https://doi.org/10.15407/dopovidi2023.01.010

O.A. Dovgoshey^{1, 2}, https://orcid.org/0000-0002-6496-2466

J. Prestin², https://orcid.org/0000-0001-5985-7939

I.O. Shevchuk³, https://orcid.org/0000-0003-1140-373X

E-mail: oleksiy.dovgoshey@gmail.com, prestin@math.uni-luebeck.de, shevchuk@univ.kiev.ua

Bernstein-type characterization of entire functions

Presented by Corresponding Member of the NAS of Ukraine I.O. Shevchuk

Let $\mathcal E$ be the set of all entire functions on the complex plane $\mathbb C$. Let us consider the class $\mathbf X_{\mathbf E}$ of all complex Banach spaces X such that $X \supseteq \mathcal E$. For $(X,\|\cdot\|) \in \mathbf X_{\mathbf E}$ and $g \in X$ we write $E_{n,X}(g) = \inf\{\|g-p\|: p \in \Pi_n\}$, where Π_n is the set of all polynomials with degree at most n. We describe all $X \in \mathbf X_{\mathbf E}$ for which the relation $\lim_{n \to \infty} (E_{n,X}(g))^{1/n} = 0$ holds if and only if $g \in \mathcal E$.

Keywords: Bernstein theorem, entire function, polynomial approximation, Shauder basis, transfinite diameter.

1. Introduction. The initial Bernstein theorem. Let f be a real-valued continuous function on [-1,1] and let $E_{n,[-1,1]}(f)$ be the minimum error in the Chebyshev approximation of f on [-1,1] by polynomials of degree at most n.

Theorem 1. (Bernstein theorem). The equality $\lim_{n\to\infty} E_{n,[-1,1]}^{1/n}(f) = 0$ holds if and only if f is the restriction of an entire function to [-1,1].

This theorem was published in the classical book [1].

The Introduction briefly describes the early development of Bernstein theorem 1. In Section 2 we formulate two new theorems and two conjectures describing the structure of Banach spaces for which "the Bernstein theorem" remains valid.

The Walsh theorem. In 1926 J. L. Walsh [2] published the following result.

Theorem 2 (Walsh theorem). Let $\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ be the one-point compactification of the complex plane, K be a compact subset of \mathbb{C} and let $\overline{\mathbb{C}} \setminus K$ be a simply connected regular for Dirichlet problem domain. Then the following statements are equivalent for every continuous function $f: K \to \mathbb{C}$:

(i) f is the restriction to K of an entire function;

Citation: Dovgoshey O.A., Prestin J., Shevchuk I.O. Bernstein-type characterization of entire functions. *Dopov. Nac. akad. nauk Ukr.* 2023. No 1. P. 10–15. https://doi.org/10.15407/dopovidi2023.01.010

© Publisher PH «Akademperiodyka» of the NAS of Ukraine, 2023. This is an open acsess article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)

¹ Institute of Applied Mathematics and Mechanics of the NAS of Ukraine, Slov'yansk

² Institute of Mathematics, University of Lubeck, Germany

³ Taras Shevchenko National University of Kyiv

(ii) the equality $\lim_{n\to\infty} E_{n,K}^{1/n}(f) = 0$ holds, where $E_{n,K}(f)$ is the minimum error in uniform approximation of f on K by polynomials with degree at most n.

Recall that the domain $\mathbb{C} \setminus K$ is regular for Dirichlet problem if and only if it possesses the classical Green function with pole at infinity.

Considering the over-convergence of polynomials of the best uniform approximation J. Walsh and H. Russell obtained (see [3]) a result which implies that the equivalence (i) \Leftrightarrow (ii) in Walsh theorem 2 remains valid if $\overline{\mathbb{C}} \setminus K$ is an arbitrary regular for Dirichlet problem domain.

The extension of Bernstein theorem by R. S. Varga. For more than thirty years, the Bernstein-Walsh-Russell theorems do not actually attract the attention of mathematicians till the paper of R. S. Varga [4] who characterized the order and type of an entire function f by minimum error sequence $(E_{n,[-1,1]}(f))_{n\in\mathbb{N}}$.

