© 2009

Ю. А. Фомин, Е. Е. Лазаренко

Температура формирования золотого и уранового оруденения Юрьевского месторождения (Украинский щит)

(Представлено академиком НАН Украины Е. А. Кулишом)

Гомогенізація флюїдних включень у кварці золоторудного поля відбувається в діапазоні температур 400– $110~^{\circ}$ C, у кварці, альбіті й карбонатах уранорудного поля — при 430– $125~^{\circ}$ C. Безпосередньо руди золота та урану формувалися в температурних інтервалах 240–165~ та 315– $200~^{\circ}$ C відповідно. Послідовне відкладення тих й інших пов'язане з єдиною геолого-енергетичною системою; при цьому прояви золота розглядаються як зовнішня, урану — як внутрішня зони латеральної рудної зональності.

Говоря о золотом и урановом оруденении Юрьевского месторождения, по сути, следует различать два объекта, разобщенные в пространстве и времени, а также относящиеся к различным генетическим типам. Первый объект, известный как Восточно-Юрьевское месторождение золота, относится к малосульфидной, с теллуридами висмута и самородным золотом, золото-кварцевой формации [1, 2]. Расположен он в восточном, висячем, боку Кировоградского разлома, в Марьевской системе оперяющих структур, на северо-востоке Компанеевского рудного поля. Время формирования золотого оруденения, определенное по изотопно-свинцовым соотношениям в галените главной рудной ассоциации, составляет (2000 ± 200) млн лет [1]. Второй объект, Юрьевское месторождение урана альбититовой формации, представлен типичными для полно проявленных альбититов парагенезисами: альбит-хлоритовым, альбит-рибекитовым и альбит-гематит-пирит-карбонат-феррибиотитовым с браннеритом и уранинитом. Урановое оруденение находится в западном, лежачем, боку Кировоградского разлома, в основном в Сусловской системе нарушений, и относится к юго-западным флангам рудного поля. Изотопный возраст его составляет (1750 ± 50) млн лет [3].

Рудовмещающая толща в обоих случаях включает в себя биотитовые и кордиерит-биотитовые (+гранат, графит и сульфиды) гнейсы чечелеевской свиты, частично мигматизированные, с аплит-пегматоидной лейкосомой, образующие западное крыло Приингульского синклинального прогиба. Относительно купольной структуры центральной части Кировоградского блока, сложенной гранитоидными массивами кировоградского типа: Новоукраинским, Кировоградским, Бобринецким как предполагаемым источником энергии, проявления золота можно рассматривать как внешнюю, урана — как внутреннюю зоны в общей латеральной зональности. Изотопный возраст гранитов кировоградского комплекса 2015—2070 млн лет [3].

Принципиальное отличие площадей распространения руд золота и урана заключается в широком проявлении ранних, сингранитизационных, флюидизитов в пределах первых и предальбититовых диафторитов во вторых. Флюидизиты, как "кварцевая основа", явились наиболее масштабным "инъекционно-гидротермальным переотложением" SiO₂, вероятно, при участии высококонцентрированных щелочно-кремниевых растворов [2, 4], именно в пределах золоторудных участков, тогда как за их пределами окварцевание носило харак-

тер локального метасоматического перераспределения кремнезема или тонкого прожилкования, связанного с прогрессивным региональным метаморфизмом либо с кремниево-калиевым метасоматозом. С другой стороны, при сравнении золоторудной и урановой частей Юрьевского месторождения обнаруживается почти полное отсутствие в первой и широкое развитие во второй диафторитовых образований в типичном их проявлении. Указанная особенность вполне увязывается с представлениями [5] о проявлении диафтореза одновременно с хрупкими деформациями на этапе регрессивного дислокационного метаморфизма в ходе термической усадки купольных массивов гранитоидов, т. е. в процессе их остывания и пространственно ближе к ним.

