https://doi.org/10.15407/dopovidi2022.05.087 УДК 546.(776 + 881.5)

К.В. Теребіленко, https://orcid.org/0000-0003-2403-4347

С.Є. Шнюков, https://orcid.org/0000-0003-1338-5272

М.С. Слободяник, https://orcid.org/0000-0003-2684-9806

Київський національний університет ім. Тараса Шевченка E-mail: kterebilenko@gmail.com

Закономірності формування фосфатів лантану із фосфатно-молібдатних розплавів

Представлено членом-кореспондентом НАН України М.С. Слободяником

Встановлено, що характер кристалоутворення в розплавах системи K-P-Mo-La-O-F визначається співвідношенням K/Mo та P/Mo. Встановлено області кристалізації каркасного $LaPO_4$ та $K_3La(PO_4)_2$ зі структурою арканіту. Показано, що ключовим фактором утворення складнооксидних сполук рідкісноземельних елементів з комбінованих молібдато-фосфатних розплавів є співвідношення K/Mo. У вихідному розчині-розплаві, якщо $K/Mo = 0,5 \div 1,0$, формуються ортофосфати $LnPO_4$, що характеризуються каркасною структурою на основі LnO_7/LnO_8 ; а якщо $K/Mo = 1,5 \div 2,5$, утворюються подвійні ортофосфати складу $K_3Ln(PO_4)_2$ з острівцевою структурою.

Ключові слова: лантан, молібдат, ванадат, будова скла, розплав.

Вивчення закономірностей синтезу складнозаміщених оксидних фаз у процесі кристалізації з розчинів у розплаві, термообробки сумісноосаджених компонентів та прямої твердофазної взаємодії дає можливість не тільки оптимізувати умови одержання функціональних матеріалів, але й керовано модифікувати їх властивості. Визначення закономірностей утворення твердих розчинів, критеріїв ізо- і гетеровалентного заміщення катіонів та аніонів у таких каркасах має як наукове, так і практичне значення і є одним із найважливіших завдань сучасного матеріалознавства. Тривалий час ортофосфати $LnPO_4$ (Ln = La - Lu) вважалися найстабільнішими і одними з найперспективніших матеріалів для оптики та люмінесценції [1, 2]. Однак у зв'язку з концентраційним гасінням люмінесценції, обумовленим структурним фактором — сполученням оксигенових поліедрів лантанідів між собою, лише для низьких концентрацій активатора відмічено високу інтенсивність емісії [3]. Цей недолік обмежує застосування вказаних сполук як оптичних матеріалів. Подальший прогрес у створенні нових

Цитування: Теребіленко К.В., Шнюков С.Є., Слободяник М.С. Закономірності формування фосфатів лантану із фосфатно-молібдатних розплавів. *Допов. Нац. акад. наук Укр.* 2022. № 5. С. 87—93. https://doi.org/10.15407/dopovidi2022.05.087

люмінесцентних матриць з покращеними оптичними властивостями пов'язують зі сполуками каркасного типу, де атоми лантанідів розташовані ізольовано один від одного. Чільне місце серед них займають подвійні фосфати складу K₃Ln(PO₄)₂, які можуть стати заміною традиційних флуоресцентних джерел світла та ламп розжарювання.

Для подальшого розширення люмінесцентних матеріалів на основі подвійних фосфатів необхідним є встановлення взаємозв'язку між особливостями їх утворення, будовою і спектральними характеристиками. Поглиблення знань у цій сфері потребує детального вивчення особливостей одержання $K_3Ln(PO_4)_2$ як у вигляді порошків, нанокерамік, так і монокристалів.

Загалом для синтезу таких сполук використовують твердофазний метод [3, 4], застосування якого обмежене високими температурами взаємодії, що сягає 1400 °С [5, 6] та появою небажаних домішок, як правило $LnPO_4$ [7]. Значно рідше для досягнення мети використовують кристалізацію з галогенідних розплавів і гідротермальну взаємодію, які більш трудомісткі та технічно ускладнені для таких систем [8].

