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In this paper, we investigated a new large-scale instability that arises in an obliquely rotating convective electrically conducting fluid
in an external uniform magnetic field with a small-scale external force with zero helicity. This force excites small-scale velocity
oscillations with a small Reynolds number. Using the method of multiscale asymptotic expansions, we obtain the nonlinear equations
for vortex and magnetic disturbances in the third order of the Reynolds number. It is shown that the combined effects of the Coriolis
force and the small external forces in a rotating conducting fluid possible large-scale instability. The linear stage of the magneto-
vortex dynamo arising as a result of instabilities of « -effect type is investigated. The mechanism of amplification of large-scale
vortex disturbances due to the development of the hydrodynamic « - effect taking into account the temperature stratification of the
medium is studied. It was shown that a «weak» external magnetic field contributes to the generation of large-scale vortex and
magnetic perturbations, while a «strong» external magnetic field suppresses the generation of magnetic-vortex perturbations.
Numerical methods have been used to find stationary solutions of the equations of a nonlinear magneto-vortex dynamo in the form of
localized chaotic structures in two cases when there is no external uniform magnetic field and when it is present.

KEY WORDS: equations of magnetic hydrodynamics in Boussinesq approximation, Coriolis force, multi-scale asymptotic
expansions, small-scale non-helical turbulence, « -effect, chaotic structures

As is known, the problems of generation of magnetic fields of planets, stars, galaxies and other space objects
are studied within the framework of dynamo theory. For the first time, the term «dynamo» in connection with the
generation of magnetic fields is introduced by Larmor [1]. In his opinion, hydrodynamic motion of an
electroconductive fluid could engender a magnetic field by acting as the dynamo. In the linear theory or kinematic
dynamo with the small magnetic energy compared to the medium motion kinetic energy, the magnetic forces hardly
influence the medium flow. Currently, the kinematic theory of dynamo is practically built [2-11]. In this theory a
significant role belongs to rotational motion of space bodies which generates various waves (e.g. Rossby or inertial
waves ) and vortex motions (geostrophic, etc. [12-19]). In particular, under the influence of the Coriolis force the
initial mirror-symmetric turbulence turns into helical one characterized by breakdown of the mirror symmetry of the

turbulent fluid motion. The invariant J, = Vrotv is the important topological characteristic of helical turbulence. It
measures the knottedness of vortex field force lines [20]. It was shown in [21] that the generation of large-scale field

occurs under the action of turbulent em.f. proportional to the mean magnetic field ¢ =aH . Coefficient « is

proportional to the mean helicity of the velocity field « ~ vrotv and is so called « -effect. The generation properties
of helical turbulence were considered not only in magnetic hydrodynamics or in electroconductive media, but in
conventional hydrodynamics as well. For the first time the hypothesis that helical turbulence may generate large-
scale vortices was reported in [22]. It was based on the formal similarity of the equations of magnetic field induction

H and those for vorticity & = rotv.

However, as proved in [23], the « -effect cannot occur in an incompressible turbulent fluid because of the
symmetry of the Reynolds stress tensor in the averaged Navier-Stokes equations. Thus, for the appearance of the
hydrodynamic « -effect, one helicity of turbulence is not enough, other factors of symmetry breaking of turbulent
flow are needed. As shown in [24] and [25], these factors are compressibility and temperature gradient in
gravitational field, respectively. The effect of generation of large-scale vortex structures (LSVS) by helical
turbulence is called vortex dynamo. The vortex dynamo mechanisms were developed with reference to the turbulent
atmosphere and ocean. The theory of convective vortex dynamo was built in [25-31].

According to this theory, helical turbulence gives rise to a large-scale instability leading to the formation of a
convective cell interpreted as a huge vortex of tropical cyclone type. There are many papers which deal with LSVS
© Michadl I. Kopp, Anatoly V. Tur, Konstantin N. Kulik, Volodymyr V. Yanovsky, 2020
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generation and take into account the effects of the rotation [32-37]. Just another « -effect is reported in [38], where
turbulent fluid motion is modelled by means of an external small-scale force F,. This model is characterized by

parity violation (at zero helicity: F,rotF, =0 ). The effect of generation of large-scale disturbances by such aforceis

called anisotropic kinetic ¢ -effect, or AKA-effect [38]. The mentioned paper consideres the large-scale instability
in an incompressible fluid by means of the method of asymptotic multi-scale expansions. This method uses the

Reynolds number R= \%" <1 asasmall parameter for small-scale pulsations of the velocity V, caused by the small-

scale force. In real situations, because of the low kinematic viscosity, the Reynolds number number is large.
However, in reality, the small scale turbulence generates turbulent viscosity. The Reynolds number calculated with

this turbulent viscosity is not large R=V;—t°<<1. For this reason, the theory presented below can be applied
0

approximately to real objects.

It is evident that applicability of kinematic theory of magnetic and vortex dynamos is limited. After a certain
time, the intensified fields (vortex and magnetic ones) begin to affect the flows. In this case the behavior of the
magnetic field and the motion of the meduim must be considered self-consistently, i.e. in the frame of the nonlinear
theory. The observed magnetic fields of real objects exist probably just in nonlinear mode. So, the nonlinear theory
[39] appears to be very important. In this paper the nonlinear theory of magnetic dynamo is based on generalization
of the theory of mean field (see e.g. [7]) taking into account the nonlinear effects.