По содержанию золота исходные образования обоих участков почти не отличаются (при общем несколько повышенном количестве); концентрация же урана в поле развития альбититов существенно выше без видимого минерального изменения эдукта (табл. 1). Окварцевание, как с участием флюидизитов, так и без них, сопровождается увеличением (в среднем в 5–6 раз) золотоносности, связанным с рециклированием золота вмещающих пород. Зараженность ураном (при повышенном количестве золота) альбититового поля сохраняется практически во всех породах, включая окварцованные, диафторированные и альбитизированные разности. Золоторудному полю присуще низкое содержание урана, исключение составляют проявления щелочных процессов ограниченного масштаба.

Промышленные концентрации золота и урана пространственно не совмещаются. Первые обычно связаны с участками проявления в гнейсах лейкосомы и флюидизитов, последующего катаклаза и перекристаллизации кварца, а также локальной, на микроуровне, околорудной калишпат — анкерит — слюдистой с пиритом минерализацией [1]. Вторые локализованы в местах совмещения альбититов как с предшествовавшими им хрупкими деформациями и диафторитами, так и наложенной на альбититы продуктивной альбит-гематит-карбонат-лепидомелановой ассоциацией [3]. Иначе говоря, указанные образования формируют структурную основу и благоприятную среду для залежей руд золота и урана.

Результаты сравнения температурных условий функционирования золото- и урановорудной минералообразующих систем получены на основе термобарогеохимических исследований (табл. 2).

 ${\it Таблица}$ 1. Содержание золота и урана в рудовмещающих породах и рудах Юрьевского месторождения на площадях распространения оруденения обоих типов, ${\it r/r}$

Породы	Золотое оруденение			Урановое оруденение		
Породы	n	Au	U	n	Au	U
Гнейсы, мигматиты,	27	< 0,003-0,01	< 2-6,0	22	0,003-0,01	3,5–45,6
граниты		0,004	2,0		$0,\!006$	14,8
Окварцованные гнейсы,	54	0,003 - 0,15	< 2-4.0	4	0,003-0,1	7,9-56,8
граниты		0,023	1,6		0,034	22,1
То же золотоносных зон	5	0,03-5,0	< 2-2,0	_	_	_
		1,266	1,4			
Диафторированные гнейсы,	_	_	_	12	0,003 - 0,03	< 2-59,5
граниты					0,015	21,9
Ощелоченные породы,	9	< 0.003 - 0.05	6,0-28,0	16	0,003-0,2	7,4-88,5
альбититы		0,013	13,4		0,022	36,5
Альбититы урановорудные	_	_	_	5	$0,\!01-\!0,\!1$	167,4 - 3505,6
					0,035	1393,0

 Π р и м е ч а н и е . Золото определялось химико-спектральным, уран — рентгено-спектральным методами в Центральной лаборатории ГГП "Кировгеология".

Золотое оруденение. Исследован гидротермально-метасоматический кварц в системе: биотитовые, биотит-графитовые, биотит-амфиболовые гнейсы — гранитоидная лейкосома (кварц-полевошпатовые мигматитовые прожилки и дайкообразные тела биотит-гранатовых пегматоидных гранитов) — флюидизитовые жилы и брекчии. Во всех изученных образцах отмечается наложенное окварцевание как в виде жилок и прожилков (обр. 1, 2, 6, 8), так и в виде метасоматических жилообразных обособлений и гнезд (обр. 3–5, 7, 9). Если наложенный кварц сочетается с кварцем лейкосомы или флюидизитов, в образце можно

Таблица 2. Температура гомогенизации включений в минералах золотого и уранового проявлений Юрьевского месторождения

