі (ШПС) $BaNd_2Ti_3O_{10}$ [5, 6].

ISSN 1025-6415 Доповіді Національної академії наук України, 2008, №6

Рис. 1. Проекції структури ВаLa₂Ti₃O₁₀(пр. гр. Cmcm) на площини yz(a) і xy(b) у вигляді октаедрів TiO₆ та атомів Ва (\circ) й La (\bullet)

Результати уточнення зазначених моделей структури $BaLa_2Ti_3O_{10}$ наведено в табл. 1–3 і на рис. 1. При розрахунку структури уточнений склад сполуки в межах похибки визначення відповідає експериментальному. Зіставленням одержаних результатів доведено, що для всіх трьох варіантів структури $BaLa_2Ti_3O_{10}$ величини факторів недостовірності R_w мають задовільні й близькі значення (див. табл. 1).

Вибір між центро- і нецентросиметричними просторовами групами може бути здійснений на підставі досліджень нелінійно-оптичних характеристик речовини. Так, згідно з роботою [9], інтенсивність сигналу генерації другої гармоніки лазерного випромінювання ($I_{2\omega}$) дрібнодисперсними центросиметричними речовинами на 2–3 порядки менша від значення $I_{2\omega}$ для речовин з нецентросиметричною структурою.

Результати проведеного нами тесту на генерацію сигналу другої гармоніки лазерного випромінювання полікристалічними зразками сполук та фаз Діона–Якобсона типу BaLn₂Ti₃O₁₀ (див. табл. 4) показали, що з усіх досліджених індивідуальних сполук центросиметричну структуру однозначно мають лише BaNd₂Ti₃O₁₀ і BaSm₂Ti₃O₁₀, для яких величина $I_{2\omega}$ більш ніж на два порядки менша від значень $I_{2\omega}$ для нецентросиметричного шаруватого La₄Ti₄O₁₄.

Значення $I_{2\omega}$ для BaLa₂Ti₃O₁₀ (0,08 $I_{2\omega}$ La₄Ti₄O₁₄) не дає змоги зробити однозначний висновок про наявність або відсутність центра симетрії у його структурі. Крім слабкої нецентросиметричності його ШПС, така величина $I_{2\omega}$ може бути обумовлена також і локальними відхиленнями від центросиметричності у центросиметричній ШПС BaLa₂Ti₃O₁₀, які можуть бути викликані деяким структурним разупорядкуванням іонів Ba²⁺ у La³⁺ між перовскітоподібним блоком і блоком з атомів барію та супроводжується появою диполів.

Якщо наявність генерації сигналу другої гармоніки обумовлена саме останнім фактором, то його інтенсивність повинна бути максимальною для $BaLa_2Ti_3O_{10}$ та зі збільшенням різниці у значеннях іонних радіусів атомів барію і атомів рідкісноземельних елементів (РЗЕ) величина $I_{2\omega}$ повинна поступово зменшуватись. Дійсно, аналіз значень $I_{2\omega}$ сполук та фаз типу $BaLn_2Ti_3O_{10}$ показав, що зі зменшенням іонного радіуса атомів РЗЕ, які знаходяться в кубооктаедричних пустотах перовскітоподібного блока, величина інтенсивності сигналу