However, the theory of mean field does not alow us to determine the principal order at which the instability
occurs from the whole hierarchy of perturbations. Therefore, an alternative for construction of a nonlinear dynamo
theory is the method of multi-scale asymptotic expansions [38]. This method allows to construct the nonlinear
theories of vortex dynamo for compressible media [40-41], as well as for convective media with a helical external
force [30-31]. The asymptotic multi-scale method is used to reveal large-scale instability in the thermally stratified
conductive medium in the case of helicity of small-scale velocity and magnetic fields [42-43]. Development of this
large-scale instability in a convective electroconductive medium engenders the generation of both vortex and
magnetic fields as well. Self-consistent or nonlinear theory of magneto-vortex dynamo in a convective
electroconductive medium with small-scale helicity was built in [43].

In this work, the possibility of the formation of stationary chaotic large-scale structures in magnetic and vortex
fields was shown for the first time. The particular case of the formation of large-scale stationary magnetic structures
was also considered in this work. These structures were classified as stationary solutions of three types: nonlinear
waves, solitons and kinks. Qualitative estimations of the linear stage [42] for solar conditions allow to set a good
agreement of the characteristic scales and times of the formed hydrodynamic structures with those of the structures
found experimentally [44].

In the above-mentioned papers helical turbulence was considered as a priori known, or the problem of its
generation was examined independently [45]. The question naturally arises about the possibility of generation of
large-scale vortices (hydrodynamic and magnetic) in rotating media under the action of a small-scale force with zero

helicity F,rotF, =0. The example of LSV'S generation in a rotating incompressible fluid is found in [46]. The

development of this large-scale instability in obliquely rotating fluid gives rise to nonlinear large-scale helical
structures of Beltrami vortex type, or to localized kinks with internal helical structure. In [47] the new hydrodynamic
o -effect found in [46] was generalized to the case of electroconductive fluid. The corresponding large-scale
instability leads to the generation of LSVS and magnetic fields. The nonlinear stage of this instability gives chaotic
localized vortices and magneic structures. As is known [48-49], a large-scale motion caused by nonuniform heating
in a gravitation field (free convection) exists in convective zones of the Sun and other stars, as well as in the core of
the Earth and other planets. The convection in which the rotation axes of the medium and uniform magnetic field
coincide with the direction of gravitation vector, was studied in detail in [49]. However, for astrophysical problems it
is important to consider the case when the directions of the rotation axes and of magnetic fields are perpendicular, or
do not coincide with each other. The role of azimuthal magnetic field significantly increases for convective fluid
layers located in the equatorial region of the rotating object. As known from the theory of magnetic dynamo [2-7],
the toroidal magnetic field in the Earth's crust and in the atmosphere of the Sun exceeds the poloidal magnetic field.
The aim of thiswork is to study generation and nonlinear evolution of vortices and magnetic fields in a rotating

stratified electoconductive fluid in an external uniform magnetic field under the action of the nonhelical force F,.
Suppose that the vector of angular rotation velocity Q is deviated from the vertical direction OZ , and the vector of
the external magnetic field B is located in the horizontal plane XOY perpendicular to the direction of the gravity
force § (Fig. 1). This geometry is most suitable for the description of dynamo processes in rotating space objects.
The results obtained in the present work can be applied for various astrophysical problems.
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Fig.1. Shows schematically a thin layer of rotating electroconductive fluid of astrophysical object. For the general case the angular
velocity Q isinclined to the plane (X,Y) where the induction vector B of uniform magnetic filed is located. The gradient of
equilibrium temperature is directed vertically downwards: T, > T, - heating from below.

BASIC EQUATIONS AND FORMULATION OF THE PROBLEM
Consider the dynamics of perturbed state of the electroconductive fluid located in the constant gravitation § and

magnetic B fields with the constant temperature gradient VT inthe system of rotating coordinates:

M vkﬁ = va—\:‘—i£+ 25,V +Mﬁ(8k +By) +
ot 0%, OX  p O% drp OX,
+96/40 + Fy D
oB _ 0 = o°B
E_gijkgknpa_xj(vn(BpJ’_Bp))J’_vm 6)(5 (2)
00 00 o’
— 4+ - Aepy, 3
a  kp A4 o2 ©)
N _B @
oX 0%

Here V,, P, B, © are the perturbations of velocity, pressure, magnetic field induction and fluid temperature

(i=x%xYVY,2). Bi =const is the induction of the external homogeneous magnetic field; Z is the equilibrium density of
2

the medium Z =const, v, y arefluid viscosity and thermal conductivity coefficients respectively, v,, = isthe

4ro,

magnetic viscosity coefficient. o, is coefficient of electrical conductivity of the medium and £ is thermal expansion

coefficient. The system of magnetic hydrodynamic egs. (1)-(4) is written in the Boussinesq approximation [48] and

describes the evolution of disturbances relative to the equilibrium state given by the constant temperature gradient
—2

