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A numerical technique to solve a problem

of the fluid motion in a straight plane rigid duct
with two axisymmetric rectangular constrictions.
An alternative approach

A numerical technique is devised to solve a problem of the steady laminar fluid motion in a straight plane hard-walled
duct with two local axisymmetric rectangular constrictions. It uses the stream function, the vorticity and the pressure
as the basic variables, has the second order of accuracy in the spatial and the first order of accuracy in the temporal
coordinates, provides high stability of a solution, and needs significantly less computational time to obtain a result
compared to appropriate techniques available in a scientific literature. The technique consists in: a) introducing the
stream function and the vorticity, and subsequent transiting from the non-dimensional governing relations for the fluid
velocity and the pressure to the corresponding non-dimensional relations for the stream function, the vorticity and the
pressure; b) deriving their discrete counterparts in the nodes of the chosen space-time computational grid; c) integrating
the systems of linear algebraic equations obtained after making the discretization. The discretization is based on applying
appropriate differencing schemes to the terms of the equations for the basic variables. These are the two-point temporal
onward difference for the unsteady term of the vorticity equation, as well as the two-point backward dif ferences (forits
convective term) and the five-point approximations (forits dif fusive term and for the Poisson’s equations for the stream
Junction and the pressure) in the axial and cross-flow coordinates. As for the velocity components, the appropriate
central differences are applied to discretize their expressions. The above-mentioned systems of linear algebraic equations
Jorthe stream function and the pressure are integrated by the iterative successive over-relaxation method. The algebraic
relation for the vorticity does not need application of any method to be solved, because it is a computational scheme to
[ind this quantity based on the known magnitudes computed at the previous instant of time.

Keywords: fluid motion, plane duct, rectangular constriction, technique.

Study of fluid motions in ducts is an actual problem in medicine, architecture, municipal economy,
etc. Among others, here a significant interest is shown for investigating flows in ducts with local
constrictions, such as wall deposits, welding joints, stenoses, etc. That is due to the fact that such
inhomogeneities in the duct geometry cause local changes in the flow structure and /or character,
etc., and those changes can result in the corresponding consequences not only in the vicinity of,
but also far from the inhomogeneities [1].
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As analysis of the scientific literature shows, study of flows in ducts with local constrictions
has been paid much attention to. In those studies, straight rigid ducts and their constrictions of
the simplest geometries were of interest. The basic flow (i. e., the flow upstream of a (first) con-
striction) was laminar, axisymmetric and steady. As for fluids, they were homogeneous, incom-
pressible and Newtonian (the other types of ducts, their constrictions, fluids and the basic flow
are not considered in this paper, because they were studied much less intensively compared with
the noted ones). These allowed one, on the one hand, to investigate (within the framework of ap-
propriate models chosen and with acceptable accuracy) the influence of the basic parameters of a
duct, its constriction(s) and the basic flow on the flow not only near but also far downstream of
the constriction(s), and, on the other hand, to simplify significantly solutions to the correspon-
ding problems of interest [1-4].

Among the results obtained in those investigations, numerical techniques, which allow study-
ing the fluid motion near duct constrictions, are of a great importance. Recently, a technique of
such kind was described in [1]. It has been developed to investigate the flow in a straight flat rigid
duct having two rectangular axisymmetric constrictions. That technique has a second order of ac-
curacy both in the temporal and spatial co-ordinates, and allows making appropriate investigation
in the variables velocity-pressure. However, due to the huge amount of mathematical operations,
it needs a lot of computational time to obtain a result.

In this work, an alternative technique is described to solve the same problem. It uses the
stream function, the vorticity and the pressure as the basic variables, and has nearly the same
order of accuracy as that noted above. However, this technique has higher stability of a solution
and, due to the use of less powerful mathematical apparatus, needs much less computational time
to obtain a result.

Statement of the problem. A detailed statement of the initial and boundary problem to be
solved, is available in [1]. Proceed from this, now we shall only briefly remind it.