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2008, № 6

Позиція	Атом	x	y	z	Заповнення		
I	Просторова група Стст (по 63)						
4(c)	Ba	$0,\!5$	0,7676(4)	0,25	1		
4(c)	La(1)	0,5	0,0768(3)	0,25	1		
4(c)	La(2)	0,5	0,9217(5)	0,25	1		
4(a)	Ti(1)	0,5	0,5	0	1		
8(f)	Ti(2)	0,5	0,6467(4)	0,0003(4)	1		
4(b)	O(1)	0,5	0	0	1		
4(c)	O(2)	0,5	0,5	0,25	1		
4(c)	O(3)	0,5	0,376(3)	0,25	1		
4(c)	O(4)	0,5	0,628(3)	0,25	1		
8(f)	O(5)	0,5	0,573(5)	0,009(3)	1		
8(f)	O(6)	0,5	0,719(4)	-0,043(4)	1		
8(f)	O(7)	0,5	0,134(2)	-0,004(3)	1		
		Просте	орова група $\mathrm{Cmc}2_1$ (г	no 36)			
4(a)	Ba	$0,\!5$	0,7674(4)	0,2503(3)	1		
4(a)	La(1)	0,5	0,0769(3)	0,2508(2)	1		
4(a)	La(2)	0,5	0,9226(4)	0,2459(4)	1		
4(a)	Ti(1)	0,5	0,5001(3)	0,0055(3)	1		
4(a)	Ti(2)	0,5	0,6474(4)	0,0066(2)	1		
4(a)	Ti(3)	0,5	0,3529(2)	0,0235(3)	1		
4(a)	O(1)	0,5	0	-0,003(2)	1		
4(a)	O(2)	0,5	0,5	0,25	1		
4(a)	O(3)	0,5	0,371(2)	0,276(3)	1		
4(a)	O(4)	0,5	0,628(2)	0,278(4)	1		
4(a)	O(5)	0,5	0,573(4)	0,021(2)	1		
4(a)	O(6)	0,5	0,428(3)	0,025(2)	1		
4(a)	O(7)	0,5	0,720(3)	-0,011(3)	1		
4(a)	O(8)	0,5	0,282(2)	0,033(4)	1		
4(a)	O(9)	0,5	0,134(4)	-0,009(3)	1		
4(a)	O(10)	$0,\!5$	0,867(4)	0	1		
		Прост	орова група C2cm (n	o 40)			
4b	Ba	$0,\!4758(3)$	0,7668(5)	0,25	1		
4b	La(1)	0,4668(3)	0,0768(4)	0,25	1		
4b	La(2)	$0,\!4548(2)$	0,9225(4)	0,25	1		
4a	$\mathrm{Ti}(1)$	$0,\!5$	$0,\!5$	0	1		
8c	Ti(2)	0,4776(2)	0,6464(3)	-0,0056(2)	1		
4a	O(1)	0,515(3)	0	0	1		
4b	O(2)	0,483(4)	0,5	0,25	1		
4b	O(3)	0,488(2)	0,368(3)	0,25	1		
4b	O(4)	0,489(3)	0,630(4)	0,25	1		
8c	O(5)	0,494(4)	0,573(5)	0,007(3)	1		
8c	O(6)	0,478(3)	0,716(4)	-0,030(5)	1		
8c	O(7)	0,499(3)	0,131(3)	-0,019(3)	1		
Просторова група			$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
Періоди елементарної комірки, нм			a = 0,3880(1), b = 2,8541(7), c = 0,7668(2)				
Незалежні відбиття			$2,22(2),12^{-2}$	127	1.00(11) 10-2		
Загальний ізотропний В-фактор, нм ²			$2,20(9) \cdot 10^{-2}$	$0,74(5) \cdot 10^{-2}$	$1,93(11) \cdot 10^{-2}$		
Параметр текстури			$\tau = 1,55(3),$	$\tau = 1,55(3),$	$\tau = 1,57(4),$ BICD TEKCTYDM [010]		
Фактор нолог	moninuceri		$\frac{B_{\rm H}}{B_{\rm H}} = 0.082$	$\frac{B_{\rm res}}{R_{\rm res}} = 0.081$	$\frac{B_{\rm H}}{B_{\rm H}} = 0.079$		
Фактор недостовірності			$m_W = 0.000$	$m_W = 0.001$	$m_W = 0.012$		

Таблиця 1. Кристалографічні дані сполуки BaLa₂Ti₃O₁₀, синтезованої термообробкою (1520 K) шихти сумісноосаджених гідроксикарбонатів ($Cu_{K_{\alpha}}$ -випромінювання)