VT =—Ag (A>0) and the hydrostatic pressure; V[F’Jrs—] = Zg . Here we neglect the centrifugal forces, since the
7T
condition g > Qr , where r isthe characteristic radius of fluid rotation, is satisfied. Now let us formulate the problem

with the geometry shown in Fig. 1. Consider a thin layer (with the thickness h) of a rotating electoconductive fluid in
which the lower and the upper surfaces have the temperatures T, and T, , respectively. We suppose T, > T, , i.e. heating

from below. In this case the direction of the temperature gradient VT = A coincides with the direction of the
gravitation field g =—gg€,. Here & =(0,0,1) is the unit vector in the direction of the axis Z . The temperature profile

T depends linearly on the vertical coordinate z: 'I_'(z):Tl—Tl;]T2

-z. The vector of angular rotation velocity

Q= (Ql,QZ,Qa) is constant (solid-body rotation) and inclined with respect to the plane (X,Y) where is the vector of

homogeneous magnetic field B = (B, B2,0) .
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Eg. (1) contains the external force F,. It models the source of external excitation in the medium of small-scale and
high-frequency fluctuations of the velocity field v, with the small Reynolds number Rz\%"«l. Here we will
consider the non-helical external force If0 with the following properties:

= - - - S x t
divF, =0, Frotk, =0, rotk, # 0, F, = f,F, [—;—j (5
ZO
where 4, isthe characteristic scale, t, isthe characteristic time, f, isthe characteristic amplitude of the external force.
Now choose the external force in arotating coordinate system in the form:

Fy =0, F, = f,(icosp, + jcosp, ),
o = KX—ot, ®, = K,X— ot , (6)

%, = %,(1,0,0), %, = x,(0,1,0).

It is evident that this external force satisfies all the conditions (5). Let us consider the dimensionless variablesin
egs. (1)-(4). For convenience we keep the same notation as for dimensional variables:

X V - F
% t—>l, VoY, F,—->-2,

j’O 0 VO fO

. B = B

B>—, B>—, @—)ﬂ,

B, B, Iy

(kW 5 P o
0=, Do /102’ F%’ 0 p%-

Here V,, By, P, are the characteristic values of small-scale pulsations of the velocity, magnetic field and pressure. In

the dimensionless variables egs.(1)-(3) take the form:
v, ov, _ 0%, oP

0 —
iV, Dy +&m5ijk51m %(Bk +Bx) +

— t K A 2 ijkVj
ot 0%, O% 0% RP
Ra i
+6 —O+F, 7
SRero e @)
0B, L, 0°B 0 =
E— Pm a—xi - Ré'ijké'knpa—xj(vn(Bp + Bp)) (8)
2
a—G)JrR\/ka—@—ReKvk :Pr’la? 9
ot OX, OX
Whithe new temperature ® - ®/ R and magnetic field B — B/ R we obtain finaly:
2
ﬁ-ﬁ- Rv, ﬁ = 6_\2_@4( &5 V;Dy + R(jgijkgjm| ﬁ B, +
ot 0%, O% OX% X,
S 53 R . i
+Q8 & im a B« +g Ra®+F, (10)
0B, L, 0°B _ 0 0 ([ =
5 1@ = Ry 8_xj(v" By )+ ki a_x,.(v” BP) (11
2
a—®—Pr’16 (? :—R\/ka—®+eKvk (12)
ot 0%, OX,
NM_B_, (13)
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~ 4
Here we use the following dimensionless parameters. Ra = ? , Ra=m is the Rayleigh number in the
r vy
20,22 , . . :
scale 4,; D, =—— - the rotation parameter in the scale 4, (i=1,2,3) connected with the Taylor number
v

Q

Ta =D/; Q= B’ Q= - the Chandrasekhar number, Pm= Y the magnetic Prandtl number, Pr = r

o, 822/102
¢ pv Vin X

the Prandtl number. The small parameter of asymptotic expansion is the Reynolds number R:V/"l—to«l and the
0

parameters D, Q and Ra are arbitrary and do not affect the scheme of asymptotic expansion. The presence of the

small parameter (R« 1) in the system of egs. (10)-(13) alows us to apply the theory of multi-scale asymptotic
expansions (see e.g. [30-31], [38]). In contrast to the theory of mean field [2-7] we can consistently see the dynamics of
disturbances for different spatial and temporal scalesin each order by R. In particular, in the zero order of R, small-

scale and high-frequency oscillations of the velocity v, are excited by the external force F, acting at the equilibrium

state. Obviously, the dynamics of small-scale fields depends on external factors such as rotation and stratification of the
medium, magnetic and gravitation fields, etc. These oscillations are characterized by zero average values. Nevertheless,
the nonlinear interactions in some orders of the perturbation theory give rise to the terms which do not vanish at
averaging. In the next section, we consider in detail how to find the solvability conditions for the multi-scale asymptotic
expansion, which define the evolution equations for large-scal e perturbations.