Номер	Номер	Порода	Минерал	T гомогенизации, $^{\circ}$ С				
п/п	образца	_	_					
Восточно-Юрьевское месторождение золота								
1	2433/486 – 490	Гнейсы амфибол-биотитовые	Кварц	370(2), 365(2), 354, 350,				
		окварцованные с сульфидами		270 (2), 230 (2), 210 (2), 206, 165				
2	2428/250	Гнейс биотитовый окварцованный	То же	242, 236 (2), 232 (2)				
3	2433/504	Флюидизит в гнейсах	"	270(2), 260(3), 230(4), 204				
		с рекристаллизованным кварцем						
4	3522/3	Кварц с турмалином и графитом	**	320, 300, 260, 256, 240–235 (6),				
_	2722/107.0	из золоторудной зоны	,,	200, 185 (2), 180, 170, 165				
5	3532/105,9	Гнейс биотит-графитовый	"	245-235 (8), $140-130$ (7), 120				
c	2520/104.0	с золотоносным кварцем	,,	245 225 (6) 210 200 205				
6	3532/194,2	Метасоматическая зонка		345–335 (6), 310, 300, 285, 205–200 (> 20)				
7	3532/227,4	с жильным кварцем в гнейсах Зона окварцевания	,,	320 (2), 300, 250, 245, 235, 230,				
,	3332/221,4	в биотит-графитовых гнейсах		190, 160				
8	3549/224,3	Гнейс биотит-графитовый	,,	400–380, 325–315 (2), 250, 200,				
O	0010/221,0	с жильным кварцем + сульфиды		180, 115–108 (2)				
9	3549/228,4	Пегматоидный гранит	"	220–210 (11)				
	, -,	с наложенным кварцем + альбит		()				
Юрьевское месторождение урана								
10	2021/255	Гнейс биотит-кордиеритовый	Кварц	410-320, 284-266 (2), 103				
	,	с жильным кварцем		, , , , , , , , , , , , , , , , , , , ,				
11	2042/267 - 726	Жильный кварц	То же	367 (1), 264 (2), 185				
		катаклазированный в гнейсе						
12	2021/187	Гранит диафторированный	"	260				
13	2042/194	Гнейс диафторированный	"	150				
14	2042/824	Альбитит рибекит-хлоритовый	"	430, 425, 403, 360-340 (4),				
		по диафториту гнейса		324-320(6), 300, 283-270(3),				
		с реликтовым кварцем		255^* , $214–195$ (4)				
			Альбит	316, 267, 253 (2), 235, 220				
15	2042/1003	Альбитит рибекит-хлоритовый	Микроклин	402 (2), 335, 308				
		с реликтовым микроклином	Альбит	316 (3), 284, 227, 213, 200 (2)				
4.0	2012/1002		Кальцит	180 (2)				
16	2042/1035	Альбитит	Анкерит	243, 240*, 232, 225–218 (4),				
		карбонат-феррибиотитовый	17.	213, 210, 200				
1.77	2042/1062	с новообразованным кварцем	Кальцит	165, 155 (2), 125				
17	2042/1062	Альбитит рибекитовый	Альбит	295 (2), 240, 213, 200, 150				
		с карбонатом и кварцем						

 Π римечание. В скобках указано количество включений. Звездочкой (*) отмечены семейства включений с одинаковой температурой гомогенизации.

наблюдать несколько генераций минерала со сложным их взаимоотношением. На начальных ступенях процесса рекристаллизация кварца не нарушает структурной целостности первичных пород и оставляет контакты "сухими" (раннее окварцевание). Непосредственно в золоторудных зонах кварц отличается структурой и цветом (крупнозернистый, дымчато-серый — до черного), а также значительно большей реакционной активностью с выходом за пределы структурной основы, при сохранении последней в виде реликтов (позднее окварцевание). Здесь, кроме того, на микроуровне проявляются околожильные тонкозернистые метасоматические калишпат-анкерит-слюдистые с пиритом оторочки. Помимо пирита, в зальбандах же, отмечаются пирротин, халькопирит, сфалерит, арсенопирит, самородное золото и теллуриды висмута [6]. В новообразованном кварце обычными являются включения микроклина и олигоклаза, биотита, графита, апатита, циркона, рутила и, что важно, турмалина.