It should be noted here that these remarkable characteristics and the results associated with them are not the subject of present paper, and we limit ourselves to studying the equivalence

$$\lim_{n\to\infty} E_n^{1/n}(f) = 0 \text{ iff } f \text{ is entire.}$$

Reformulation of Bernstein-Walsh-Russell theorems. For further it is convenient to give some suitable reformulations of the Bernstein-Walsh-Russell theorems.

Let us denote by \mathcal{E} the set of all entire functions $f:\mathbb{C}\to\mathbb{C}$ and write Π_n for the set of all polynomials of degree at most n. Now we define the class $\mathbf{X}_{\mathbf{E}}$ as follows.

Definition 1. By $\mathbf{X}_{\mathbf{E}}$ we denote the class of all complex Banach linear spaces $(X, \|\cdot\|)$ such that $(X, \|\cdot\|)$ belongs to $\mathbf{X}_{\mathbf{E}}$ if and only if $\mathcal{E} \subseteq X$.

For $(X, \|\cdot\|) \in \mathbf{X_E}$, we define the set \mathcal{L}_X as $\mathcal{L}_X := \{f \in X : \lim_{n \to \infty} (E_{n,X}(f))^{1/n} = 0\}$, where, for every $n \in \mathbb{N}$, $E_{n,X}(f) = \inf\{\|f - p\| : p \in \Pi_n\}$. We will also denote by C_K the set of all continuous complex-valued functions on the compact $K \subseteq \mathbb{C}$ and write $\|f\|_{\infty} := \sup_{z \in K} |f(z)|$ for $f \in C_K$.

Now the classical results of Bernstein, Walsh, and Walsh-Russell can be formulated as follows. **Theorem 3.** (Bernstein theorem). Let $(X, \|\cdot\|) = (C_{[-1,1]}, \|\cdot\|_{\infty})$. Then the equality

$$\mathcal{E}_X = \mathcal{L}_X \tag{1}$$

holds.

Theorem 4. (Walsh theorem). Let $(X, \|\cdot\|) = (C_K, \|\cdot\|_{\infty})$. Equality (1) holds if $\overline{\mathbb{C}} \setminus K$ is a simply connected regular for Dirichlet problem domain.

Theorem 5. (Walsh-Russell theorem). Let $(X, \|\cdot\|) = (C_K, \|\cdot\|_{\infty})$. Equality (1) holds if $\overline{\mathbb{C}} \setminus K$ is a regular for Dirichlet problem domain.

2. The main results. In this section we formulate new Theorems 6, 7, and Conjectures 1, 2.

Theorem 6. Let $X \in \mathbf{X_E}$. Then equality (1) holds iff $0 < \liminf_{n \to \infty} (\tau_{n,X})^{1/n}$ and $\limsup_{n \to \infty} (m_{n,X})^{1/n} < \infty$ hold.

Theorem 7. Let a complex Banach space Y have a Shauder basis. Then Y is linearly isometric to a space $X \in \mathbf{X_E}$.

By Mazur's theorem, every infinite-dimensional vector normed space contains an infinite-dimensional subspace that has a Shauder basis (see, for example, Theorem 6.3.3 in [5]). Hence, Theorem 7 implies the following.

Corollary 1. Every infinite-dimensional complex Banach space contains a subspace Y which is linearly isometric to some $X \in \mathbf{X_E}$.

Let us consider now some corollaries of Theorem 6 for the case of uniform approximation. It is clear that

$$|Walsh-Russell theorem| \Rightarrow |Walsh theorem| \Rightarrow |Bernstein theorem|$$

In what follows we will use the concept of transfinite diameter.

