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The Dirichlet problem for the degenerate Beltrami equations in arbitrary finitely con-
nected domains is studied. In terms of the tangent dilatations, a series of criteria for
the existence of regular solutions in arbitrary simply connected domains, as well as
pseudoregular and multivalent solutions in arbitrary finitely connected domains without
degenerate boundary components, are formulated.
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The purpose of this paper is to give a brief presentation of results in our paper [1] on the Dirichlet
problem for the degenerate Beltrami equations in arbitrary bounded finitely connected domains.

Let D be a domain in the complex plane C, and let u: D — C be a measurable function with
lu(2)] < 1 a.e. (almost everywhere) in D. We study the Beltrami equation

fz = w(2) [z, (1)

where fz = 0f = (fo +ify)/2, f- = 0f = (fo —ify)/2, 2 = z + iy, and f, and f, are partial
derivatives of f with respect to x and y, correspondingly.

The classical Dirichlet problem in a Jordan domain D for the uniformly elliptic Beltrami
equation, i.e., when |u(2)| < k < 1 a.e., is the problem of the existence of a continuous function
f: D — C such that

f=u(2)f. for a.e. z € D,

lim Re /(2) = p(¢) V¢ € 0D, @)

for a continuous function ¢: 9D — R. It was studied long ago, see, e.g., [2, 3].
The degeneracy of the ellipticity of the Beltrami equation will be controlled by the dilatation
coefficient

(3)

as well as by the more refined quantity, see, e.g., [4-6],

. ‘1—j_£u&)
Ku (ZaZO) = 1_ ‘,U'(Z)’Q (4)
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taking not only the modulus of the complex coefficient p but also its argument into account.
Note that
K;l(z) < Kg(z, 20) < K, (2) Vze D Vzy € C. (5)

Our research is based on new existence theorems of homeomorphic VVﬁ)Cl solutions for the
degenerate Beltrami equations in [7] and on the theory of prime ends by Carathéodory, see,
e. g., [8]. The boundary behavior of I/Vli’cl homeomorphic solutions, as well as the Dirichlet problem
for the degenerate Beltrami equations in Jordan domains, has been already studied, see, e. g., [5]
and references therein.

Let Ep denote the space of prime ends of a domain D in C, and let Dp = D|J Ep stand for
the completion of the domain D by its prime ends with the topology described in [8], Section 9.5.
From now on, the continuity of mappings f: Dp — D’p and the boundary functions ¢: Ep — R
as functions of the prime end P should be understood with respect to the given topology. Now,
the boundary condition for the Dirichlet problem is written as

lim Re f(2) = o(P) (6)
where the limit is taken over all sequences of points z, € D converging to the prime end P.

It was established in [5] that every homeomorphic I/Vlloc1 solution of the Beltrami equation (1)
in a domain D C C is the so-called lower @)-homeomorphism at every point 2y € D with
Q(z) = Kg(z, 20), z € D. We established in [1] that it is also the so-called ring Q-homeomorphism
at every point zg € D with Q(z) = Kg(z,zo), z€ D, if K, € L'(D) or Kg(z,z[)) is integrable
along the circles |z — 29| = r for a.e. small enough r at every zy € D. In other words, the
latter means that the homeomorphic VV&)’C1 solutions of the Beltrami equation (1) satisfy certain
inequalities in terms of a conformal modulus for families of curves that is the main geometric
tool in the mapping theory.

Then in [1], we developed the theory of the boundary behavior with respect to prime ends for
ring Q-homeomorphisms that form a wider class than lower (Q-homeomorphisms and, in parti-
cular, established far-reaching generalizations of the Carathéodory theorem on a homeomorphic
extension of conformal mappings to the boundary in prime ends. This is a basis to develop, in [1],
the theory of the boundary behavior with respect to prime ends for generalized homeomorphic
solutions to the degenerate Beltrami equation (1). Finally, the latter makes possible to reduce the
Dirichlet problem for the degenerate Beltrami equations (1) to the case of analytic and harmonic
functions in circular domains.

In what follows, we use the notations B(zg,r) := {z € C: |z — 29| < r} for 29 € C and r > 0,
S(z0,7) = {2 € C: |z — 29| = r}, D := B(0,1), and C := C|J{o0}.