Експериментальна частина. Як вихідні реагенти використовувалися: K_2MoO_4 (х. ч.), KPO_3 (х. ч.) та K_2CO_3 (х. ч.) та LaF_3 (ч. д. а.) без попереднього очищення. У дослідженні впливу співвідношення вихідних компонентів розплавленої системи K—La—P—Mo—O на склад отриманих кристалічних продуктів дотримувалися однакового вмісту лантану фториду — 10 % мол. Розраховані кількості фосфатної та молібдатної компоненти нагрівали в платинових тиглях до 1050 °C і, перемішуючи, вносили фторид лантану. Одержані гомогенні розплави витримували в ізотермічних умовах протягом 1 год і охолоджували зі швидкістю 80 °C/год до 950—850 °C. Кристалічні фази виділяли після промивання отриманого продукту від залишків плаву в гарячій дистильованій воді.

Формування кристалічних сполук у фосфатно-молібдатних розплавах, які містили лантан(III), досліджували для бінарних розрізів $K_4P_2O_7-K_2MoO_4$, $KPO_3-K_2Mo_2O_7$ та $KPO_3-K_2Mo_3O_{10}$, при цьому фосфатна компонента розглядалася як безпосередній реагент, а молібдатна — як оптимальний розчинник. Загалом зафіксовано формування сполук двох типів: LaPO₄ та $K_3La(PO_4)_2$ (рис. 1), умови кристалізації яких наведено в таблиці.

Дифрактограми записували за допомогою автоматичного порошкового дифрактометра Shimadzu XRD 6000 у режимі відбиття від плоских зразків (Cu K_{α} -випромінювання з λ = = 1,54178Å; метод 20 безперервного сканування зі швидкістю 1,2° на хвилину; діапазон кутів 20 від 5,0 до 70,0°; графітовий монохроматор перед детектором). ІЧ-спектри записано на приладі "Perkin Elmer Spectrum BX" у таблетках КВг для діапазону частот від 400 до 4000 см⁻¹.

Результати та їх обговорення. У результаті дослідження процесів кристалізації встановлено, що оксиди відповідних лантанідів мають значну інертність щодо взаємодії з розплавленими фосфатами, молібдатами та їх сумішами, тому в більшості випадків для покращення та пришвидшення процесів формування кристалічних фаз оксид був замінений на фторид відповідного лантаніду(III). Варто відзначити, що у трьох областях, які відповідають вмісту більш ніж 75 % P_2O_5 та MoO_3 , відбувається склування розплавів з подальшою їх ліквацією під час охолодження, а в області з високим вмістом K_2O , де співідношення K/P вище дифосфатного, температура плавлення отриманої суміші значно перевищує 1200 °C [9], що знаходиться за межами нашого технічного обладнання. У решті концентрацій одержано два типи фаз — голкоподібні LaPO₄ та призматичні $K_3La(PO_4)_2$ (див. рис.1).

Подвійний фосфат $K_3La(PO_4)_2$ отримано у вигляді призматичних кристалів у розплавах з найвищим співвідношенням K/Mo та K/P. Варто відзначити, що у випадку фосфатних розплавів дана сполука не кристалізується, що пояснюється надзвичайною стійкістю лантану ортофосфату. Крім того, висока лужність розплаву і присутність дифосфат-аніона є необхідною умовою одержання монофазного зразка:

$$2K_2MoO_4 + K_4P_2O_7 + LaF_3 = K_3La(PO_4)_2 + 3KF + K_2Mo_2O_7.$$

Подвійний фосфат K₃La(PO₄)₂ кристалізується в моноклинній сингонії, параметри гратки: a = 9,632(1) Å, b = 5,66(1) Å, c = 7,514(1) Å, $\beta = 90,55(1)^\circ$, V = 409,62(2) Å³ [10, 11].

ІЧ-спектр сполуки характеризується складною композицією смуг поглинань, які властиві подвійним ортофосфатам каркасної будови: інтенсивні смуги в області 950—1150 см⁻¹ належать v_{as} та v_s (P—O) в тетраедрі PO₄, а в діапазоні 400—650 см⁻¹ — до відповідних деформаційних [10].

Фосфат лантану $LaPO_4$, у свою чергу, отримано в розплавах із співвідношеннями К/Мо нижче 1,25 та К/Р 5,0 (див. рис. 1). Це досить стійка сполука, що кристалізується в моноклин-