For $K \subseteq \mathbb{C}$ and $u_1, \ldots, u_n \in K$, we write

$$V(u_1,...,u_n) := \prod_{\substack{k,l \ k < l}} (u_k - u_l)$$

and

$$V_n = V_n(K) := \sup\{|V(u_1, ..., u_n)| : u_j \in K, 1 \le j \le n\}.$$

In accordance with M. Fekete, the *transfinite diameter* of *K* is the number

$$d(K) = \lim_{n \to \infty} V_n^{\frac{2}{n(n-1)}}.$$

Let $(X, \|\cdot\|) \in \mathbf{X}_{\mathbf{E}}$. If $f_n \in \Pi_n$ is the monomial $f_n(z) = z^n$, we write

$$m_{n,X} = ||f_n||$$
 and $\tau_{n,X} = \inf_{p \in \Pi_{n-1}} ||f - p||$.

Fekete [6] proved that $\lim_{n\to\infty} (\tau_{n,X})^{1/n}$ (the Chebyshev constant) exists for $(X,\|\cdot\|)=(C_K,\|\cdot\|_{\infty})$. In this case he also showed in [7] that

$$\lim_{n \to \infty} (\tau_{n,X})^{1/n} = d(K). \tag{2}$$

The existence of Green function for the domain $\overline{\mathbb{C}} \setminus K$ implies that the Robin constant $\gamma(\overline{\mathbb{C}} \setminus K)$ is strictly positive,

$$\gamma(\overline{\mathbb{C}} \setminus K) > 0. \tag{3}$$

Now, from the equality

$$d(K) = \gamma(\overline{\mathbb{C}} \setminus K), \tag{4}$$

we have

Theorem 6 & (3) & (4)
$$\Rightarrow$$
 Walsh-Russell theorem

Remark 1. Inequality (3) and equality (4) follow, respectively, from Theorem 1 and Theorem 2 of Goluzin's book [8, p. 311].

Using Faber's polynomials A. V. Batyrev [9] proved the following.

Theorem 8 (Batyrev theorem). A function f, holomorphic on a compact set $K \subseteq \mathbb{C}$ with the positive transitive diameter d(K), and with the simply connected $\overline{\mathbb{C}} \setminus K$, can be extended to an entire function if and only if $\lim_{n\to\infty} E_{n,K}^{1/n}(f) = 0$, where $E_{n,K}(f) = \inf\{\|f-p\|: p \in \Pi_n\}$. Batyrev theorem was extended by T. Winiarski [10] for the case when $\overline{\mathbb{C}} \setminus K$ is not necessar-

ily simply connected. Using our notation we can formulate this result as follows.

Theorem 9 (Winiarski theorem). If K is a compact subset of \mathbb{C} with d(K) > 0, then (1) holds for $(X, \|\cdot\|) = (C_K, \|\cdot\|_{\infty})$.

Thus, we obtain

$$\begin{array}{c|c} \hline \text{Theorem 6 \& (2)} & \Rightarrow & \hline \text{Winiarski theorem} & \Rightarrow & \hline \text{Batyrev theorem} \\ & & \downarrow \\ \hline \hline \text{Walsh-Russell theorem} \\ \hline \end{array}$$

Theorem 6 and (2) also imply the following result which shows that the converse to Winiarski theorem is valid.

Corollary 2 [11]. Let K be a compact set in \mathbb{C} with $|K| = \infty$. Then, for $(X, \|\cdot\|) = (C_K, \|\cdot\|)$, equality (1) holds if and only if d(K) > 0.

Corollary 2 can be strengthen as follows.

Theorem 10 [12]. Let K be a compact subset of \mathbb{C} . Then the following statements are equivalent for the space $(X, \|\cdot\|) = (C_K, \|\cdot\|_{\infty})$:

- (i) the equality $\mathcal{L}_X = \{f \mid_K : f \text{ is holomorphic on } K\}$ holds;
- (ii) the transfinite diameter of K equals zero.

The original formulation of Theorem 10 contains the condition: "The logarithmic capacity of K is zero" instead of statement (ii); but it was shown by P.J. Myrberg [13] that the logarithmic capacity coincides with the transfinite diameter for every compact $K \subset \mathbb{C}$.