A straight flat rigid duct of dimensionless width 1 is considered (Fig.1) in which fluid moves.
In this duct, two narrowed axisymmetric segments of a rectangular form are available. They have
the cross-flow, D, , and axial, L;, dimensions (i=1,2), respectively, and are separated by the dis-
tance L, from one another. The fluid is viscous Newtonian and homogeneous, and has mass den-
sity p and kinematic viscosity v . Its flow is characterised by a small Mach number and the rate
Q per unit depth of the duct. Also, the flow upstream of the first narrowed segment (i. e., the basic
flow) is steady and laminar. It is necessary to investigate the fluid motion around the segments.

The fluid motion is governed by the dimensionless momentum and continuity equations, viz.

WU gy 0Us 0P 1 0 [OU; |\ 4y (1)
oT 79X, 93X, RedX,|oX,
U, /93X, =0. (2)

The boundary conditions are in the absence of a fluid motion at the duct wall, S, , and on both
its narrowed segments, § ;i (j=12). Also, since the mass conservation in the duct is assumed, the
flow rate Q must not vary along the duct, viz.

Uy, s =0, 3Q/0X,=0, Q=1, i,j=12. 3)
chr2j
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Fig. 1. Geometry of the
p.roblem and the computa- 7 L, I, L, I,
tional domain i i i .

Apart from these, due to the laminar basic flow regime, the parabolic velocity profile is speci-
fied outside the disturbed flow region due to the narrowed segments', viz.

_ 2 _
=1.5(1-4X3), U2|X1}LWL1+L12+L2+L0[ =0. (4)

U1|X1:—LM,L1+L12+L2+Ld
As for the pressure P , it is assumed to be constant both sufficiently far upstream of the first
narrowing (P|X1:7Lu =P,), and far downstream of the second one (P|X1:L1+L12+L2+Ld =P;). In ad-

dition, the difference AP =P, -P; >0 should ensure the existence of the given laminar regime of
the basic flow. Also, without loss of generality, the pressure P, can be taken to be zero®, and the
magnitude P, , like the pressure in the whole duct, should be found. Apart from these, the normal
pressure derivative is zero on the rigid walls of the duct and both its narrowed segments, viz.

@P /an)s, 5, =0, j=12. (5)

Regarding the initial conditions, they are in absence of the fluid motion in the duct at the
time instant 7' =0 [1], viz.

P|T:0=0’ Ui|T=0=0' (6)

In (1)-(6), X; (i=1,2,3) are the rectangular Cartesian coordinates depicted in Fig. 1 (here
theaxis  isnormal to the plane X, X, and directed tous); T the time; U; the local fluid veloc-
ities in the directions X;; Re=U_,D /v the Reynolds number of the cross-sectionally averaged
basic flow; U , its velocity; and the values of the distances L, and L, are given in section “Com-
putational domain and computational mesh”. In addition, hereinafter the vector # denotes the
outward unit normal to appropriate surface, and the summation on repeated indices is assumed
throughout the paper. As for the scaling factors used in this paper, these are the duct width D as
the length scale, the velocity U, as the velocity scale, the product U D as the scale for both the
flow rate and the stream function, the ratios D /U, and U, /D as the time scale and the vorti-
city scale, respectively, and the product pU? as the pressure scale (the stream function and the
vorticity are introduced in the next section).

! This is the region before the segments, where the flow is still undisturbed by them, and far behind them, where
the flow is already undisturbed (i.e., where the flow disturbances disappear, and it becomes like the basic one).

2 A choice of the value of P, always can be compensated for by the choice of the corresponding value of P, in
such a way that the corresponding pressure drop AP (which governs fluid motion in the duct) remains un-
changeable.
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Transition to the variables stream function-vorticity-pressure. We begin to solve the prob-
lem formulated in the previous section with introducing the stream function ¥ (which satisfies
(2)) and the vorticity Q, viz.