Склад розплаву, % мол + 10 % мол. LaF ₃			Початкові співвідношення реагентів			
K ₂ O	P_2O_5	MoO ₃	K/Mo	K/(Mo+P)	K/P	Отримані кристалічні фази
33,30	33,30	33,30	2,00	0,67	1,00	LaPO ₄
36,20	33,30	20,50	3,53	0,83	1,09	$LaPO_4$
38,20	33,30	18,50	4,13	0,90	1,15	$LaPO_4$
40,20	33,30	16,50	4,87	0,97	1,21	$LaPO_4$
41,20	33,30	15,50	5,32	1,00	1,24	$LaPO_4$
43,20	33,30	13,50	6,40	1,08	1,30	$LaPO_4$
45,20	33,30	11,50	7,86	1,16	1,36	$K_3La(PO_4)_2 + LaPO_4$
47,20	33,30	9,50	9,94	1,24	1,42	$K_3La(PO_4)_2 + LaPO_4$
49,20	33,30	7,50	13,12	1,33	1,48	$K_3La(PO_4)_2$
36,00	20,50	33,50	2,15	0,97	1,76	$LaPO_4$
38,00	18,50	33,50	2,27	1,08	2,05	$LaPO_4$
40,00	16,50	33,50	2,39	1,20	2,42	$K_{3}La(PO_{4})_{2}+LaPO_{4}$
42,00	14,50	33,50	2,51	1,34	2,90	$K_3La(PO_4)_2 + LaPO_4$
44,00	12,50	33,50	2,63	1,50	3,52	$K_3La(PO_4)_2 + LaPO_4$
46,00	10,50	33,50	2,75	1,69	4,38	$K_3La(PO_4)_2 + LaPO_4$
48,00	8,50	33,50	2,87	1,90	5,65	K ₃ La(PO ₄) ₂ +LaPO ₄
50,00	20,00	20,00	5,00	1,67	2,50	$K_3La(PO_4)_2$
60,00	15,00	15,00	8,00	2,67	4,00	$K_3La(PO_4)_2$
55,00	10,00	25,00	4,40	2,44	5,50	$K_3La(PO_4)_2$
53,00	15,00	22,00	4,82	2,04	3,53	$K_3La(PO_4)_2$

Склад розчинів-розплавів, співвідношення реагентів та утворені кристалічні фази

ISSN 1025-6415. Допов. Нац. акад. наук Укр. 2022. № 5

Рис.1. Області кристалізації в системі К-La-Mo-P-O для вмісту LaF₃ 10 % мол., сірим кольором виділено поля склування

ній сингонії, параметри ґратки C2/c: a = 8,25(1) Å, b = 7,09(1) Å, c = 6,47(1) Å, $\beta = 126,16(1)^{\circ}$, V = 305,55(2)Å³.

ІЧ-спектр сполуки характеризується складною композицією смуг поглинань, які властиві подвійним ортофосфатам каркасної будови: інтенсивні смуги в області 950— 1150 см⁻¹ належать v_{as} та v_s (P—O) в тетраедрі PO₄, а в діапазоні 400—650 см⁻¹ — до відповідних деформаційних.

Фосфат лантану LaPO₄, у свою чергу, отримано в розплавах зі співвідношеннями К/Мо нижче 1,25 та К/Р 5,0 (див. рис. 1). Це досить стійка сполука, що кристалізується в моноклинній сингонії, параметри ґратки C2/с: a = 8,25(1) Å, b = 7,09(1) Å, c = 6,47(1) Å, $\beta = 126,16(1)^\circ$, V = 305,55(2)Å³.

З урахуванням присутності саме димолібдат-аніонів взаємодія компонентів під час утворення цього фосфату може бути зображена таким чином:

$$3K_2Mo_2O_7 + KPO_3 + LaF_3 = LaPO_4 + 3KF + 2K_2Mo_3O_{10}$$
.

У кожному з розглянутих випадків молібдатна компонента виступає у ролі високотемпературного розчинника, однак, як нами встановлено, на відміну від синтезу $LaPO_4$, додавання K_2MoO_4 створює підвищену "лужність" відповідного розплаву. Як наслідок, зсув рівноваги у такій системі спричиняє появу нового фосфату, формування якого в розплавах K-La-P-O раніше не спостерігалося [11].