EQUATIONSFOR LARGE-SCALE FIELDS
In accordance with the method of construction of asymptotic equations [30-31], [38] let us present spatial and
temporal derivativesin egs. (10)-(13) in the form of the asymptotic expansion:
LN o, +Ro;, SN 0, + RV, (14)
ot OX

where 0, and 0, are the derivatives with respect to the fast variables X, = ()?o,to) , whereas V; and O, are the
derivatives with respect to the siow variables X = (X,T). Thevariables X, and X may be referred to as small- and

large-scale variables, accordingly. While constructing the nonlinear theory we present the variables vV , B , P inthe
form of the asymptotic series:

VI(R,1) = 2V (X)+ V(0,4 RY, + RV, + R+
%B {(X)+By(%)+RB,+R°B, + R°B, +--- (15)
T,(X)+T,(x,)+ RT, + R°T, + R°T, + ---

1
R2
Let us substitute the expansions (14)-(15) into the system of egs. (10)-(13) . Then we select the terms of the same

ordersof R up to the degree R® and obtain the equations of multi-scale asymptotic expansion. The algebraic structure
of the asymptotic expansion of egs. (10)-(13) of different ordersin R is presented in Appendix A. Hereit is shown that

the basic secular equations, i.e. those for large-scale fields, are obtained in the order R®

P(X) _3 P_2+;P +P( )+R(H+51(X))+R2P2+R3%+...

8tW_i1 - VEW_Il + Vk (Vl(;vlo) = —Vi El + Qgijkgjm (vm(BloBg)) (16)

0B, -Pm'VZB = EiiapY | (Vo BY) (17)

o;T - PrveT, = -v, (T, (18)
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Using the convolution of the tensors &€y = S0 — Ol EijkEiap = Oin0jp — Oip0jn and the denotations

W =W_1, H= I_3>_1 obtain egs. (16)-(17) in the following form:

O W — VW +V, (Vi) ——Vil31+Q(Vk(BgB§)—%(B§)2J (19)

0rH; = PMViH, =V, (V,BJ) -V, (VBy) (20)
Egs. (16)-(18) are supplemented with the secular equations derived in Appendix A:
-ViP,+&,WD, +¢ I;aT_1 =0, W7=0,
WAV W, ==V, P, +Qeye (VBB + VBB,
£y (V WSB% +V W1B,) =0,

W20, YWL=0, V8,0
To obtain the system of egs. (16)-(18) which decribe the evolution of large-scale fields we have to reach the third

order of the perturbation theory. This is a rather typical phenomenon when applying the method of multiscale
expansions. As seen from egs. (16)-(17), the large-scale temperature T ; does not influence the dynamics of the large-

scale field of the velocity W_l and the magnetic field I§_l, therefore let us confine ourselves to investigation of egs.
(16)-(17). These equations acquire a closed form after calculation of the correlation functions i.e. the Reynolds stresses

V (ViVvy) , the Maxwell stresses V, (BIBY) and the turbulent emf. &£, =g, VOBJ Calculation of these

correlation functions is significantly simplified due to the «quasi-two-dimensional» approximation which is often used
for description of large-scale vortices and magnetic fields in many astrophysical and geophysical problems. In the
framework of this approximation we consider the large-scale derivative with respect to Z as more important than
horizontal derivatives, i.e.

nij

0 0 0

V,=— , .
0Z 0OX oY
Therefore, the geometry of large-scal e fields has the following form:

W =(W,(2),W,(Z),0),H =(H,(2),H,(2).0) (21)

For the «quasi-two-dimensional» problem the system of egs. (14)-(15) is simplified:

W, — VAW, +V, () = OV, (BIB}) (22)
B, ~VEW, +V, (o)) = OV, (BBY) (23)
0, H, - PMV3H, =V, (B) -V, (V) (24)
o;H, —PMV2H, =V, (WB{) -V, (VB)) (25)
O, ~PrVET, 4V, (T, =0 (26)

To have egs. (22) -(26) in the closed form we use the solutions of the equations for small-scale fields in the zero
order in R obtained in Appendix B. Then it is necessary to calculate the correlators contained in the system (22)-(26).
The technical aspect of this problem is considered in detail in Appendix C. The calculations performed here make
possible to obtain the following closed equations for large-scale fields of the velocity (W,,W,) and the magnetic fields

(Hy,H,):

oW, - Vivvl +V, (a(z) ' (l_Wz )) =0 (7
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W, - VAW, -V, (- (1-W,)) = 0 29)
orH,— PM'V2H, +V,(e? - H,)=0 (29)
oH,—PM*V2H, -V, (o - H,)=0 (30)

where the nonlinear coefficients ), &), aS), a&z) have the form:

f_oz. qulQl (1_\/\4)_1
2 4(1-W) Q7 +[ D2+ W, (2-W)+ 44 ] + &

%

—h

_02. DzQzQz (l_Wz)il
2 4(1-W,)* 62Q2 +[ DF +W, (2-W, )+ 41, | +¢,

%)

D, (1-W,) PmQ, (1+ B:/ H,)
(1 Prre (LW ) &

al(-ll) = fo2 :

a? = 122 (1-W, ) PmQ, (1+ B2/ H,)
(1+ Pr? (1-w, 1) &,

The expressions which denote ¢,,, Q,, Q. t4,, Ousy Zis» &ay &, @€ adso presented in Appendix C. The
coefficients «,, a, and «f, i correspond to the nonlinear HD « -effect and the nonlinear MHD « -effect,

respectively. Thus, we have obtained the self-consistent system of nonlinear evolution equations for the large-scale
perturbations of the velocity and magnetic field which further are called the equations of nonlinear magneto-vortex
dynamo. It should be noted that the mechanism of dynamo «works» only due to the effect of rotation of the medium. If
this rotation is absent (2 =0), then the diffuse spreading of large-scale fields occurs. In the absence of heating

