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A numerical technique to solve a problem
of the fluid motion in a straight plane rigid duct
with two axisymmetric rectangular constrictions

A second-order numerical technique is developed to study the steady laminar fluid motion in a straight two-dimen-
sional hard-walled duct with two axisymmetric rectangular constrictions. In this technique, the governing relations
are solved via deriving their integral analogs, performing a discretization of these analogs, simplifying the obtained
(after making the discretization) coupled nonlinear algebraic equations, and the final solution of the resulting
(after making the simplification) uncoupled linear ones. The discretization consists of the spatial and temporal parts.
The first of them is performed with the use of the TVD-scheme and a two-point scheme of discretization of the
spatial derivatives, whereas the second one is made on the basis of the implicit three-point asymmetric backward
differencing scheme. The above-noted uncoupled linear algebraic equations are solved by an appropriate iterative
method, which uses the deferred correction implementation technique and the technique of conjugate gradients,
as well as the solvers ICCG and Bi-CGSTAB.

Keywords: fluid motion, flat duct, rectangular constriction, technique.

Study of flows in ducts is an actual problem in the gas-oil industry, architecture, medicine,
municipal economy, etc. Among others, a significant interest is related here to studying the flows
in ducts with local constrictions. That is explained by the fact that such irregularities in the duct
geometry cause local changes in the flow structure and /or character, etc. Those changes can result
in the corresponding consequences not only in a vicinity of, but also far from the irregularities [1].

As analysis of the scientific literature shows, the study of flows in ducts with local constric-
tions has been paid much attention to. In those studies, straight hard-walled ducts and their
constrictions of the simplest geometries were considered. The basic flow (i.e., the flow upstream
of a (first) constriction) was laminar, axisymmetric, and steady. As for fluids, they were assumed
to be homogeneous, incompressiblem and Newtonian (the other types of ducts, their constric-
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Fig. 1. Geometry of the problem and the computational domain

tions, fluidsm and the basic flow are not considered in this paper, because they were studied
much less intensively compared with the noted ones). These allowed one, on the one hand, to
study (within the framework of appropriate models chosen and with acceptable accuracy) the
influence of the basic parameters of a duct, its constriction(s) and the basic flow on the flow not
only nearm but also far downstream of the constriction(s), and, on the other hand, to simplify
significantly solutions to the corresponding problems of interest [1-4].

Among the results obtained in those studies, numerical methods, which have been developed
to investigate flows around duct constrictions, are of a particular interest. One of the latest of
them was presented in [1]. It has been devised to solve a problem of the flow in a straight hard-
walled two-dimensional duct with two rigid constrictions of a rectangular axisymmetric shape.
That method allows one to study the fluid motion in the noted duct in the stream function—vor-
ticity—pressure variables, has high stability of a solution and the second order of accuracy in the
spatial co-ordinates. However, its first order of accuracy in the temporal coordinate should ap-
parently stimulate researchers either to develop more accurate appropriate computational tech-
niques or to improve the method in such a way to make its temporal accuracy higher.

In this study, an alternative technique is presented to solve the same problem. This technique
uses the fluid velocity and the pressure as the basic variables, has nearly the same stability of a
solution, the same order of accuracy in the spatial coordinates and higher (i.e., the second) order
of accuracy in the temporal coordinate. However, due to the large amount of mathematical
operations used in this technique, it needs a more computational time to obtain a solution com-
pared to the above one.

Statement of the problem. A straight hard-walled plane duct of dimensionless width 1,
having two rigid constrictions of a rectangular axisymmetric shape, is considered (Fig. 1). The
constrictions are situated at the distance L, from each other, and have the diameters D, and the
lengths L; (i=1,2). In this duct, a viscous homogeneous Newtonian fluid moves. The fluid has
mass density p and kinematic viscosity v . Its flow is characterized by a small Mach number and the
rate Q per unit depth of the duct. In addition, the flow upstream of the first constriction (i.e., the
basic flow) is steady and laminar. It is necessary to study the flow around the constrictions.