ISSN 1025-6415 Доповіді Національної академії наук України, 2008, № 6

Таблиця 2. Деякі міжатомні відстані та ступінь деформації поліедрів $MeO_n(\Delta)^*$ у кристалічній структурі $BaLa_2Ti_3O_{10}$ (пр. гр. Cmcm)

Атоми	d, нм	Атоми	d, нм	Атоми	d, нм
Ba - 4O(6)	0,254(4)	La(2) - 2O(3)	0,234(5)	Ti(2)-2O(7)	0,197(1)
-2O(6)	0,264(3)	La(2) - 2O(7)	0,247(4)	Ti(2) - O(4)	0,199(4)
-2O(7)	0,338(4)	La(2) - 4O(5)	0,278(6)	Ti(2) - O(6)	0,209(3)
Ba-O _{cep.}	0,278	La(2) - 2O(1)	0,294(2)	Ti(2) - O(3)	0,203(4)
ΔBaO_8	$160 \cdot 10^{-4}$	La(2) - 2O(2)	0,296(2)	Ti(2) - O(5)	0,211(3)
		$La(2) - O_{cp.}$	0,272	$Ti(2) - O_{cep.}$	0,203
La(1) - 2O(4)	0,243(5)	$\Delta La(2)O_{12}$	$72 \cdot 10^{-4}$	$\Delta Ti(2)O_6$	$8 \cdot 10^{-4}$
La(1)-2O(7)	0,254(4)				
La(1) - 4O(5)	0,268(4)	Ti(1) - 2O(2)	0,192(2)		
La(1) - 2O(1)	0,291(2)	Ti(1) - 2O(1)	0,194(2)		
La(1)-2O(2)	0,293(2)	Ti(1) - 2O(5)	0,208(3)		
$La(1) - O_{cep.}$	0,270	$Ti(1) - O_{cep.}$	$0,\!198$		
$\Delta La(1)O_{12}$	$45 \cdot 10^{-4}$	$\Delta Ti(1)O_6$	$13 \cdot 10^{-4}$		

*Ступінь деформації полієдрів MeO_n у ШПС ВаLa₂Ti₃O₁₀ розрахована за формулою $\Delta = 1/n \sum [(R_i - \overline{R})/\overline{R}]^2 (R_i - \text{відстані Me-O}, \overline{R} - \text{середня відстань Me-O}, n - координаційне число) [10].$

Таблиця 3. Фрагмент результатів розрахунку дифракційного спектра $BaLa_2Ti_3O_{10}$ ($Cu_{K_{\alpha}}$ -випромінювання) $d_{\text{розр.}}$, нм $d_{\text{експ.}}$, нм $I_{\text{розр.}}$ $I_{\text{експ.}}$ hkl $d_{\text{розр.}}$, нм $I_{\text{розр.}}$ $I_{\text{експ.}}$ hkl