1. On BMO and FMO functions. Recall that a real-valued function v in a domain D in
C is said to be of bounded mean oscillation in D, abbr. u € BMO(D), if u € L (D) and

1
||u||« := sup —= / |u(2) — up| dedy < oo, (7)
s Bl

where the supremum is taken over all disks B in D, and

1
up = — [ u(z)dzdy.
51/
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We write u € BMOjo(D) if w € BMO(U) for every relatively compact subdomain U of D (we
also write BMO or BMOy. if it is clear from the context what D is).
The class BMO was introduced by John and Nirenberg (1961) in paper [9] and soon became
an important concept in harmonic analysis, partial differential equations, and related areas.
Following [10], we say that a function u: D — R has finite mean oscillation at a point zg € D if

T Ju(z) — i (20)] dady < oo, (8)
e—0
B(Z[),E)
where
i) = | ule)dudy
B(zo,s)

is the mean value of the function u(z) over the disk B(zp,¢) with small ¢ > 0. We also say that
a function u: D — R is of finite mean oscillation in D, abbr. u € FMO(D) or simply v € FMO,
if (8) holds at every point zy € D.

Remark 1. Clearly, BMO C FMO. There exist examples showing that FMO is not BMO 14,
see, e.g., [7]. By definition, FMO C Lj,., but FMO is not a subset of L for any p > 1 in
comparison with BMO 1, € LY for all p € [1,00).

loc
Proposition 1. If, for some collection of numbers u. € R, e € (0, &),

Tim |u(z) — ue| dedy < oo, 9)

e—0
B(z0,€)

then w is of finite mean oscillation at zg.
Corollary 1. If, for a point zyg € D,

Tim |u(z)| dzdy < oo, (10)

e—0
B(Zo,s)

then uw has finite mean oscillation at zg.

Remark 2. Note that the function u(z) = log(1/|z|) belongs to BMO in the unit disk B and
hence also to FMO. However, u.(0) — oo as € — 0, showing that condition (10) is only sufficient
but not necessary for a function u to be of finite mean oscillation at z.

2. The Dirichlet problem in simply connected domains. Given a continuous function
©(P) # const, P € Ep, we will say that f is a regular solution of the Dirichlet problem (6) for
the Beltrami equation (1) if f is a continuous discrete open mapping f: D — C of the Sobolev
class T/Vli)cl with the Jacobian

Jp(2) =P =P #0 ace, (11)

satisfying (1) a.e. and the boundary condition (6) for all prime ends of the domain D.

Recall that a mapping f: D — C is called discrete if f _1(y) for every point y € C consists
of isolated points and open if the image of every open set U C D is open in C.

For ¢(P) = ¢ € R, P € Ep, a regular solution of the problem is any constant function
f(z) = c+id, d € R
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Theorem 1. Let D be a bounded simply connected domain in C, and let p: D — D be a
measurable function with K, € L. and such that

0(z0)
dr

/TR TGo.)

=00 V2o € D (12)

for some 0 < §(29) < d(z0) = sup |z — 20|, where
z€D

IKEIGor) = [ K (o) ds.
S(zo0,r)

Then the Beltrami equation (1) has a regular solution f of the Dirichlet problem (6) for every
continuous function ¢: Ep — R.

Here and below, we set that K;‘f is equal to zero outside of the domain D.

Corollary 2. Let D be a bounded simply connected domain in C, and let u: D — D be a
measurable function such that

1 —
kL (e) = O<10g 6) as e—0 Vzy € D, (13)

where kZTO (€) is the average of the function Kg(z, 20) over the circle S(zp,¢).

Then the Beltrami equation (1) has a regular solution f of the Dirichlet problem (6) for every
continuous function ¢: Ep — R.

Remark 3. In particular, the conclusion of Theorem 1 holds if

Kff(z, 20) = O<log > as Z = 20 Vzo € D. (14)

|z — 2o
Theorem 2. Let D be a bounded simply connected domain in C, let ;2 D — D be a measurable
function with K,, € Li.., and let

Kg(z,zo) < Q2 (2) € FMO(20) Vzo € D. (15)

Then the Beltrami equation (1) has a regular solution f of the Dirichlet problem (6) for every
continuous function ¢: Ep — R.