Отримані нами результати використані для аналізу кислотно-основної рівноваги у розплавах, що містять фосфатні і молібдатні аніони. Для кожної з наведених систем рівновага розглядається як конкуренція за основний оксид " K_2O " двох гіпотетичних оксидів " P_2O_5 " та "MoO₃" кислотної природи. Враховуючи більш кислотний характер саме " P_2O_5 ", рівновага має бути зміщена в бік утворення фосфатів з вищим співвідношенням K/P:

 $2\text{KPO}_3 + 2\text{K}_2\text{MoO}_4 \leftrightarrow \text{K}_4\text{P}_2\text{O}_7 + \text{K}_2\text{Mo}_2\text{O}_7.$

Рис. 2. IЧ-спектри розплавів $\text{KPO}_3 - \text{K}_2\text{MoO}_4$ (1), $\text{KPO}_3 - \text{K}_2\text{Mo}_2\text{O}_7$ (2), $\text{KPO}_3 - \text{K}_2\text{Mo}_3\text{O}_{10}$ (3), $\text{K}_4\text{P}_2\text{O}_7 - \text{K}_2\text{MoO}_4$ (4)

Для перевірки цього припущення вивчено ІЧ-спектри відповідних стехіометричних сумішей після ізотермічної гомогенізації. На рис. 2 (крива 1) зображено набір смуг, що відповідають присутності декількох солей. Так, у області валентних коливань фосфатних тетраедрів 1100- 1200 см^{-1} значне уширення відповідає за співіснування як метафосфатних, так і дифосфатних груп. Однозначна присутність у розплаві саме димолібдату підтверджується характеристичними смугами біля 545 та 834 см⁻¹. Таким чином, підвищена кислотна функція КРО3 зміщує рівновагу в димолібдатно-дифосфатну область таким чином, що у складі розплаву переважають $Mo_2O_7^{2-}$ та $P_2O_7^{4-}$.

Зменшення співвідношення К/Р та К/Мо у розчин-розплавах, що відповідає переходу до розрізів КРО $_3 - K_2 Mo_2 O_7$ і КРО $_3 - K_2 Mo_3 O_{10}$, не порушує встанов-

лену раніше рівновагу. ІЧ-спектри (криві 2 та 3 на рис. 2) є подібними і відображають присутність PO_3^{-1} (смуга при 884 см⁻¹ та 1110 см⁻¹) та переважно $Mo_2O_7^{-2-}$.

Варто також відзначити, що у тримолібдатному розрізі (крива 3 на рис. 2) не виділено коливань, що належать конденсованим молібдатним принаймні тримолібдату, що може бути пов'язано з частковою втратою молібдену(VI) оксиду за рахунок сублімації при досліджуваній температурі. Найбільш основним за своїми властивостями є розріз K₄P₂O₇ — K₂MoO₄, який відповідає максимально можливій ємності щодо калію, а набір смуг в IЧспектрі однозначно підтверджує присутність P₂O₇⁴⁻ (смуги при 465, 545, 1008, 1020, 1081, 1134 см⁻¹) та MoO₄²⁻. Таким чином, у розглянутих розрізах найбільш стабільними є дифосфат-аніон та димолібдат.

Тобто для формування ортофосфату наявність молібдатної компоненти створює умови для поглинання "зайвої" лужної компоненти, яка здійснює перетворення димолібдату в молібдат. Збільшення співвідношення К/Р та К/Мо у розчин-розплавах обумовлює зміну схеми взаємодії з чергуванням полів кристалізації від LaPO₄ у випадку KPO₃— $K_2Mo_2O_7$ та KPO₃— $K_2Mo_3O_{10}$, до $K_3La(PO_4)_2$ у дифосфатному розрізі. У випадку синтезу $K_3La(PO_4)_2$ наявність молібдату калію забезпечує високу лужність відповідного розплаву, що, в свою чергу, визначає передумови для формування саме острівкової структури з високим вмістом лужного елементу.