¥ Uy U, (M)

Uy
This allows one to rewrite the initial and boundary problem (1)-(6) in the variables ¥, Q and
P instead of U;, P. More specifically, making the differentiation of the equations for U, and U,
in (1) with respect to X, and X, respectively, subsequent taking the difference of the second
and the first of the obtained relationships and using the third relation in (7) yields the vorticity
transfer equation, viz.

0Q 0Q Q 1

_ 2
in which
2 2
A
V(Xsz) -

_+_
X% 9xX;

is the Laplace operator in the plane X, X,.
Further use of the first two representations in (7) in the third one gives one the Poisson’s
equation for the stream function, viz.

Vi, x,)¥=-Q. ®)

Taking the derivatives of the equations for U, and U, in (1) with respect to X, and X,, re-
spectively, making the summation of the obtained relations and the use of the continuity equation
(2) results in the Poisson’s equation for the pressure, viz.

2 2
b2 aX1 aXZ aX1 aX2

Regarding the boundary and initial conditions for the quantities ¥, Q and P , they are easily
derived from (3)-(6). Indeed, based on (4) and (7) one can obtain the following conditions for ¥
and Q on the upper, X, =-L,, and lower, X; =L, +L, +L, +L, (in the flow direction) bounda-
ries of the disturbed flow region due to the narrowed segments, viz.

3 49
‘P|X1:—LM,L1+L12+L2+Ld ZEXZ (1_§X2 ) Q|X1:—Lu,L1+L12+L2+Ld =12X,. (1)

A zero normal component of the fluid velocity on the walls of the duct and both its narrowed
segments (see (3)) together with the first two representations in (7) give one the corresponding
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constancy of the stream function, viz.

\Ps;,,,s; =const,, lPS;h,S; =const_, j=12
(here the index “+” indicates the upper walls of the duct and the segments, whereas “—” their
lower walls). This constancy together with the first relation in (11) yields
1 1 .
\Psg’hys;_’ _57 S;h,S;__E’ ]_172- (12)

The absence of the tangential fluid motion on §,;, and §; (see (3)) results in absence of the
first-order normal derivatives and the second-order mixed derivative of the function ¥ there, viz.
0°Y
0X,0X,

oY

o

h
Sen S

=0, j=1,2 (13)
Sen:S;

y )

55

(in (13), S]}-1 and §; are the horizontal and vertical parts of S, respectively).
Relations (13) together with (9) provide the following boundary conditions for the vorticity

PR 4

. IR
SaS] T 9x 2

, J=12. (14)

)

h
Sch’Sj

A
S;

As for boundary conditions for the pressure, their set (5) is completed with the following
two more ones

or
X,

1y U 9P 1, U,
=l 5-Vix, x 1——1] v To :[_V(X,X v ; (15)
5 |:Re GrXTar f 7 ox, 5,50 LRe & DREAT g, ¢
which are obtained from (1) and the first condition in (3).
Finally, the initial conditions for ¥, Q and P are derived from (6) after the use of (7)
there, viz.

l1'|T=0=0, Q|T=0:O, P|T=0:O. (16)

Computational domain and computational mesh. The domain, in which a solution to the prob-
lem should be found, is bounded by the duct sections X;=-L, and X;=L,+L;,+L,+L, (see
Fig. 1). The first of them is chosen before the first narrowed segment, where the flow is still undis-
turbed by it, whereas the second section downstream of the second segment, where the flow redevel-
ops into the basic state at X =—L, . Herewith, for the basic flow velocities considered in this study,
the values of L, and L, should not exceed 0.5 and 12, respectively, viz. L, <0.5 and L, <12 [1,2].