The fluid motion in the duct is governed by the dimensionless momentum and continuity
equations, viz.

Uy Uy __oP 1 o [aU) 0
oT ~ 7oX; X, RedX,|oX,
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oU, /80X, =0. 2)

The boundary conditions consist in the absence of a fluid motion at the channel wall, S, and on
both constrictions, S, (j =1,2). Also, the flow rate Q must be invariable along the duct axis, viz.

Ullg, 5,=0, 9Q/8X;=0, Q=1, ij=12. 3)
ch>2j

Apart from these, the parabolic velocity profile is specified outside the disturbed flow region
due to the constrictions !, viz.

_ 2 _
=1.5(1-4X3), U2|X1:—LM,L1+L12+L2+Ld =0. (4)

U1|X1=7LM,L1+L12+L2+Ld
As for the pressure P, it is assumed to be constant both sufficiently far upstream of the

first constriction (P |X1=7Lu =P,), and far downstream of the second one (P |X1:L1+L12+L2+Ld =P,).

In addition, the corresponding pressure drop, AP =P, —P, >0, should ensure the existence of
the given laminar regime of the basic flow. Also, without loss of generality, the pressure P, is
taken to be zero?, and the magnitude P, like the pressure in the whole duct, needs to be found.
Apart from these, the normal pressure derivative is zero on the rigid walls of the channel and
both its constrictions, viz.

@P /ons, 5 =0, j=12. 5)

Regarding the initial conditions, they are in the absence of a fluid motion in the channel at
the time instant T =0 [1], viz.

P|T:0:O’ Ui|T:0:O' (6)

In (1)-(6), X,,X,, X5 are the rectangular Cartesian coordinates shown in Fig. 1 (here,
the axis X4 is normal to the plane X,X, and directed to us); T the time; U; the local fluid
velocities in the directions X, ; Re=U,D/v the Reynolds number of the cross-sectionally ave-
raged basic flow; U, its velocity; and the values of the distances L, and L, are given in the
next section. In addition, hereinafter, the vector # denotes the outward unit normal to the
appropriate surface, and the summation over repeated indices is assumed throughout the paper.
As for the scaling factors used in (1)-(6), these are the duct width D as the length scale, the
velocity U, as the velocity scale, the product U D as the flow rate scale, the ratio D /U, as the
time scale, and the product pU? as the pressure scale.

I This is the region before the constrictions, where the flow is still undisturbed by them, and far behind
them, where the flow is already undisturbed (i.e., where the flow disturbances disappear, and it becomes like
the basic one).

2 A choice of the value of P, always can be compensated for by the choice of the corresponding value of P,
in such a way that the corresponding pressure drop AP (which governs fluid motion in the duct) remains
unchangeable.
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Fig. 2. A scheme of fragmentation of the computational domain into small
volumes

Computational domain. The domain, in which a solution to the problem should be found,
is shown in Fig. 1. It is restricted by the duct sections X, =-L,, X, =L;+Ly+L,+L,; and
Xs=X,,, X5=X,,+dX; (where dX,; <<1, and X, is an arbitrary value of the coordinate
X5). Herewith, the boundary X, =-L,, is taken upstream of the first constriction, where the
flow is still undisturbed by it, and the boundary X, =L, +L,,+L,+L, behind the second con-
striction, where the flow disturbances already disappear, and the flow redevelops into the basic
state at X =-L, . As for the distances L, and L, for the basic flow velocities considered in
this study, their values should vary in the ranges L, <0.5 and L; <12 [1, 2].

The chosen computational domain is divided into the small volumes V,,, by the duct sec-
tions X, =X, and X, =X,, (where X, =X (-1 +dX,, dX, <<1, and X,,, =X o(m-1) +dX,,
dX, <<1), as shown in Fig. 2. Herewith, in order to have a smooth velocity profile in an arbit-
rary duct cross-section, the steps dX; and dX, are reduced in an appropriate manner as one
approaches either the duct or constrictions’ walls.