ISSN 1025-6415. Допов. Нац. акад. наук Укр. 2022. № 5

ЦИТОВАНА ЛІТЕРАТУРА

- 1. Yang Z., Yuan G., Duan X., Liang S., Sun G. HDEHP assisted solvothermal synthesis of monodispersed REPO₄ (RE = La−Lu, Y) nanocrystals and their photoluminescence properties. *New J. Chem.* 2020. 44, N^o 11. P. 4386–4393. https://doi.org/10.1039/C9NJ05829J
- Sousa Filho P.C., Gacoin T., Boilot J.P., Walton R.I., Serra O.A. Synthesis and luminescent properties of REVO₄-REPO₄ (RE = Y, Eu, Gd, Er, Tm, or Yb) heteronanostructures: a promising class of phosphors for excitation from NIR to VUV. *J. Phys. Chem. C.* 2015. **119**, № 42. P. 24062–24074. https://doi.org/10.1021/acs.jpcc.5b08249
- 3. Wu X., Bai W., Hai O., Ren Q., Zheng J., Ren Y. Tunable color of Tb³⁺/Eu³⁺/Tm³⁺-coactivated K₃La(PO₄)₂ via energy transfer: a single-phase white-emitting phosphor. *Opt. Laser Technol.* 2019. **115**. P. 176–185. https://doi.org/10.1016/j.optlastec.2019.02.021
- 4. Bedyal A.K., Ramteke D.D., Kumar V., Swart H.C. Blue photons excited highly chromatic red light emitting K₃La(PO₄)₂: Pr³⁺ phosphors for white light emitting diodes. *Mater. Res. Bull.* 2018. **103**. P. 173–180. https://doi.org/10.1016/j.materresbull.2018.03.034
- 5. Zhao D., Ma F.X., Fan Y.C., Li H.Y., Zhang L. Self-activated luminescent material K₃Dy(PO₄)₂: Crystal growth, structural analysis and characterizations. *Optik.* 2016. **127**, № 22. P. 10297–10302. https://doi.org/10.1016/j.ijleo.2016.08.057
- 6. Gupta P., Kumar V. Structural, optical and spectral studies of Sm³⁺ doped K₃Gd(PO₄)₂ bulk and nanophosphors synthesized by different methods. *Mater. Focus.* 2016. **5**, № 3. P. 227–242. https://doi.org/10.1166/mat.2016.1319
- 7. Ju G., Hu Y., Chen L., Wang X., Mu Z., Wu H., Kang F. A reddish orange-emitting stoichiometric phosphor K₃Eu(PO₄)₂ for white light-emitting diodes. *Opt. Laser Technol.* 2012. 44, № 1. P. 39–42. https://doi.org/10.1016/j.optlastec.2011.05.013
- 8. Nie C.-K., Zhao D., Duan P.-G., Fan Y.-C., Zhang L., Zhang R.-J. Structure twinning and photolumines-cence properties of sodium dysprosium phosphate Na₃Dy(PO₄)₂. J. Mater. Sci.: Mater. Electron. 2018. 29, N^o 2. P. 1664–1671. https://doi.org/10.1007/s10854-017-8079-8
- Farmer J.M., Boatner L.A., Chakoumakos B.C., Rawn C.J., Richardson J. Structural and crystal chemical properties of alkali rare-earth double phosphates. *J. Alloys Compd.* 2016. 655. P. 253–265. https://doi.org/10.1016/j.jallcom.2015.09.124
- Benarafa L., Rghioui L., Nejjar R., Idrissi M. S., Knidiri M., Lorriaux A., Wallart F. Etude théorique et expérimentale des spectres de vibration des phosphates K₃Ln(PO₄)₂. Spectrochim. Acta. A: Mol. Biomol. Spectrosc. 2005. 61, № 3. P. 419–430. https://doi.org/10.1016/j.saa.2004.03.042
- Terebilenko K.V., Kyselov D.V., Baumer V.N., Slobodyanik M.S., Petrenko O.V., Khomenko O.V., Dotsenko V.P. Flux synthesis, monoclinic structure, and luminescence of europium(III)-doped K₃La(PO₄)₂. *Cryst. Res. Technol.* 2018. **53**, № 10. 1800158. https://doi.org/10.1002/crat.201800158

Надійшло до редакції 11.05.2022

REFERENCES

- Yang, Z., Yuan, G., Duan, X., Liang, S. & Sun, G. (2020). HDEHP assisted solvothermal synthesis of monodispersed REPO₄ (RE = La–Lu, Y) nanocrystals and their photoluminescence properties. New J. Chem., 44, No. 11, pp. 4386-4393. https://doi.org/10.1039/C9NJ05829J
- Sousa Filho, P. C., Gacoin, T., Boilot, J. P., Walton, R. I. & Serra, O. A. (2015). Synthesis and luminescent properties of REVO₄-REPO₄ (RE = Y, Eu, Gd, Er, Tm, or Yb) heteronanostructures: a promising class of phosphors for excitation from NIR to VUV. J. Phys. Chem. C, 119, No. 42, pp. 24062-24074. https://doi.org/10.1021/acs.jpcc.5b08249
- 3. Wu, X., Bai, W., Hai, O., Ren, Q., Zheng, J. & Ren, Y. (2019). Tunable color of Tb³⁺/Eu³⁺/Tm³⁺-coactivated K₃La(PO₄)₂ via energy transfer: a single-phase white-emitting phosphor. Opt. Laser Technol., 2019, 115, pp. 176-185. https://doi.org/10.1016/j.optlastec.2019.02.021
- Bedyal, A. K., Ramteke, D. D., Kumar, V. & Swart, H. C. (2018). Blue photons excited highly chromatic red light emitting K₃La(PO₄)₂: Pr³⁺ phosphors for white light emitting diodes. Mater. Res. Bull., 103, pp. 173-180. https://doi.org/10.1016/j.materresbull.2018.03.034