In this domain, one introduces a uniform rectangular computational mesh with the small
steps A; in the directions X; (i=1,2, Fig. 2), viz.
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Xyimeny Regarding the integration time, it is divided into the
small constant intervals A , viz.
X2(m+1) ®
T,=T, +A; =kA;, A; =const; <<1, T,=0. (18)
AZ

) ® ® After that, one performs a discretization of the appro-
Xom priate relationships of the previous subsection at the nodes
¥ X X9, T, of the grid (17), (18). In making this, one
2 - denotes the values of an arbitrary quantity f at the point

X1(;)—1)Xln B A1 X1('7+1)X1(n+2) X1n’X2m’ Tk by f;f,m , ViZ.

Fig. 2. Computational mesh b
n,m =f(X1’X2’T)|X1:X1n,X2=X2m,T:Tk :

Discrete forms of the equations for ¥, Q and P . Discrete forms of the first two relations
in (7) are resulted from the use of the appropriate central differences [5], viz.

k k ko gk

b4 -¥ b4
U k _ n,m+1 n,m-1 , U k __ n+l,m n-1,m ‘ 19
( 1)n,m 2A2 ( Z)n,m 2A1 ( )

Expressions (19) are of the second order of accuracy.
A discrete analog of the third relation in (7) is not given here, since it is not used in this article.
A discretization of the vorticity transfer equation (8) is performed on the basis of the ap-
propriate differencing schemes. More specifically, the non-steady term in (8) is discretized on the
basis of the two-point temporal onward difference, viz.

3 k+1 k
Q7 —Q
0Q _nm n,m . (20)
o )., Ay

Representation (20) has the first order of accuracy.

The application of the two-point backward difference schemes in the coordinates X, and
X, to the convective term of Eq. (8) yields its discrete counterpart of the second order of ac-
curacy, viz.

k k

Q, ., —Q,
[ o V|G T U 20
3X1lm QF el
MU S U <O,
1
L Qb -k \ @b
s ¥ U= U 20
(U2871 = o zgk
2 hm -
MU U] <0,
2
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And the last, the diffusive term of Eq. (8) has the following discrete form

(3 3

829 Qn+1 m ZQk +Q£ 1,m 829 sz m+1 2Qk +sz m—1

oX? Af | ox? A§ '
m n, m

(22)

Expressions (22) are of the second order of accuracy and derived on the basis of the five-point
differencing scheme (see Fig. 2).

Relations (20)-(22) together with (19) give one a discrete analog of Eq. (8), viz.
Qk

k+1 _ ~k k
Qnym_Cnme +C*k n1m+C

n—1,m

n+i, an+1 m "'C’;]:,m%Q 1+Cn m+1Qn m+1 - (23)

Here the factors C are written as

(105 ((A)]} .0 =AW}, ) =204 =200 U}, >0, <U2>nm/
ch 1o (A 5+ (), ) =204 =206 Uy 200 W o)
T e, (A, (AP )= 20y =205 U, <0, Uy)E, >0,

1+ 04y (AW}, 5 —(AW), , ) =204 =205 Uy, <0, U5, <O

Olyo (A\P)n m, 2+(X‘1’ (U1)n m /0 (U2)n m /
Ck . (x12(AlP)nm2+a1’ (U1)nm/0 (UZ)

n—1,m —
Oy (U1) <0, (U2)nm/

Olys (U1)n,m <0’ (UZ)ﬂ,m <0

Oly; (U1)n m /O (U2)n m /
o Uk =0, Ui

n+1,m
—0‘12(A\P)n,m,2+0‘1§ (U1) <0, (U2)nm/
|~y (AW, o+ 05 (U}, <0, U)) ,, <0
_a12(A\P)n m, 1 T 03 (U )n m /0 (U2)n m /
Ck . OLZ’ (U1)n m /0 (UZ)
n,m—
—0(12 (A\P)n,m,1+a2; (U1) <O (U2)n m /
0(2; (Ui)i,m <0’ (U2)n,m <0
Oly; (U )n m /0 (U2)n m 20
L Oy (A oy +0g; U =0, Uk, <O;
Cn,m+1_

062; (Ul)nm <0? (U2)nm 207
04y (AW, +0iy; U, <0, U], <0
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in which the quantities o, o, o, are the ratios of the steps of the computational grid (17),
(18), viz.