Термобарогеохимические исследования демонстрируют повышенную флюидонасыщенность кварца; многочисленные и разнообразные флюидные включения систематизированы следующим образом:

- 1. Углекислотные включения существенно газовые, жидкие либо смешанные с температурой частичной гомогенизации в жидкую фазу 22 °C и плотностью раствора $\rho \sim 0.743~\rm r/cm^3$. Обнаружены также единичные включения с двумя жидкими фазами (CO₂ и H₂O) и газообразным CO₂.
- 2. Углеводородные включения; последние определяются по маслянистому оттенку содержимого и скелетным формам вакуолей. Происходящие при их нагревании фазовые превращения не характерны для водно-солевых включений. Суммарное количество углеводородов в образцах по данным газовой хроматографии достигает 2,01–4,85 см³/кг.
- **3.** Предположительно сероводородные включения, возможность присутствия которых подтверждается данными газовой хроматографии о довольно высоком (до $0.44-0.9~{\rm cm}^3/{\rm kr}$) содержании ${\rm H_2S}$ в некоторых образцах.
- **4.** Водно-солевые газово-жидкие первично-вторичные включения, которые характеризуются разнообразием форм, невыдержанным наполнением газом и жидкостью, а также широким диапазоном температуры гомогенизации в одной и той же системе включений. Среди них можно выделить:
- 4.1. Жидкогазовые и газово-жидкие включения призматической или близкой к ней формы с наполнением газовой фазой 70–20% и температурой гомогенизации от 400 до 260, чаще всего в пределах 370–285 °C. Весьма характерным для этой группы является семейство хорошо проявленных включений, гомогенизирующиеся в жидкую фазу при температуре 345–335 °C (обр. 6). В системе включений с гомогенизацией в температурном интервале от 310 до 230 °C методом криометрии определен состав раствора и концентрация компонентов: $CaCl_2-H_2O=11,5$; $CaCl_2-NaCl-H_2O=14-15\%$ по NaCl- эквиваленту.
- 4.2. Газово-жидкие включения, также в основном призматической формы, с наполнением газовой фазой 30-10% и температурой гомогенизации 250-230 °C; сюда относятся представительные семейства включений, гомогенизирующихся при 240-235 °C (обр. 4,5). Следует отметить, что при температуре 260-256 °C такие включения, как правило, вскрывались.
- 4.3. Газово-жидкие включения линзовидной, линейно вытянутой, реже призматической или неправильной формы, с наполнением газовой фазой 30–10~% и температурой гомогенизации 220–180, редко до $165~^{\circ}$ С. В обр. 9 выявлено семейство из 11~ включений с температурой гомогенизации 220– $210~^{\circ}$ С, а в обр. 6 более 20~ однотипных включений, гомогенизировавшихся при температуре 205– $200~^{\circ}$ С.

- 4.4. Более низкотемпературные газово-жидкие включения (140-110 °C) относительно редки, содержание газовой фазы в них составляет 20-10%, форма их чаще неправильная или овальная.
- **5.** Существенно газовые (с CO_2) включения, как правило, мелкие, до 5 мкм. Встречаются в виде вуалеобразных скоплений и цепочек; пересекают более ранние газово-жидкие включения, вскрывают и перенаполняют их, т. е. имеют более позднее происхождение.

Урановое оруденение. Изученный материал представлен системой образцов биотитовых и кордиерит-биотитовых с гранатом, графитом и пирротином гнейсов, содержащих аплит-пегматоидную лейкосому и испытавших последовательно микроклинизацию и окварцевание, включая кварцевые жилы и прожилки (обр. 10, 11), предальбититовый диафторез (обр. 12, 13), а также щелочной метасоматоз (обр. 14, 15) с наложенной на альбититы кварц-феррибиотит-анкерит-урановорудной ассоциацией (обр. 16, 17). Исследованы флюидные включения в кварце, полевых шпатах (микроклине, альбите) и карбонатах (анкерите, кальците) разных генераций.