We conclude this brief survey of "uniform" generalizations of the Bernstein theorem by following.

Theorem 11 [10]. Let $K \subseteq \mathbb{C}$ be a compact set with $|K| = \infty$ and let $f \in (C_K, \|\cdot\|_{\infty})$. The function f can be extended to an entire function if and only if

$$\lim_{n\to\infty} \left[E_{n,K}(f) \frac{V_{n+1}(K)}{V_{n+2}(K)} \right]^{1/n} = 0.$$

The last theorem is valid even if d(K) = 0. This result and the equality

$$d(K) = \lim_{n \to \infty} \left(\frac{V_{n+1}(K)}{V_n(K)} \right)^{1/n}$$

imply Winiarski theorem.

Theorem 11 can be derived also from the results A. G. Naftalevich, whose paper [14], apparently, is the first attempt to consider the polynomial approximation of entire functions on compact sets of zero transfinite diameter.

Let us turn to the weighted polynomial approximation.

Let K be a bounded subset of $\mathbb C$ and let $w:K\to [0,\infty)$ be a weight on K. We denote by $X=X_w$ the set of all functions $f:K\to \mathbb C$ such that

$$||f||_{\infty, w} = \sup_{z \in K} |f(z)w(z)| < \infty.$$

Then $\|\cdot\|_{\infty,\,w}:X\to[0,\infty)$ is a seminorm on X. Furthermore, the space $(\quad,\|\cdot\|_{\infty}\quad)$ belongs to $\mathbf{X}_{\mathbf{E}}$ if and only if the set $K\smallsetminus w^{-1}(0)$ has an infinite cardinality.

Conjecture 1. Let K be a bounded subset of $\mathbb C$ and let $w:K\to [0,\infty)$ be a weight on K such that $|K\setminus w^{-1}(0)|=\infty$. Then the following statements are equivalent:

- (i) equality (1) holds for $(X, \|\cdot\|_{\infty, w})$;
- (ii) there is a constant $c \in (0, \infty)$ such that $\liminf_{n \to \infty} V_n^{2/(n(n-1))}(K_n) > 0$, where

$$K_n = \{z \in K : w(z) \geqslant c^n\}$$
.

We conclude the paper by the following conjecture that can be considered as a "weighted generalization" of the Walsh-Russell theorem.

Conjecture 2. The following statements are equivalent for every compact $K \subseteq \mathbb{C}$ with $|K| = \infty$ and connected $\overline{\mathbb{C}} \setminus K$.

- (i) Equality (1) holds for every $(X, \|\cdot\|_{\infty})$ with continuous $w(z) \neq 0$.
- (ii) The domain $\overline{\mathbb{C}} \setminus K$ is regular for Dirichlet problem.

We conclude the paper by the following.

Problem 1. Does every $X \in \mathbf{X}_{\mathbf{E}}$ have a Shauder basis?

Remark 2. The first example of separable Banach space which does not have any Shauder basis was constructed by P. Enflo [15]. So, if the above formulated problem has a positive solution, then using Theorem 6 we can characterize the complex Banach spaces with a basis as spaces linearly isometric to \mathbf{X}_{E} -spaces.

O. Dovgoshey's research is partially financed by Volkswagen Stiftung Project "From Modeling and Analysis to Approximation".

REFERENCES

- 1. Bernstein, S. N. (1926). Leçons sur les propriétés extrémales et la meilleure approximation des fonctions analytiques d'une variable réelle. Paris: Gauthier-Villars.
- Walsh, J. L. (1926). Über den Grad der Approximation einer analytischen Funktion. In Sitzungsberichte der Mathematisch-Naturwissenschaftlichen Abteilung der Bayerischen Akademie der Wissenschaften zu München (heft 2) (pp. 223-229). München: Oldenbourg Wissenschaftsverlag. https://doi.org/10.1515/9783486751932-002
- 3. Walsh, J. L. & Russell, H. G. (1934). On the convergence and overconvergence of sequences of polynomials of best simultaneous approximation to several functions analytic in distinct regions. Trans. Amer. Math. Soc., 36, pp. 13-28. https://doi.org/10.2307/1989705
- 4. Varga, R. S. (1968). On an extension of a result of S. N. Bernstein. J. Approx. Theory, 1, pp. 176-179. https://doi.org/10.1016/0021-9045(68)90020-8
- 5. Kadets, M. I. & Kadets, V. M. (1997). Series in Banach spaces: conditional and unconditional convergence. Basel, Boston, Berlin: Birkhäuser.
- Fekete, M. (1923). Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten. Math. Z., 17, pp. 228-249. https://doi.org/10.1007/BF01504345