Corollary 3. Let D be a bounded simply connected domain in C, and let u: D — D be a
measurable function with K, € LL . such that

lim sup ][ Kg(z,zo) dm(z) < o0 V2o € D. (16)
—0
T Ble)

Then the Beltrami equation (1) has a regular solution f of the Dirichlet problem (6) for every
continuous function ¢: Ep — R.
Remark 4. In particular, by (5), the conclusion of Theorem 2 holds if

K,(z) < Q(z) € BMO(D). (17)
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Theorem 3. Let D be a bounded simply connected domain in C, and let p: D — D be a
measurable function such that

/ Kg’(z,zo)m = o< {log ir) Vzo € D. (18)

|2 — 20/?
e<|z—2z0|<e0

Then the Beltrami equation (1) has a regular solution f of the Dirichlet problem (6) for every
continuous function ¢: Ep — R.

Remark 5. Here, we are able to give a number of other conditions of logarithmic type. In
particular, condition (18) can be replaced by the condition

KT(z, z0) dm(z 112 B
/ M ( 0) ( ) 5 = 0< |:10g log 5:| ) vZO S D’ <19)
e<|z—20|<e0 (’Z — 20| log |z—1zo>

and condition (13) can be replaced by the weaker condition

1 1
T
k., (r) =0 <log - loglog 7’) . (20)

Theorem 4. Let D be a bounded simply connected domain in C, let yn: D — D be a measurable
function with K,, € Li.., and let

@ZO(KE(z,zO)) dm(z) < oo V2o € D (21)

DNB(z0,e0)

for eg = e(20) > 0 and a nondecreasing convex function ®,,: [0,00) — [0,00) with

7 dr
B S (22)
! T(I)Zol (7)

for 60 = d(z0) > ©,,(0). Then the Beltrami equation (1) has a reqular solution f of the Dirichlet
problem (6) for every continuous function ¢: Ep — R.

Remark 6. Moreover, it was shown by us that condition (22) is not only sufficient but also
necessary to have a regular solution of the Dirichlet problem (6) for every Beltrami equation (1)
with the integral restrictions (21) and every continuous function ¢: Fp — R.

Corollary 4. Let D be a bounded simply connected domain in C, let u: D — D be a
measurable function with K,, € L},., and let

/ eaOKZ(Z’ZO)dm(z) < 00 V2o € D (23)
DﬂB(Zo,a())
for some g9 = e(29) > 0 and g = «a(z9) > 0. Then the Beltrami equation (1) has a reqular
solution f of the Dirichlet problem (6) for every continuous function ¢: Ep — R.

3. The Dirichlet problem in multiply connected domains. As was probably first
noted by B. Bojarski, see, e.g., Sect. 6 of Chapter 4 in [3|, the Dirichlet problem for the
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Beltrami equations, generally speaking, has no regular solution in the class of functions conti-
nuous (single-valued) in C with generalized derivatives in the case of multiply connected domai-
ns D. Hence, the natural question arose: Do solutions exist in wider classes of functions in
this case? It turned out that the solutions of this problem can be found in the class of functi-
ons admitting a certain number (related to the connectedness of D) of poles at prescribed
points. This number should involve the multiplicity of these poles from the Stoilow repre-
sentation.

A discrete open mapping f: D — C of the Sobolev class I/Vlf)cl (outside of poles) satisfying (1)
a.e. and the boundary condition (6) are called a pseudoregular solution of the Dirichlet problem
if the Jacobian J¢(z) # 0 a.e.

It was demonstrated in [1]| that, under the same conditions on the complex coefficient p as in
Section 2, in bounded m — connected domains with nondegenerate boundary components, for
every prescribed integer k > m — 1, the Beltrami equation (1) has a pseudoregular solution f of
the Dirichlet problem (6) with k& poles at prescribed points in D for every continuous function
@: ED — R.

It was also shown in [1] that, under the same conditions in finitely connected doma-
ins, the Dirichlet problem (6) for the Beltrami equations (1) admits multivalent solutions in
the spirit of the theory of multivalent analytic functions in addition to pseudoregular soluti-
ons.