O ==, Oy =D, Oy =,
""Rea? P Real’ " 2a,
and (A‘P)f,y i the increase of the stream function in the direction X; of the grid (i=1,2), viz.

_pk

n,m—1-

AP =P — P (APt , =k

n—1,m> n,m,?2 n,m+1

Regarding the discrete forms of the Poisson’s equations (9) and (10), they are similar, viz.

lPﬁH m _2lP£ m _+_l11ﬁ71 m \Pﬁ m+1 _Z\Pﬁ m +lP£ m—1 13
’ . ’ : . mlo b (24)
A1 AZ
k k k k k k
Pn+1,m_2pn,m+Pn—1,m Pn,m+1_2pn,m+Pn,m—1 _
A} A;
) 5k (25)
(v, 0us0u, (av,
n,m

Expressions (24), (25) are resulted from the use of the five-point differencing scheme (see Fig. 2)
in Egs. (9), (10), and have the second order of accuracy.

Discrete forms of the boundary and initial conditions. Discrete forms of the boundary and
initial conditions (5), (11)-(15) and (16) are as follows

3 4 1 1
lelm :_X2 1__X22 ’ \Pﬁm + +:_’ ﬁm =75
"X ==L, Ly+Ly+LytLy; 2D 3 TS, S 2 TS, S 2
k k _ k k —
(\Pn,m+1 _\Pn,m—1 )S{‘hYS]h =0, (\Pn+1,m _\Pn—l,m )5]‘ =0,

k k k
W2 Y |

A . b n,m+1 n,m—1

M |X Ly Ly+Lyp+Lo+Ly =12Xy, S St Al .

Sens S
wh, -owk et | op Y

Q __ n+l,m n,m n—1,m (_l =0 ]:1 2 (26)

SY 2 bl ) ) .

j Af v N Jy m 5.5,
3
oP | O =2U D+ Ui
0X Re A?
1 v 1
J

62 ISSN 1025-6415. Dopov. Nac. akad. nauk Ukr. 2022. Ne 4



A numerical technique to solve a problem of the fluid motion in a straight plane rigid duct...

LU0 =20 D+ Ut | Ul =
A A ’
2 T oy

J

3
o _| L (U2)fl+1,m_2(U2)ﬁ,m +(U2)fz—1,m+
a)(2 Re A%

,m Sch’S}l

LU =20 + U ]_ U in =Wk ]
2 A ’
A; T 500"

k k
b g =0, Q
nm, g n,m|,

_ k _
=0, P"””‘k:o ) (27)

(in the conditions for the pressure in (26), it is necessary to use representations (19)). Expres-
sions (26) and (27) allow one to compute the values of all the terms of Egs. (19), (23)-(25) on the
boundary of the computational domain and at the initial time instant in this domain, respectively.

Solution of Egs. (19), (23)-(25). The preliminary study of Egs. (23), (24) indicates that at
first sight Eq. (23) is nonlinear (because its right part is the function of ¥Q ) and these equations
are coupled. However, more detailed analysis of the right part of (23) shows that all its terms
are computed at the previous time moment, T =T, , whereas at the initial time instant they are
established. It means that the right part of (23) is the known quantity, and hence, (23) is just a
computational scheme (rather than an equation) to find Qflf,}i . Also, (23) and (24) is not a system
of coupled algebraic equations.

Once the vorticity at all the points of the grid (17), (18) can be computed on the basis of
the scheme (23), it is possible to solve the system of linear algebraic equations (i. e., SLAE) (24),
which now has the known right part.