Integral equations and their discrete analogs. Integral analogs of Egs. (1) and (2) are
obtained by their integrating over the control volumes V,, (in making this operation, the
appropriate conservation laws take place in each volume V,,, ). It gives

: U, gy ({7 2P qy oL ({22
Sl [0, v [ vl [aX]_ Jdv , o
[[[ @u; 7ex;)dv =0. (8)
Vnm

The application (wherever possible) of the Gauss theorem to the terms of Egs. (7) and (8),
and/or the expansion (wherever needed) of their integrands (which are denoted by f (7)) in the
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Taylor series around the mass center C, . of the volume? V, = (Fig. 2), further use of the first
two terms of these series (i.e., f(7)= ]7(7 )+ V(f ) (¥ -7, )), making the discretization

nm

of the temporal and spatial derivatives on the basis of the implicit three-point non-symmetric
backward differencing and two-point schemes [5], respectively, viz.

F G Ty 15FE —2ftteosfir

= y V =e. a aX 2= y
T AT / ) ¢;(9f / 0X;); ()
o _f N L G o _f D= )
oXy|._. dx, ’ oX|._. dx, ’
T R
of S ), of f DS )
oX, —_ dX, ’ Xalis, dx, ’

as well as the application (wherever necessary) of the following TVD-scheme [5]
FEg)=F0 0GP -J,

f@.,) F9 >,

nm =

f(nj . E9) <0,

= 1= C(n+1)m , Gy =C(n—1)m , Cy = Cn(m+1)’ Cy= Cn(m—1)’

A
Coum Cj

)

P =i @, )+U-a)f (), o =|F

v .\ —
4

AV

O (n;)=max (0, min(4n;, 1), n;=|0G)-0G )|/ [0G -0y,

allows one to proceed to considering the discrete analogs of Egs. (7) and (8), viz.

15U 20K +05U;
(Dkyrk
AT |V m|+]ZF U (J) ZV w(/)

ZP(])n]Z nm
__ , 9)

(@P/3X,),,,|V.

| nm|

3 Since the fluid in the duct is homogeneous (see the problem formulation), the mass center of the volume V,,,,
coincides with its geometrical center. The analogous situation is with the mass center of each side face of the
volume V,,
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4 4 4 z

ZUCU') n; S :ZUiC(n”ﬁ S :an(fjn) =0, : I

) nm ].:1 nm j:1 'Sr(:n)

(10) I
— ! — -

which have the second order of accuracy. Here V is the | _“t : 4, °
gradient; 7 =X;¢;and7, =X, ¢&;the position vectors of <@ A S©® SO
an arbitrary point in the region V,, and its mass center o | ‘?5)
C . respectively; the point in the Taylor series indicates [ I
the scalar product of the corresponding magnitudes; ¢; LT 5@

the unit directivity vector of the axis X;; AT the small
time step; f* and f¥, the values of the function f at

) . nm | cij) be time i LAT Fig. 3. The small volume V,,,,
t e. points €, and Cy, at the time lnstant T =kAT; §¢) and their outward unit normals 7,
CY) the mass center of the side face S) of the volume ~ (i=1,..,6)

Vi fci;i and fcif the known values of the function f
at the point C,,, at the moments T =(k—1)AT and T =(k—-2)AT , respectively; [V, |
S
(7iy =&y, Ty = —&,, liy =&, 1y =8y, li5; = &y, Tig = &5 Fig. 3);and F)* =U* -7
across the face §$) at the moment T = kAT .

Discrete analogs of conditions (3)-(6) and their application to Egs. (9) and (10). The

discrete analogs of conditions (3)-(5) on the boundary of the computational domain are as
follows:

its side faces

the vol-

and 7i; =n€; the area and the outward unit normal to the face s
S the fluid flow

ume of the region V,_;

nm?

k a2 k _
1Xi=—Lu,L1+L12+L2+Ld_1'5(1 X3, Uy X =L, Li+Lig+Ly+L, 0
Ut =0, aQ* Jox,=0, Q" =1, L,>05, L,>12, i j=1,2,

ch™j
P, =0, (8P" /oX,)5, =0, (8P* /én)s =0.
nm X1:L1+L12+L2+Ld

They allow one to find F,l(r];l)k and VU f’ ¢y on the noted boundary in Egs. (9) and (10), viz.