(VT =0) and of external magnetic field (B = 0) egs. (27)-(28) coincide with the results found in [47]. In the case of
non-electroconductive fluid (o =0) with the temperature gradient (V'T # 0) we obtain the same results as in [50]. In

the limit of non-electroconductive (o = 0) and homogeneous fluid (V'T =0) we obtain the results of [46]. To study

this dynamo model, it is necessary at first to consider the evolution of small perturbations and then to examine the
nonlinear effects.

LARGE-SCALE INSTABILITY
Let us consider the behavior of small perturbations of the field of velocity (V\4V\/2) and the magnetic fields

(H,.H,) . Then expand the nonlinear coefficients «,,, and o? in egs. (27)-(30) into the Taylor series with respect
to the small values (W, W, ), (H,,H,):

~ 12 (H) (W) (12 —
Q1,2 '(1_\/\/1,2) ag T =y, Hy,—a, W, a5 = const,
1.2 12) |, ~(12 12 12) _
al? Hy,~ay? +al? -H, - B2 W, a2 = const. (31)

After substituting (31) into egs. (27)-(30) we obtain the linearized system of equations :

oW, - VW, - -V, H,—ai -V, W, =0 (32)
oW, - VW, + o™V -V H, + o -V, W, =0 (33)
orH,-ViH, +a? -V,H,- g2 -V,W, =0 (34)
o-H,-ViH,-a? -V, H,+ A2 -V, W =0, (35)

where the constant coefficients al(g) , alog ),d,ﬂl’z), (1.2 have the following form:
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. folelz'QE (2—Ra)(z—QEf,z)(4(Df2—Ra)+(Ra+1)2+7)+ OB’ - 2(Ra—1)

a, , ,  (36)
2 4(4+ (D2, - Ra)?)’ 4(4+ (D7, - Ra)’)
— —2 —2
Q'(W) — f02Dl,2 . (2_ Ra) (Z_QB]'Z)(D122 —-Ra- 2) + QBLZ * Ra(l_QBl,Z) (37)
2 2 (4+(sz—Ra)2)2 2(4+(sz—Ra)2)
_n_ f¢D, | 2+Ra—QBrz2+Bra(2+Ra) Bre(2+Ra)(4(D7, - Ra)+(Ra+1)* +7)
T T 4+(D3-Ra)® > _Ra)?) -
+(D;, —Ra) (4+ (D, —Ra) )
D112E1,2(2+ Ra) sz —-Ra-2 f 2 D ElzRa
B2 = 2. ( ) 12 (39)

(4+ (D%, - Ray?)’ 4 4+(DZ,-Ra)’

To obtain the system of equations (32)-(35) we use a simplification when the equality of Prandtl numbersis equal
to unity: Pr = Pm=1. As seen from egs. (32)-(35) , in the presence of external magnetic field the coefficients al(';)
and A\ define the positive feedback in the self-consistent dynamics of the fields W, and H_,. Now let usfind the

solution of the linear system of egs. (32)-(35) in the form of plane waves with the wave vector K || OZ -

VVlZJ V€12 . .
2=l 22 lexp(-iaT +iKZ) (40)
(le I-$1,2
After subgtituting (40) into the system (32)-(35) we obtain the dispersion equation:
[(K2 —ia))2 —-K? (al W ol g )}[( K? —ia))2 —-K? (a,ﬂl)aﬁ) +alMRY )}+
+K (a,(j)aéH) ol )(al(w) @ _g® (1)) =0 (41)

Analysis of dispersion equation (41) in the absence of external magnetic field §1,2 =0

It is obvious that without external magnetic field Bz =0 the coefficients a3’ and AS" vanish, and (41)
breaks down into two independent equations:

. .\ )~
[(Kz—la)) —aMafVK? }[(K —Ia)) —a,ﬂl)a,(f)Kz}=0 (42)
where the coefficients al(vzv) , (1 2 do not depend on 812 Dispersion eq. (42) corresponds to the physical situation

when small perturbations of vortex and magnetic fields independently gain in intensity due to development of large-
scale instability such as « -effect. Using the frequency @ = @, + 11" from eq. (42) we find:

= Imao, = ool K - K? (43)
I, =Imw, =+JaPa? K -K? (44)

Solutions (43) show the instability at e;, > 0 for large-scale vortex perturbations with the maximum instability

oo, . . . -
= T . Similarly, for magnetic perturbations the instability

4

~ ~ ~(1) ~(2

a,‘j)aﬁf’ _ ' /a,ﬂ’a( )
4 2

increment I, =

increment I', = reaches its maximum at the wave numbers K, If oy, <0 and
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aPa®? <0, then, instead of instability damped oscillations arise with the frequences @, =/, K and

(W)

@y, =GP P K | respectively. It is clear that in the considered linear theory the coefficients o W ald