- 5. Zhao, D., Ma, F. X., Fan, Y. C., Li, H. Y. & Zhang, L. (2016). Self-activated luminescent material K₃Dy(PO₄)₂: Crystal growth, structural analysis and characterizations. Optik, 127, No. 22, pp.10297-10302. https://doi.org/10.1016/j.ijleo.2016.08.057
- 6. Gupta, P. & Kumar, V. (2016). Structural, optical and spectral studies of Sm³⁺ doped K₃GD(PO₄)₂ bulk and nanophosphors synthesized by different methods. Mater. Focus, 5, No. 3, pp.227-242. https://doi.org/10.1166/mat.2016.1319
- Ju, G., Hu, Y., Chen, L., Wang, X., Mu, Z., Wu, H. & Kang, F. (2012). A reddish orange-emitting stoichiometric phosphor K₃Eu(PO₄)₂ for white light-emitting diodes. Opt. Laser Technol., 44, No. 1, pp. 39-42. https://doi.org/10.1016/j.optlastec.2011.05.013
- Nie, C.-K., Zhao, D., Duan, P.-G., Fan, Y.-C., Zhang, L. & Zhang, R.-J. (2018). Structure twinning and photoluminescence properties of sodium dysprosium phosphate Na₃Dy(PO₄)₂. J. Mater. Sci.: Mater. Electron., 29, No. 2, pp. 1664-1671. https://doi.org/10.1007/s10854-017-8079-8
- Farmer, J. M., Boatner, L. A., Chakoumakos, B. C., Rawn, C. J. & Richardson, J. (2016). Structural and crystal chemical properties of alkali rare-earth double phosphates. J. Alloys Compd., 655, pp. 253-265. https://doi.org/10.1016/j.jallcom.2015.09.124
- Benarafa, L., Rghioui, L., Nejjar, R., Idrissi, M. S., Knidiri, M., Lorriaux, A. & Wallart, F. (2005). Etude théorique et expérimentale des spectres de vibration des phosphates K₃Ln(PO₄)₂. Spectrochim. Acta. A. Mol. Biomol. Spectrosc., 61, No. 3, pp. 419-430. https://doi.org/10.1016/j.saa.2004.03.042
- Terebilenko, K. V., Kyselov, D. V., Baumer, V. N., Slobodyanik, M. S., Petrenko, O. V., Khomenko, O. V. & Dotsenko, V. P. (2018). Flux synthesis, monoclinic structure, and luminescence of europium(III)-doped K₃La (PO₄)₂. Cryst. Res. Technol., 53, No. 10, 1800158. https://doi.org/10.1002/crat.201800158

Received 11.05.2022

K.V. Terebilenko, https://orcid.org/0000-0003-2403-4347 *S.E. Shnuikov*, https://orcid.org/0000-0003-1338-5272 *M.S. Slobodyanik*, https://orcid.org/0000-0003-2684-9806

Taras Shevchenko National University of Kyiv

E-mail: kterebilenko@gmail.com

PECULARITIES OF LANTHANUM PHOSPHATE FORMATION IN MOLTEN PHOSPHATE-MOLYBDATE MELTS

It is established that the nature of crystal formation in the melts of the K–P–Mo–La–O–F system is determined by the ratio K/Mo and P/Mo. Crystallization fields of framework LaPO₄ and K₃La(PO₄)₂ with arcanite structure have been established. It is shown that the key factor in the formation of complex oxide compounds of rare earth elements from combined molybdate-phosphate melts is the K/Mo ratio in the initial solution — melt: at K/Mo = $0.5 \div 1.0 \text{ LnPO}_4$ orthophosphates are formed, characterized by a framework structure of on $\text{LnO}_7/\text{LnO}_8$; and at K/Mo = $1.5 \div 2.5$, double orthophosphates of the composition K₃Ln(PO₄)₂ with an island structure are formed.

Keywords: lanthanum, molybdate, vanadate, glass structure, melt.