Usually, SLAEs are solved either by direct or iterative methods. The first ones are applied to
small SLAEs and give satisfactory results. However, in case of big SLAEs (especially those having
the rarefied matrices) the direct methods require a huge amount of computational time, and their
application is unreasonable here. The iterative methods, when applied to SLAEs of big dimen-
sions, require significantly less computational time, save the rarefaction degree of their matrices
(when the matrices are rarefied) and give good results [5].

Proceed from these, as well as from the dimension and the rarefaction degree of the matrix of
system (24), we choose the successive over-relaxation iteration method [5] to solve the system.
The corresponding computational scheme for the discussed SLAE is of a second order of accu-
racy and looks as

k k Y k k
l}‘nj—rit :(1_Y)q’n,m +m(l}‘nﬂ,m +\‘Pn—Lm

(here 1<y<2 and B=A,/A,). Since all the terms on the right in (28) are known, the quantities
Wkl o0 the left can be easily obtained.

n,m

k k k
+B2\Pn,m+1 +B2\Pn,m71 +Aan,m) (28)
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The obtained values of ¥ allow one to compute the velocity components in (19) and fur-
ther use them in (25). After that the above-noted successive over-relaxation method is applied
to (25), viz.

Pnk;rr} :(1_Y)Pnk,m + ! 92 (Pnk+1,m +Pnk—1,m +B2Pnk,m+1 +[32Pff m—1 +Af55,m)’ (29)
2(1+B%)
P )7k
n,m ~ .
n,m

One can see that all the terms on the right in (29) are known. This permits one to find the pressure
Pnky:} on the left in (29).

Conclusions.

1. A numerical technique has been devised to solve a problem of the steady laminar fluid mo-
tion in a straight plane hard-walled duct with two local axisymmetric rectangular constrictions.

2. This technique uses the stream function, the vorticity and the pressure as the basic vari-
ables, has the second order of accuracy in the spatial and the first order of accuracy in the temporal
coordinates, provides high stability of a solution, and needs significantly less computational time
to obtain a result compared to appropriate techniques available in a scientific literature.

3. The technique consists in: a) introducing the stream function and the vorticity, and subse-
quent transiting from the non-dimensional governing relations for the fluid velocity and the pressure
to the corresponding non-dimensional relations for the stream function, the vorticity and the pres-
sure; b) deriving their discrete counterparts in the nodes of the chosen space-time computational
grid; ¢) integrating the systems of linear algebraic equations obtained after making the discretization.

4. The discretization is based on applying appropriate differencing schemes to the terms of the
equations for the basic variables. These are the two-point temporal onward difference for the un-
steady term of the vorticity equation, as well as the two-point backward differences (for its convec-
tive term) and the five-point approximations (for its diffusive term and for the Poisson’s equations
for the stream function and the pressure) in the axial and cross-flow coordinates. As for the velocity
components, the appropriate central differences are applied to discretize their expressions.

5. The above-mentioned systems of linear algebraic equations for the stream function and the
pressure are integrated by the iterative successive over-relaxation method. Regarding the alge-
braic relation for the vorticity, it is a computational scheme to find this quantity on the basis of
the known magnitudes computed at the previous instant of time.
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YNCEJBHUY METO/] PO3B’I3YBAHHS 3A/IAUI

I[TPO PYX PIAVUHN Y ITIPAMOMY IIJIOCKOMY JKOPCTKOMY KAHAJII
3 IBOMA OCECUMETPUYHUMU ITPAMOKYTHUMU 3BYKEHHAMU.
AJIBTEPHATUBHUM HIAXI/T