C

FO _ 3k _ Wk _
S 40 S, S, ’ MM X ==Ly, Li+Lyy+Ly+Ly, MM X =L, Li+Liy+Ly+L, ’
F&*k =-1.5(1-4X2)dX,dX,, FWL* =1.51-4X2)dX,dX,,
nm X,=1, ( 2) 2 3 nm X,=Li+Lp+Ly+Ly ( 2) 2 3
vU* = Ul sdx,, VU*! =, Uk /dX
i® =—eU;, ~/dX,, RO =eU;, ~/dX,,
X y=1/2 i |Xy=—1/2

-L, <X, <0, L, <X <Li+Lyy, Li+Ly+L,<X,<L;+L,+Ly+L,,
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Tk _ — Tk _ —~
nm |\ X =-L, nm | X =Li+L{9+Ly+L,
Tk _ 77k _
VU =0, VU:, =0,
2¢(2) 92D
nm X1:*Lu nm X1:L1+L12+L2+Ld
VU* ——eUF /dx
ic =Y, 1
"L Xy=0,D1 /2< X9 <1/2,-1/2< X9 <—1/2+D1 /2
X1=L1+L19,D9/2<X9<1/2,-1/2< X9 <-1/2+D9 /2
vut =eU* /dx
icr(zgn) Xi=L{,D{/2<X9<1/2-1/2< Xy <-1/2+D; /2 B el To 1
X =Ly+Li9+L9,Dy/2< X9 <1/2,-1/2< Xy <-1/2+Dy /2
Tk _ =77k
VU, o =-eUi,, /dX5,
nm O<X1<L1,X2:D1/2;L1+L12<X1<L1+L12+L2,X2:D2/2 nm
vU* =e,UF /dXx
ic(4 - 2¥ic,, 2

(4)
Wt 10 < Xy < Ly, Xo=—1/2+D, /2; Li+Ly5 < Xy < Li+Lyg+Ly, Xo=—1/24+Dy /2

As for the discrete analogs of conditions (6) (i.e., U f =0-0,P*¥0=0), they give one the possi-
bility to compute the appropriate terms in (9) and (10) at the initial time instant in the compu-

tational domain, viz. F*¥=0 =0, ?Uikczzno) =0, (oP /8Xl-)£~;2 =0.

A method of solution to Eqs. (9) and (10). The system of equations (9), (10) is solved
numerically. In making this, one comes across the two significant problems. The first of them is
connected with a nonlinearity of Eq. (9), whereas the second one is due to the absence of an equa-
tion for the pressure which is available in the right part of (9).

In order to solve the first problem, the flow F,f,{?k is modified in the appropriate way. More
specifically, the velocity components in it are initially replaced by their values found at the
previous time step. After that, the components are replaced by their known previous appro-
ximations. These replacements allow one to proceed from solving the coupled systems of non-
linear algebraic equations to the corresponding uncoupled linear ones.

The second problem is solved via introducing the pressure in Eq. (10) and the subsequent
agreeing of the velocity and the pressure with each other, when making the noted modification
of the flow FU* The velocity and pressure values, which are obtained in making this, are cor-
rected at each step by performing the appropriate operations. Let us demonstrate the above-
said in more details.

If one formally solves (9) with respect to U ikcnm’ one obtains the equation

52

4
(1/|Vnm|)zP£;;"ﬁ
=

(0P /0X,))(. .

k _ 40 k P
Uicnm - Aicnm +A7'cnm - A

WChm

(11)
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Here A is a rational function whose numerator contains the known values U 5—1 and U £_2.
Its denomlnator involves F(])k The term Ak also is a rational function whose denominator
only differs from that of the functlon A) in “the multiplier |V,m|/ AT . Its numerator has the
unknown quantities U, k and FY )kU k As for the fractional multiplier A? , its numerator
only consists of the tlme step AT, whéreas the denominator coincides w1th tmhat of the func-
tion AO

From relatlon (11), one can obtain an equation for U k( » That equation, after substituting

into the expression for F(])k and then the obtained relation into (10), yields an equation for
the pressure, viz.