- 7. Fekete, M. (1930). Über den transfiniten Durchmesser ebener Punktmengen, II. Math. Z., 32, pp. 215-221. https://doi.org/10.1007/BF01194630
- 8. Goluzin, G. M. (1969). Geometric theory of functions of a complex variable. Providence: American Mathematical Society.
- 9. Batvrey, A. V. (1951). On the problem of best approximation of an analytic function by polynomials, Dokl. Akad. Nauk SSSR, 26, pp. 173-175 (in Russian).
- 10. Winiarski, T. (1970). Approximation and interpolation of entire functions. Ann. Pol. Math., 23, pp. 259-273.
- 11. Dovgoshey, A. A. (1995). Uniform polynomial approximation of entire functions on arbitrary compact sets in the complex plane. Math. Notes, 58, No. 3, pp. 921-927. https://doi.org/10.1007/BF02304768
- 12. Walsh, J. L. (1946). Taylor's series and approximation to analytic functions. Bull. Amer. Math. Soc., 52, pp. 572 - 579.
- 13. Myrberg, P. J. (1933). Über die Existenz der Greenschen Funktionen auf enier Gegebenen Riemannschen Fläche. Acta Math., 61, pp. 39-79. https://doi.org/10.1007/BF02547786
- 14. Naftalevich, A. G. (1969). On the approximation of analytic functions by algebraic polynomials. Litovsk. Matem. Sb., 9, No. 3, pp. 577-588 (in Russian).
- 15. Enflo, P. (1973). A counterexample to the approximation problem in Banach spaces. Acta Math., 130, No. 1, pp. 309-317. https://doi.org/10.1007/BF02392270

Received 27.09.2022

 $O.A.\ Довгоший^{1,2},\ https://orcid.org/0000-0002-6496-2466$ $IO.\ Престии^2,\ https://orcid.org/0000-0001-5985-7939$ $I.O.\ Шевчук^3,\ https://orcid.org/0000-0003-1140-373X$

E-mail: oleksiv.dovgoshev@gmail.com, prestin@math.uni-luebeck.de, shevchuk@univ.kiev.ua

ХАРАКТЕРИЗАЦІЯ ЦІЛИХ ФУНКЦІЙ НЕРІВНОСТЯМИ ТИПУ БЕРНШТЕЙНА

Нехай \mathcal{E} — це множина усіх цілих функцій, що задані на комплексній площині \mathbb{C} . Розглянемо клас $\mathbf{X}_{\mathbf{F}}$ усіх Банахових комплексних просторів X таких, що $X \supseteq \mathcal{E}$. Для $X \in \mathbf{X_E}$ і $g \in X$ позначено $E_{n,X}(g) = \inf\{\|g-p\|: p \in \Pi_n\}$, де Π_n — це множина всіх многочленів степеня не вище n. Описано усі $X \in \mathbf{X}_{\mathbf{E}}$, для яких співвідношення $\lim_{n \to \infty} (E_{n,X}(g))^{1/n} = 0$ виконується тоді і тільки тоді, коли $g \in \mathcal{E}$.

Ключові слова: теорема Бернштейна, ціла функція, наближення многочленами, базис Шаудера, трансфінітний діаметр.

¹ Інститут прикладної математики і механіки НАН України, Слов'янськ

² Інститут математики університету Любека, Німеччина

³ Київський національний університет ім. Тараса Шевченка