Ранний (жильный) кварц в гнейсах практически не отличается от кварца жил и прожилков золоторудного поля: характерны такие же четкие границы и значительная мощность, достигающая 0,8 м, наличие включений породообразующих и акцессорных минералов и отсутствие околожильных изменений. Флюидные включения представлены в основном однофазовыми углеводородными небольших размеров — 5-7 мкм; водно-солевыми газово-жидкими и трехфазовыми. Водно-солевые газово-жидкие включения размером до 10 мкм с объемом газовой фазы 50-10, чаще всего 30-20%, гомогенизируются в жидкую фазу в диапазоне температуры 410-320 °C, относительно редки включения с температурой гомогенизации 264 и 185 °C. Трехфазовые включения более крупные (30-70 мкм); кроме жидкости, они содержат твердую фазу в виде кристалликов призматической формы (10-25% объема вакуоли), а также газовую, которая появляется при нагревании до 60 °C (3-5%). Исследовались два трехфазовых включения. Газовая фаза гомогенизировалась в жидкую при температуре 103 °C; кристаллик начал растворяться при 65 °C, растворился полностью при 281–284 °C; при охлаждении до 65 °C появляется газовая фаза; твердая же фаза в одном случае при охлаждении до 60 °C резко восстановилась до первоначального состояния, в другом не восстановилась даже при +20...0 °C. Повторное нагревание обоих включений показало температуру растворения кристаллов (гомогенизации) в 266 °C. Предполагается присутствие твердого NaCl в углеводородном или в водном растворе.

Реликтовые кварц и микроклин в альбититах (обр. 14, 15), вероятно, содержат флюидные включения, отражающие как ранние окварцевание и микроклинизацию, так и более поздние процессы, в частности щелочной метасоматоз. Кварц, ассоциирующий с альбитом-олигоклазом и рибекитом, обнаруживает включения округлой, овальной, иногда удлиненной формы, двухфазовые (газово-жидкие), (редко) трехфазовые (с СО₂). Последние гомогенизируются в газовую (при 30 °C) или жидкую фазы. Температурный диапазон гомогенизации двухфазовых включений очень широк: 430−270, чаще всего 360−270; 255 и 214−195 °C. Наиболее высокотемпературные включения гомогенизировались как в жидкую (430−300 °C), так и в газовую (425−340 °C) фазы. В микроклине включения большей частью очень мелкие и неясного фазового состава, располагаются вдоль спайности минерала, более крупные (≥ 10 мкм), жидкие, реже газово-жидкие с количеством газа 40−20% и гомогенизацией в жидкую фазу при температуре 402−308 °C.

О диафторитах можно судить по кварцу, обычно катаклазированному с первично-вторичными флюидными включениями, неясно фазовыми, жидкими или газово-жидкими с при-

месью углеводородов. Газово-жидкие включения содержат 20–40% газовой фазы и гомогенизируются при температуре 260–150 °C.

Собственно альбититы представлены прежде всего альбитом, преимущественно крупнокристаллическим (альбит-1). Включения (первично-вторичные) расположены длинной осью параллельно двойниковым швам. Преобладают канальные и овальные по форме, однофазовые или двухфазовые, газово-жидкие, размером до 10 мкм, реже 20–25 мкм, с количеством газовой фазы 10–25, иногда до 40%. Гомогенизация их происходит в жидкую фазу при температуре 316–253, 240–200 и 150 °C, причем собственно альбитизации, по-видимому, соответствует наиболее высокотемпературный диапазон, тогда как средние и низкое значения температур отражают условия формирования продуктивной (альбит-2) и пострудной ассоциаций соответственно. Такое предположение подтверждается исследованием флюидных включений в карбонатах этих ассоциаций — анкерите и кальците. Включения первичные и вторичные (по залеченным трещинам), большей частью субизометричной (полуокруглой) и прямоугольной формы, небольших размеров — до 10 мкм, редко до 18 мкм, содержание газовой фазы 15–35%. В синрудном анкерите температура их гомогенизации составляет 243–200 °C; в пострудном кальците — 180–125 °C.