3 az 1 aH 3
07&2) depend not on the amplitudes of the fields, but on the rotation parameters D, ,, the Rayleigh number Ra and the

amplitude of the externa force fo . Now let us analyze the dependence of these coefficients on the dimensionless

parameters. For simplicity let us assume that the dimensionless amplitude of the external forceis f, =10. Use of the

given level of the dimensionless force signifies the choice of a certain level of steady background of small-scale and fast

oscillations. It is convenient to replace the Cartesian projections D; and D, in the coefficients &™), ol , &,

07,(42) by their projections in the spherical coordinate system (D, ¢,8) . The coordinate surface D = const is a sphere,
where @ isthelatitude 6 [0, 7], ¢ isthelongitude, ¢ [0,27] (seeFig. 2).

Fig. 2. The case, when the external magnetic field B =0 shows the relationshi p of the Cartesian projections of the rotation parameter
D (or theangular velocity vector of rotation Q ) with their projectionsin a spherical coordinate system.

Let us analyze the dependences of the coefficients «;, «,, dﬁ) \ 07&2) on the effect of rotation and

stratification. For simplicity assume that D, =D, , which corresponds to the fixed longitude value
@ =m4+m, where N=0,1,2..k, k are integer. In this case the coefficients for vortex and magnetic
perturbations are

a=a" =" = f2J2Dsing x

4(D?sin?6 - 2Ra— 4)(2 - Ra) +F;"J‘((D2gn29— 2Ra)’ +16)

X 1 (@)
(D?sin20 - 2Ra)? +16f
2 -
a, = 07'21) - 07'(42) — fs \/5' D(2+Ra)sing )

2  (D’sn%-2Ra)?+16

respectively. As can be seen from these relations, at the poles (@ =0, & = ) generation of vortex and magnetic

perturbations is inefficient, since o, a,; — 0 . It means that the large-scale instability occurs in the case when the

vector of angular rotation velocity Q deviates from the axis Z . For homogeneous medium Ra = 0 the generation of
large-scale vortex and magnetic disturbances is due to the action of an external small-scale non-helical force and the
Coriolis force [47]. The coefficient ¢ of vortex perturbations for arotating stratified electroconductive fluid coincides
with the analogous coefficient o for arotating stratified non-electroconductive fluid obtained in [50]. Therefore, the
conclusions of this paper concerning the increase of vortex perturbations may be applied to the problem considered
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here. The dependence of the coefficient & on the parameter of fluid stratification (the Rayleigh number Ra ) at the
fixed value of latitude & = 772 and D = 2.5 is presented in the | ft part of Fig. 3.

Fig. 3. On the left the plot of « - effect of parameter stratification of the medium Ra (Rayleigh number), and on the right the plot of
the «a - effect of the parameter of rotation D .

As can be seen, the temperature stratification (Ra = 0) may increase significantly the coefficient & and,
consequently, generate large-scale vortex perturbations faster than in the homogeneous medium. This effect is
particularly significant at Ra — 5. When the Rayleigh number increases the value of the coefficient & decreases. Now
let us consider the influence of the rotation of the medium on the coefficient ¢ . For this purpose, we consider the value
of the Rayleigh number as Ra=5 a 0 =z /2. For this case the functional dependence «(D) is presented in the right

part of Fig. 3. One can see that at a certain value of the rotation parameter D the coefficient & reaches its maximum
. With increasing of D the coefficient ¢ smoothly tends to zero, i.e. « -effect is suppressed by the rotation of

amax
the medium. Now consider the dependence of the coefficient ¢, on the parameters of stratification and rotation ( Ra
and D, respectively) at the latitude 6 = z /2. The dependence of the coefficient «,, on the stratification parameter

(the Rayleigh number Ra )at 6 =z /2 and D = 2.5 isshown in the left part of Fig. 4.

Fig. 4. Ontheleft, theplot of &, - effect of parameter stratification of the medium Ra (Rayleigh number), and on the right the
plot of the &, - effect of the parameter of rotation D.

We can see that the temperature stratification (Ra = 0) significantly increases coefficient ¢, , and, consequently,
generates the large-scale perturbations faster than in homogeneous medium. Magnetohydrodynamic « -effect
(or a,, -effect) also increases at «slow» rotation up to the maximum value ... Then with the rise of the parameter

D the coefficient «,, decreases, but its sign does not change. The analysis of the dependence «,, (D) shows that at
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«fast» rotation of the medium MHD « -effect is also suppressed (see the right part of Fig. 4). Similar phenomenon,
i.e. suppression of « -effect by the rotation of turbulent medium is shown in [51].

RaE

T ———
_3§
4]

_5§

0 1 2 3 4 ] 6 7 D

Fig. 5. On the left the plot for ¢ inthe plane (D, Ra) , where the gray color shows the region corresponding to positive values
a >0 (unstable solutions), and the white shows negative values « . On theright isthe plot for «,, intheplane (D, Ra) , wherethe
gray color shows the region corresponding to positive values «,, >0 (unstable solutions), and the white to negative values «,, .