4 4

k 0 k
ZA,?Z(;‘) (OP /0X;) o Mji |Sim | = z (Ao +A )n; (12)
j:1 nm nm ].:1 nm nm

Then we begin to solve (11), (12) with finding the first approximations of the velocities
U-k* For this purpose, the unknown quantities Pclﬁj) in (11) are replaced with the known

ones P¥> o ]) , and the functions A;; are modified by replacing the unknown velocities in the flow

F,f,]n)k w1th their known values U lkc;; This results in the following system of linear algebraic
equations for U lkC:m

Uk =AY +Al _(Afjn /IVnmI)ZP mnﬂ (13)

in which A are the IIlOdlfled functions A;;

Once the quantities U are found from (13) (the method of solution of this system is
described below), they are further used to obtain the corresponding values of the operators
A o which are then substituted into (12). This yields the system of linear algebraic equa-
tiofs for the first approximation of the pressure, viz.

ZA%) (0P /0X )} n; (14)

4
0* k*
| = 2 Ay + A
]:

in which A7, denote the values of the operators A", found with the use of U fC:m

Further, one applies a procedure which is similar to the just described one. More speci-
fically, the first approximations of the pressure, Pﬁ;, found from (14) are substituted into (11)

instead of Pclij) . Also, in the functions Aj; ~in (11), the flow FOF is modified by replacing the

unknown velocities in it with their first approximations obtained from (13). This results in
the systems of linear algebraic equations for the second approximations (or the first correc-
tions) of the velocities U fc;, viz.
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(here A are the functions A;; in which the just noted flow modification has been performed).
After that the second approxunatlons of the velocities, obtained from (15), are used to
obtain the values A ) of the operators A e The subsequent substitution of these values into

(12) instead of Al_c(]) allows one to write a system of equations for the second approximation

(or the first correction) of the pressure, Pﬁ;; , which is similar to (14) viz.

4
DAL, (@P /0X gy |SSh Z (Ao +ALo)n;; (16)
j=1 nm nm
If the accuracy of the second approximations of the velocities and the pressure is not satisfac-
tory, then the just-described procedure must be carried out until the accuracy becomes as desired.
Solution of Egs. (13)-(16). The systems of linear algebraic equations (SLAEs) (13)-(16)

can be rewritten in the generalized form, with the unknown quantities &fﬂm and éfi
ko <k < k ek k
acnm gcnm + zaci E"Ci - bcnm ! (17)
i=1

Such systems are solved either by direct or iterative methods. Usually, the direct methods are
applied to small systems of equations and give good results. However, when one deals with big
SLAEs (especially with systems whose matrices are rarified), the direct methods need a huge
amount of time to obtain their solutions. Therefore, their application is unreasonable here. The
iterative methods, when applied to big SLAEs, need much less computational memory and
time, save the rarefaction degree of their matrices (when the matrices are rarified) and give sa-
tisfactory results.

Proceed from the just-said, as well as from the dimension and the rarefaction degree of the
matrix of system (17), an iterative method is chosen in this paper to solve the system. Within
its framework, an initial approximation of the solution is chosen initially, which is then improved
by making iterations until its accuracy reaches the desired value. Herewith, the attention is paid
to the following two features. The first of them concerns with the necessity of providing do-
mination of the diagonal terms in the matrix of system (17). In this study, it is realized by ap-
plying the deferred correction implementation method [5] to the convective term. In accordance
with this method, the part of the convective term, which corresponds to the scheme for ﬁ(j ) (itis
given before (9)), is inserted into the matrix, whereas its remainder is placed into the right part
of SLAE (17).