$d_{\text{розр.}},$ нм	$d_{\text{експ.}}$, нм	$I_{\text{розр.}}$	$I_{\rm e\kappa c \pi.}$	hkl	$d_{\text{розр.}},$ нм	$d_{\text{експ.}},$ нм	$I_{\text{розр.}}$	$I_{\text{експ.}}$	hkl
$0,\!4757$	$0,\!4764$	351	361	060	0,2378	0,2379	83	86	0.12.0
$0,\!4042$	$0,\!4043$	60	18	$0\ 6\ 1$	0,2339	0,2338	21	41	$1 \ 9 \ 1$
0,3845	$0,\!3841$	109	270	$1 \ 1 \ 0$	0,2289	0,2291	3	51	0.10.2
0,3834		184		$0 \ 0 \ 2$	0,2272	0,2267	21	543	0.12.1
0,3703	—	1	1	$0\ 2\ 2$	0,2267		487		$1\ 7\ 2$
0,3593	0,3593	13	26	$1 \ 3 \ 0$	$0,\!2252$		6		$0\ 6\ 3$
0,3568	—	13	1	$0 \ 8 \ 0$	0,2157	—	7	1	1.11.0
0,3437	0,3439	258	261	$1 \ 1 \ 1$	0,2129	0,2129	87	72	$1\ 1\ 3$
0,3377	0,3378	13	19	$0\ 4\ 2$	0,2083	0,2080	78	90	$1 \ 3 \ 3$
0,3253	0,3256	176	235	$1 \ 3 \ 1$	0,2078		13		0 8 3
0,3235	0,3236	71		$0\ 8\ 1$	0,2076		6		1.11.1
0,3209	0,3213	170	182	1 5 0	0,2068		1		$1 \ 9 \ 2$
0,2985	0,2986	922	1000	$0\ 6\ 2$	0,2039	0,2039	121	138	0.14.0
0,2960	0,2962	96		$1 \ 5 \ 1$	0,2021	0,2019	50	71	0.12.2
0,2854	0,2852	3	2	0.10.0	0,1999	0,1999	39	26	$1 \ 5 \ 3$
0,2811	0,2812	646	647	$1\ 7\ 0$	$0,\!1970$	0,1970	21	7	0.14.1
0,2715	$0,\!2715$	828	826	$1 \ 1 \ 2$	$0,\!1940$	$0,\!1940$	329	337	$2 \ 0 \ 0$
0,2675	0,2674	47	28	0.10.1	0,1922	0,1917	5	356	$2 \ 2 \ 0$
0,2639	0,2638	61	59	$1\ 7\ 1$	$0,\!1917$		298		$0 \ 0 \ 4$
0,2622	0,2622	16	11	$1 \ 3 \ 2$	0,1911		53		1.13.0
0,2612	0,2612	84	58	$0\ 8\ 2$	$0,\!1904$	0,1900	9	22	0.10.3
0,2516	—	2	1	$0\ 2\ 3$	0,1900		7		$0\ 2\ 4$
0,2461	0,2460	43	21	$1 \ 5 \ 2$	0,1891		24		$1\ 7\ 3$
$0,\!2455$		0		$1 \ 9 \ 0$	0,1880	—	1	1	1.11.2
0,2406	_	3	1	043	0,1872	_	1	1	240

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2008, $N^{\circ}6$

Таблиця 4. Відносні величини інтенсивності сигналу генерації другої гармоніки лазерного випромінювання для полікристалічних сполук та фаз типу BaLn₂Ti₃O₁₀

Склад	$I_{2\omega}, $ в. о.	Склад	$I_{2\omega}, $ b. o.
$BaLa_2Ti_3O_{10}$	8	$BaLa_{1,5}Gd_{0,5}Ti_3O_{10}$	2
$\mathrm{BaPr_{2}Ti_{3}O_{10}}$	5	$BaLa_{1,5}Dy_{0,5}Ti_3O_{10}$	$0,\!4$
$\mathrm{BaNd_2Ti_3O_{10}}$	$0,\!01^{*}$	$La_2Ti_2O_7$ (еталон)	100
$BaSm_2Ti_3O_{10}$	0,3		

*Значення дещо занижено внаслідок сильного поглинання лазерного випромінювання.

генерації другої гармоніки також зменшується. Слід відзначити, що ця тенденція має місце і при ізовалентному заміщенні атомів лантану в структурі BaLa₂Ti₃O₁₀ на менші за розміром атоми інших РЗЕ (див. табл. 4). Зазначене вище дає підстави для висновку, що найбільш вірогідною просторовою групою ШПС BaLa₂Ti₃O₁₀ є центросиметрична група Стст.

Основними структурними одиницями ШПС $BaLa_2Ti_3O_{10}$ є двовимірні (безкінечні в напрямах осей x i z) перовскітоподібні блоки, які послідовно чергуються з одношаровими блоками з катіонів барію (див. рис. 1). Перовскітоподібні блоки складаються з трьох шарів, з'єднаних вершинами деформованих (довжини зв'язків Ti–O знаходяться в інтервалі 0,192(2)–0,211(3) нм)) октаедрів TiO₆ і зміщені один відносно іншого блока в напрямі осі x на половину періоду a. Безпосередній зв'язок між сусідніми перовскітоподібними блоками відсутній, їх з'єднання між собою відбувається через атоми барію за допомогою зв'язків типу -O-Ba-O-.