Fig. 5 shows the plot which represents the influence of rotation and stratification on o and «,, -effects in the
plane (D, Ra) . Here the regions of instability « >0,«,, >0 are highlighted in gray. We choose the values of rotation

and stratification parameters D and Ra for the latitudinal angles @ = 7/ 2 we plot the dependences of the growth rate
of the vortex T', and magnetic I", perturbations on the wave numbers K. These plots have the typical form of

o -effect (see Fig. 6).
I_‘1

500

-500

-1000

0 10 20 30 40 50 60 70 K

Fig. 6. On the left is the plot of the dependence of the instability increment for « -effect on the wave numbers K ; on theright isa
plot of the dependence of the instability increment for the « -effect on the wave numbers K . The plots are constructed for fixed
parameters of stratification Ra=5 and rotation D =2.5.

Analysis of dispersion equation (41) in the presence of the external magnetic field
Let usstudy eq. (41) at B12 # 0. Inthiscaseit is transformed into the biquadratic equation :

(K?—iw)* —b(K?—iw)*+a=0, 47)
where

b= K?(aat +af AP +aPa? +al AP ) = K,

=K4(57@,W) (W) (1) (H) p(®) (H) p@ ( ,(H) (1) | ~(1) ,(W))) = K45
a=K (aH a, (al ay +oy )+a2 (al +ay o ))—K a.
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The solution of eq. (47) hasthe form:;

: b 1 ==
K2—|0):iK\/§i§ b? - 4a (48)
Since we are interested in increasing solutions, it is easy to find the growth rate of large-scale instability from eq. (48):

I'=Ime=AK -K?, (49)

b, 1 =z
where A = \/E iE b® — 44 isthe coefficient for vortex and magnetic perturbations which has a positive value at

b? > 44 . The maximum growth rate of instability T',_ = A%/4 is achieved for the wave numbers K, = A/2. In
the right part of Fig. 9 is shown the dependence of the growth rate I" of large-scale instability (49) on the wave
numbers K for given values of the inclination angle & = 772, the amplitude of the extenal force f, =10 and the
dimensionless parameters D = 2.5, Ra=5, Q =10, B =0.5. The form of this plot is typical for o -effect (see

Fig. 6). As in the previous Section, it is convenient to replace the Cartesian projections D1,2 and §1,2 by their
projections in the spherical coordinate system (see Fig. 7).

Fig. 7. Here is shown the relationship of the Cartesian projections of the rotation parameter D (or the angular velocity vector of
rotation Q ) with their projectionsin a spherical coordinate system. The direction of the external magnetic field B is chosen so that

the angles ¢ of deviation from the axis OX for the rotation vector @ and for magnetic field @, and magnetic field @y
coincidei.e. P = Qg

Now let us analyze the dependences of the growth rate A on the effects of rotation D , stratification Ra and the
external magnetic field B . For simplicity assumethat D, = D, and B1 = Bz, and this corresponds to the fixed value
of the angle @, ~ @y =4+, whee N=0,1,2..k, Kk is an integer. In this case the coefficients

a{f’zv) ) 0!1(2) O S’Z) , 1.2 have the form :

A=a™ = oM = f2/2Dsindx

(D’sin0-2Ra-4)(2-Ra)4-QB)  Ra(2-QB’)+QB’
((D%sin’0—2Ra)* +16) 4((D?sin’0 - 2Ra)’ +16)

X

(50)

(H) —

2 p—
B, =a") =" :%ODQBSian
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) 4(4—Q§2)(2—Ra)(2(D25in29—2Ra)+(Ra+1)2+7)+ OB’ - 4(Ra-1)

2 2 .2 2 (51)
(16+(D’sin% - 2Ra)* ) 16+(D”sin’0 - 2Ra)
, D(2+ Ra— +£(2+ Ra)BJsmH
A—I:d(l)zd(a:foﬁ. 2 -
H H .2
2 (D?sin% - 2Ra)? +16
e 2DBZHRAING | (5(D2gnio-2Ra) + (Ra+1)*+7), (52)
((D*sin® - 2Ra)’ +16)
((ngnze 2Ra)? +16)
f2 DBRasind
= S— (53)
4 (D*sn’0-2Ra)?+16
A
200
150
40 100 40
20 50 20 A
0 0 o _
5 0 S 10 15 Ra 0 1 2 3 4 5 6 7 D 0 02 0.4 06 g8 B
a) b) c)

Fig. 8. a) isthe plot of the dependence of the A -effect on the stratification parameter of the medium Ra (the Rayleigh number); b)
is the plot of the dependence of the A -effect on the parameter of rotation of the medium D ; c) is the plot of the dependence of the
A -effect on the external magnetic field B.