Сравнение золото- и урановорудного процессов обнаруживает некоторые закономерности. Проявления раннего окварцевания (как и микроклинизации) в пределах золотоносной и ураноносной площадей, будучи одновозрастными образованиями, отличаются только пространственным положением относительно гранитно-купольных структур. При очевидном сходстве температурных условий они имеют и отличия. Так, в поле альбититов, т.е. ближе к главному источнику энергии, жильный кварц начинал отлагаться при 430 °C; на золоторудных участках начальная температура окварцевания несколько ниже (400 °C). В первом случае включения в кварце в основном высокотемпературные (410–320 °C), здесь промышленные концентрации золота не установлены. В золоторудном поле, наряду с относительно высокотемпературными включениями (400–300 °C), широко развиты включения, гомогенизирующиеся в температурных интервалах, °C: 240-235, 220-200 и 140-110, которые собственно и характеризуют отложение золотоносного кварца, золото-сульфидной с теллуридами минерализации и пострудных жилок соответственно [6]. Реликтовые кварц и микроклин, судя по включениям, в основном подтверждают приведенный выше исходный температурный диапазон формирования этих минералов: 430–270 и 400–310 °C. Вместе с тем эти минералы несут влияние и более поздних процессов.

Включения в кварце предальбититовых диафторитов гомогенизируются при характерной для регрессивного процесса температуре 260–150 °C. Щелочной метасоматоз (альбитизация), урановое рудообразование и пострудные жилки, судя по включениям в альбите, анкерите и кальците, протекали в температурных интервалах, °C: 315–255, 240–200 и 180–125 соответственно, что согласуется с ранее опубликованными данными [3, 7].

Таким образом, эпитермальные флюидные потоки, с которыми связано последовательное накопление золота и урана, функционировали в разные временные периоды, но в сходном температурном режиме, что, с учетом показанной выше латеральной рудной зональности относительно источника энергии, отражает их связь с единой геолого-энергетической системой.

- 1. Фомин Ю. А. Восточно-Юрьевское месторождение золота // Минерал. журн. 1999. **21**. \mathbb{N}^9 4. С. 32–44.
- 2. *Фомин Ю. А.* Генетическое соотношение золотого и уранового оруденения Кировоградской тектоно-метасоматической зоны. Геохімія та екологія. – Київ, 2006. – Вип. 12. – С. 11–18.

- 3. *Генетические* типы и закономерности размещения урановых месторождений Украины / Отв. ред. Я. Н. Белевцев, В. Б. Коваль. Киев: Наук. думка, 1995. 396 с.
- 4. Иванкин П. Ф., Назарова Н. И. Методика изучения рудоносных структур в терригенных толщах. Москва: Недра, 1988.-254 с.
- 5. *Комаров А. Н.*, *Черкашин Л. А.* Редкометальные тектоно-метасоматические зоны Украинского щита. Киев: Наук. думка, 1991. 180 с.
- 6. Фомин Ю. А., Заборовская Л. П., Лазаренко Е. Е. Рудные минералы Юрьевского месторождения золота // Доп. НАН України. 2004. № 2. С. 142–146.
- 7. Белевце Я. Н., Коваль В. Б., Лялько В. И. Метаморфогенное рудообразование в докембрии. Физико-химические основы теории метаморфогенного рудообразования. Киев: Наук. думка, 1985. 204 с.

Институт геохимии окружающей среды НАН Украины и МЧС Украины, Киев Поступило в редакцию 18.11.2008

Yu. A. Fomin, E. E. Lasarenko

Temperature of gold and uranium ore formation of the Yurjevskoye deposit (Ukrainian Shield)

Homogenization of the fluid inclusions in quartz of the gold field takes place in the temperature interval $400-110\,^{\circ}$ C; in quartz, albite, and carbonates of the uranium field at $430-125\,^{\circ}$ C. Directly the gold and uranium ores were formed in the temperature intervals 240-165 and $315-200\,^{\circ}$ C, accordingly. Consistently, the ore deposition was connected with the common geologo-energetic system: gold and uranium manifestations are considered, respectively, as the external and internal zones of the lateral ore zoning.