The second feature is related to a desire to have the as minimal as possible number of itera-
tions. Here, it is made by the use of the method of conjugate gradients [5]. This method allows one
to solve a SLAE via the iterations’ whose number does not exceed the number of its unknown
values. Herewith, if a successful choice of the initial approximation is made, the number of ite-
rations sharply decreases. Also, the preconditioning results in a significant reduction of the num-
ber of iterations. For this purpose, the solvers ICCG and Bi-CGSTAB [5] are used.

Conclusions

1. A second-order numerical technique has been developed to study the steady laminar fluid
motion in a straight flat hard-walled duct with two axisymmetric rectangular constrictions.
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2. In this technique, the governing relations are solved via deriving their integral analogs,
performing a discretization of these analogs, simplifying the obtained (after making the discre-
tization) coupled nonlinear algebraic equations, and the final solution of the resulting (after mak-
ing the simplification) uncoupled linear ones.

3. The discretization consists of the spatial and temporal parts. The first of them is perfor-
med with the use of the TVD-scheme and the two-point scheme of discretization of the spatial
derivatives, whereas the second one is made on the basis of the implicit three-point asymmetric
backward differencing scheme.

4. The above-noted uncoupled linear algebraic equations are solved by an appropriate ite-
rative method, which uses the deferred correction implementation technique and the technique
of conjugate gradients, as well as the solvers ICCG and Bi-CGSTAB.
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YNCEJBHUY METO/] PO3B’I3YBAHHS 3A/IAUI ITPO PYX PIIMHI
Y IIPAMOMY IIJIOCKOMY JKOPCTKOMY KAHAJII 3 IBOMA
OCECUMETPNYHUMMU NPAMOKYTHNMMU 3BYKEHHAMN

Po3pobiieHo uncesIbHI METO/I PO3B’sI3yBaHHS 3a/1adi PO CTalliOHAPHUIA JaMiHADHUN PYyX PIIMHU Y TIPSAMOMY
TIJIOCKOMY JKOPCTKOMY KaHaJIi 3 IBOMa OCECUMETPIYHUMI MPSIMOKYTHUMU 3By KeHHAMU. Lleit MmeTon Mae apyruit
MOPSIZIOK TOYHOCTI. Y HbOMY CITiBBIZIHOIIEHHS, 1110 OMUCYIOTh 3a3HAUEHUH PYX, PO3B’SA3YI0ThCA MIJITXOM OJIeP3KaH-
HsT IXHIX iHTerpajbHUX aHaIOTiB, JUCKPETH3allil IUX aHAJIOTIB, 3BEACHH 3B’ A3aHUX HeJIHIHUX anrebpaidyHnx
piBHAHDB (ONep’)KAaHUX BHACJIOK AMCKPETH3allii) /10 BINOBIIHUX He3aJeKHUX JIHIMHUX 1 [OAAJIBIIOrO
PO3B’sI3yBaHHS OCTaHHIX. 3a3HavyeHa AUCKPETH3allisl CKIAAEThCS i3 MPOCTOPOBOI Ta YacoBoi yacTuH. [lepma 3
HUX BUKOHYETHCS Ha OCHOBI BUKopucTanHg TVD-cxemu, a TaKOK IBOTOUKOBOI CXeMU JUCKPETU3Allii TTPOCTO-
poBUX TOXigHWX. [Ipm mpoBeneH i X Apyroi YaCTUHU ANCKPETH3aIlil 3aCTOCOBYEThCS HeSBHA TPUTOUKOBA He-
CUMeTpHUYHa cXeMa 3 pisnunsaMu Hazaj. [lo crocyeTbes MeToy po3B’si3yBaHHA BKa3aHUX HE3aJICKHUX JIHIN-
HUX PiBHSIHD, TO 1le — BIJIMOBIHMN iTepalliifHnuii MeTo/I, SKUHi BUKOPUCTOBYE METO/IU BiJIKJIa/IeHOI KOPEKIIil Ta
CHPSKEHUX IPaflieHTiB, a Takosk consepu ICCG ta Bi-CGSTAB.

Kantouoei crosa: pyx piounu, niockuil Kanai, npsmoKymue 38YHceHns, Memoo.
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