Po3pobiieHo YncebHIil METO PO3B’I3yBaHHs 3a4adi PO CTalioHApHUI JTaMiHADHWIT PYX PiAUHE Y IIPAMOMY
IIJIOCKOMY JKOPCTKOMY KaHaJi 3 IBOMA JIOKQJILHUMHU OCCCUMETPUYHUMHI NPSMOKYTHUMH 3BYKCHHAMU. Y IIbOMY
METO/Ii IK OCHOBHI 3MiHHI BUKOPHUCTOBYIOThCS (DYHKITisS Tedii, 3aBUXOPEHICTh i THCK. BiH Mae aApyTuii mopsiiok
TOYHOCTI 10 KOOPJAMHATAX i MePHIMH OPSAOK TOUHOCTI 110 Yacy, 3a0e3neuye BUCOKY CTIKICTh PO3B’sI3Ky i mo-
Tpebye 3HAUHO MEHIIE KOMIT IOTEPHOTO Yacy ISt OJI€PKAHHS Pe3yIbTaTy MOPIiBHSIHO 3 BIAMOBIIHIMHI METOIaMH,
OTIMCAHUMU B HAYKOBIill JliTeparypi. 3a UM MeTOZIoM ¢(hOopMYIbOBaHA 33/I1a4a PO3B’SI3YETHCS MIJISIXOM: a) BBE/IEH-
Hst QYHKIHT Teyil 1 3aBUXOPEHOCTI Ta MOAAJIBIIOTO IepexoLy BiJ 0e3p03MIpHIX CIIBBIAHOMIEHD I IIBUAKOCTI i
THCKY /IO BiAIIOBiZHMX Ge3p03MipHUX CHIBBIAHOIIEHD [Jist (DYHKILT Tedil, 3aBUXOPEHOCTI i TUCKY; 6) BUBEAEHHS
JMCKPETHUX aHAJIOTIB LMX CIIBBIAHONIEHDb Y By3JaXx BUOPAHOI IIPOCTOPOBO-YACOBOI PELIITKM; B) iHTErpyBaHHI
cucTeM JIHIHHUX anreOpaidHuX PiBHsIHD, OEPKAHUX BHACIIZOK IIPOBEAEHHS 3a3Ha4eHOI qucKperusail. uc-
KpeTu3allid I[pyHTYEThCS Ha 3aCTOCYBaHHI Bi/IMOBIIHUX PI3HUIIEBUX CXEM /IO YJIEHIB PiBHSHD JIJI51 BBE/IEHUX 3MiH-
nux. lle — ofHOCTOPOHHS PI3HUIISA BIlepe /IS HECTAI[IOHAPHOTO YjieHa PIBHSHHS TEPEHOCY 3aBUXOPEHOCTI, a
TaKO OJTHOCTOPOHHI Pi3HUIII MTPOTH MOTOKY (/1T KOHBEKTUBHOTO YJIeHa I[bOTO PiBHIHHS) Ta ITITUTOYKOBI IIa-
6utonu (st ioro qudysiiinoro wiena ta piBusiHb [lyaccona ajist pyHKIii Tedil i TUCKY ) 10 0ChOBIH Ta monepeyHii
koopauHarax. [I[o cTocyeThest KOMIIOHEHT MIBU/IKOCTI, TO IS IMCKPETU3allil IXHiX BUPa3iB 3aCTOCOBYIOTHCS Bijl-
HOBI/IHI [IeHTPaJIbHI Pi3HULII. 3a3HAYEH] BUIE CUCTeMU JIHITHUX ajreGpaiuHuX PiBHAHD i DYHKI Teuil i Tuc-
Ky IHTEerpyIoThCs iTepaliiiHiM MeTOAOM MOCIIJOBHOI BEPXHBOI pesiakcallii. Anrebpaidme 5K CIIBBIAHOIICHHS 115t
3aBUXOPEHOCTI He MOTPedyE 3aCTOCYBAHHS HIsIKOTO METO/LY PO3B’I3yBaHHS, OCKIJIBKY BKE € PO3PaXyHKOBOIO CXe-
MOIO JIJIs1 BU3HAUCHHS 11i€1 BeJIMUMHU Ha OCHOBI BiZIOMUX BEeJIMYUH, 3HAIIEHUX Y [TOIIepe/IHIll MOMEHT Jacy.

Kniouosi crosa: pyx piounu, niockuil Kandai, npsamoKymme 38Yicents, Memoo.
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