Ступені деформації октаедрів TiO_6 у ромбічній ШПС $BaLa_2Ti_3O_{10}$ досить близькі як для октаедрів $Ti(1)O_6$, що знаходяться в центрі перовскітоподібного блока, так і для розташованих на краях блока октаедрів $Ti(2)O_6$ (див. табл. 2). Однак слід зазначити, що для внутрішньоблочних октаедрів $Ti(1)O_6$ середня довжина зв'язку Ti(1)-O на 0,005 нм менша за середню довжину зв'язку Ti(2)-O у зовнішньоблочних октаедрів TiO_6 (див. табл. 2).

Координаційний поліедр внутрішньоблочних атомів La(1) і La(2) є деформованим кубооктаедром. В найближче оточення (на відстанях $\leq 0,34$ нм) міжблочних атомів Ва входять 6 атомів кисню (4O6 і 2O7) одного блока і два атоми кисню (2O6) іншого блока. Подальші атоми кисню (2O3) віддалені від атома барію на 0,365 нм. На відміну від октаедрів TiO₆, поліедри BaO₈ з'єднані між собою ребрами, а ступінь їх деформації значно перевищує таку для кубооктаедрів LnO₁₂ (див. табл. 2).

- Schaak R. E., Mallouk T. E. Perovskites by design: a toolbox of solid-state reactions // Chem. Mater. 2002. – 14, No 4. – P. 1455–1471.
- Thangadurai V., Schmid-Beurmann P., Weppner W. Synthesis, structure and electrical conductivity of A^I[A₂B₃O₁₀] (A^I = Rb, Cs, A = Sr, Ba, B = Nb, Ta): new members of Dion-Jacobson type layered perovskites // J. Solid State Chem. 2001. 158, No 2. P. 279-289.
- Wakino K., Minai K., Tamura H. Microwave characteristics of (Zr, Sn)TiO₄ and BaO–PbO–Nd₂O₃–TiO₂ dielectric resonators // J. Amer. Ceram. Soc. – 1984. – 67, No 4. – P. 278–281.
- Nishigaki S., Kato H., Yano S., Kamimura R. Microwave dielectric properties of (Ba, Sr)O-Sm₂O₃-TiO₂ ceramics // Amer Ceram. Soc. Bull. – 1987. – 66, No 9. – P. 1405–1410.
- Olsen A., Roth R. S. Crystal structure determination of BaNd₂Ti₃O₁₀ using high-resolution electron microscopy // J. Solid State Chem. - 1985. - 60, No 3. - P. 347-357.
- Kuang X., Liao F., Tian S., Jing X. A powder X-ray diffraction refinement of the BaNd₂Ti₃O₁₀ structure // Mater. Res. Bull. - 2002. - 37, No 10. - P. 1755-1761.
- 7. Герман М., Ковба Л., Штурм К. Рентгенографическое исследование фаз со слоистой перовскитоподобной структурой // Журн. неорган. химии. – 1984. – **29**, № 9. – С. 2201–2205.

- Марків В. Я., Белявіна Н. М. Апаратно-програмний комплекс для дослідження полікристалічних речовин за їх дифракційними спектрами // Тез. доп. Другої міжнар. конф. "Конструкційні та функціональні матеріали". КФМ'97. Львів, 1997. С. 260–261.
- Леонов А. П., Стефанович С. Ю. Развитие метода ГВГ для выявления и изучения нецентросимметричных фаз на поликристаллических образцах // Получение и применение сегнетоматериалов в народном хозяйстве. – Москва: Изд. МДНТП, 1984. – С. 21–36.
- Shannon R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides // Acta Crystallogr. – 1976. – A32, No 5. – P. 751–767.

Київський національний університет ім. Тараса Шевченка Надійшло до редакції 04.12.2007