We say that the discrete open mapping f: B(zp,£9) — C, where B(zp,£9) C D, is a local
regular solution of Eq. (1) if f € I/Vlicl, J¢(z) # 0, and f satisfies (1) a.e. in B(zp,€0). The
local regular solutions f: B(zp,e0) — C and fi: B(z4,e4) — C of Eq. (1) will be called the
extensions of each to other if there is a finite chain of solutions f;: B(z;,&;) - C,i=1,...,m,
such that f1 = fo, fin = f« and fi(2) = fiz1(z) for z € E; := B(zi,&;) (\B(zit1,8i41) # 9,
i=1,...,m—1. A collection of local regular solutions f;: B(zj,&;) = C, j € J, will be called a
multivalent solution of Eq. (1) in D if the disks B(z;, ;) cover the whole domain D, and if f; are
extensions of one to another through the collection, and the collection is maximal by inclusion.
A multivalent solution of Eq. (1) will be called a multivalent solution of the Dirichlet problem
for a prescribed continuous function ¢: Ep — R if u(z) = Re f(z) = Re f;(2), z € B(zj,¢;),
j € J, is a single-valued function in D satisfying the condition Zh_r)rjl) u(z) = p(P) along any ways

in D going to P € Ep.
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Ynen-kopecnongenr HAH Ykpainu B. 4. I'yrnaucekuii, B. 1. Ps3anos, E. AdkyGos
o Teopii 3axa4i lipixje ajis piBusaab Besbrpami

IncTuryT npukaagnol matemaruku 1 Mexaniku HAH Ykpainu, Cios’siHcbk
XoJIOHCBKUH TexXHOJIOTIYHuH iHCTUTYT, [3painnb

Busuaemwvcesa sadaua ipizae ora eupodscenux piehans Beavmpami 6 dogisvHux crinuennoss’s-
3HUT obaacmar. ¥ mepminaxr domuyHUT Jusamayill chopmyabo8aHo Uiaul pad Kpumepiie icHy-
BAHHA PE2YAAPHUL PO36’°A3KI6 Uici npobaemu 6 J0BINDHUT 00MENCEHUT 00H036 AZHUT 00AAGCTMAL,
G MaKodHc NCeBIOPELYAAPHUL 1 6A2AMOZHANHUL PO36°A3KIE 6 J0GINGHUL 0OMENCEHUT CKIHYEHHO-
36°’A3HUL 00AGCMAT 0€3 SUPOIHCEHUL 2PAHUMHULT KOMNOHEHMIE.

Karouwost caosa: pisusinns Benbrpami, 3amaqda ipixite, mpocti KiHIl, perysispHi po3B’si3Ku, OIHO-
3B’a3Hi 00/1aCTi, CKIHIeHHO3B I3Hi 00J1aCTi, ICEBIOPEryIApHi Ta 6araTo3HaYMHI PO3B’I3KH.

Ynen-koppecnongenr HAH Ykpannaer B. 4. I'yrtnsuckuii, B. . Psa3auos,
9. Aky6oB

K Teopun 3amaum dupuxie njis ypaBHenuii benbrpamu

WNucturyr npukiaagaoit maremaruku u Mexanuku HAH Vkpawnnsi, CiiaBsiHck
XOJIOHCKU TEXHOJOTHIECKUN UHCTUTYT, V3panib

Hsyvwaemea 3adava Jupuxae das 6viposicdennoixr ypashenut Beavmpamu 6 npou3eoivHus kore-
YHOCBAZHBLL 00AACTMAT. B mepmMunar xacamesvnolr ousamayuli chopmyauposar ueavid pad xpu-
MEPUEE CYUWECTNBOBUHUA PELYAAPHOIT PEWEHUT IMOT NPOOAEMDL 8 NPOUIBOALHIT 02PAHUMEHHBIT
00HOCBAZHBIT 0OAACTNAT, A MAKIHCE NCEBIOPELYAAPHIIL U MHO203HAUHVIT PEWEHUT 8 NPOUZBONDHBIT
02PAHUMEHHDLT KOHEUYHOCBAZHVIL 00AACTNAL €3 BBIPONHCICHHBLT 2PAHUMHLE KOMNOHEHM.

Karouesnie caosa: ypaBHenus Benbrpamu, 3amada upuxiie, mpocThie KOHIBI, PEryJIsiPHBIE Pe-
IIE€HUs], OIHOCBS3HBIE 00JIACTU, KOHEIHOCBA3HDBIE OOJIACTH, IICEB/IOPETYJIAPHBIE W MHOTO3HAYHBIE
pelieHus:.

ISSN 1025-6415  Jlonoeidi Hauionasvhoi axademii nayx Yxpainu, 2015, Ne11 29