Fig. 8a shows the dependence of the coefficient A on the Rayleigh number Ra at the fixed latitude values
6 = 72 and the dimensionless numbers D = 2.5, Q =10, B =0.2 . Assume that the amplitude of the external
force f, =10. In Fig. 8a the value of the coefficient A at Ra =0 (homogeneous medium) are shown by dashed

lines. We can see, with the increase of the Rayleigh number Ra — 5 the coefficient A considerably exceeds its value
for a homogeneous medium, i.e. reaches its peak magnitude. Further increase of the parameter Ra leads to a drop of
the value of A and, consequently, to less intense generation of the magneto-vortex perturbations. Let us choose the
Rayleigh number e.g. on the level of Ra =5 and find the dependence of the coefficient A on the rotation parameter

D at the external magnetic field B=0.2 and Q =10. The plot presented in Fig. 8b shows the dependence A (D) .
Here we observe the increase of A to acertain maximumvalue A, for D ~ 3. With the increase of the parameter
D thevalueof A diminishes, and generation of magneto-vortex perturbations becomes less efficient. «Fast» rotation

of the medium also suppresses the considered A -effect. To clarify the influence of the homogeneous magnetic field B
on A -effect, let us consider the following parameters: D = 2.5, Ra =5, Q =10. Fig. 8c presents the dependence

A(E) . The upper dashed line indicates the level A, corresponding to the case when the external magnetic field is

absent: B= 0. As seen from this figure, the increase of the magnetic field value gives intensification of the magneto-
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vortex pertubations up to a certain level A, ~ 100. The lower dashed line in Fig. 8c shows the minimum level of

the coefficient A, ~ 9.63 which corresponds to the value of the magnetic field B ~ 0.72 for the given parameters
D, Ra and Q. This implies that «strong» external magnetic field suppresses the considered A -effect. For the

parameters D = 2.5, Ra=5, Q=10 and B =0.5 one can find the dependence of the coefficient A on the angle

of deviation € for the vector of the angular rotation velocity QO from the vertical direction OZ . Thisfunction A(6)
is presented in the left part of Fig. 9.

Fig. 9. On the left the plot of the dependence of the A -effect on the angle of inclination O of the angular velocity vector Q ; on
the right the plot of the dependence of the instability increment for the A -effect on the wave numbers K .

The generation magneto-vortex perturbations does not occur (A —>0) a € -0 or € — 7 (the pole),
whereasat @ — 7112 (the equator) is more effective.

NONLINEAR STATIONARY STRUCTURES
When the amplitude of the perturbations W, , and H, , increase due to the development of large-scale instability,

the linear theory which we consider in the previous Section becomes inapplicable. The evolution of these perturbations
is described by the nonlinear system of egs. (27)-(30). Now study the instability saturation which leads to the formation

of nonlinear stationary structures. To describe these structures, let us put 0;W, = 0;W, =0;H, =0;H, =0 inthe
system of egs. (27)-(30), and then integrate these equations over to Z :

dW, f2\2Dq,Q,

= _ — — — > + Cl (54)
dZ 160 QS +[ D+ 2(1-W)) + 24, | +4¢,
awy, = f02\/§Dq1Q1 +C (55)
~ ~ ~ 2
dZ 1622 Q7 +[ D+ 2(1-W2) +2, | +4&
dH, _ f2/2DW,Q,(2H, + Bv2) .c, )

- N - ~ - 2
dz (1+W22)[16W22q22Q22+[D2+2(1—W22)+2,u2] +4§2}

dH, _ £2J2DWQ, (2H, + BV2) iC )
A

dz (1) [16\/(/12qf(jf +[D2+2(1-W2) + 25 | + 45&

Here W, =1-W,, W, =1-W,; C,, C,, C, and C, are arbitrary integration constants. In order to obtain egs.
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(54)-(57) we put the Prandtl numbers Pr = Pm=1 , and substitute the Cartesian projectionsfor D, , and Biz inthe
coefficients A12) a,(j’z) by their projections in the spherical coordinate system (see Fig. 7). For simplicity we use the
values of the angles @, = @z = /4 and & = 712. In this case, the expressions for ¢,, Q,,, lez, Moy O,
Y12+ &, aeasosimplified:

QH12(2H12+B\/_) Ra o _1_Q(2H1’2+§\/§)2
T W) g AL+ W)

B = 1-W?2
2 = QHip(2Hy, + BY2) + Q7 (2Hy; + BV2) 2t -
y = = 1-W2
1+W2 +QH, ,(2H, , + By/2) - =22

1,2 Q 1,2( 1,2 ) 1+V\/122

—Ra =2 - ’
1+W5,

51,2 = 251,2 + M/].,ZZHLZ - 2/T/ZL,ZZ (1_ QJ.Z,Z)HLZ - 2(1_ OU.Z,Z)El,Z + El,ZHLZ + Zl,Z\Av/].,ZZ + 11,2(14_ 0-1,2)’

WZ
L apQRa agRe QG B0 i
:4112 = - 2 + Ra.‘ =2 ’
1+ W5 (1+vv122) LW
1+W2 +QH,,(2H, , + BV/2)- 7W122
4 Ra 2Ra2 1,2 12 1,2 1+W
IT LE + —Ra- 1,2
T i) s |
_ QH,,(2H,,+BV2) - -
0 = ! (1+1v2”v1 . [4@+W2) +QH,,(2H,, + BV2) |,
Ra - -
he= o | Ra—(2(1-W2)+ QH, , (2H,, + Bv2)) |,

3 =1 QH,,(2H, , +§‘/§) + Ra
2L4WE) LW

Egs. (54)-(57) constitute the nonlinear dynamic system in 4-dimensional phase space in which phase flow divergenceis

(equd to) zero. Therefore, the system of egs. (54)-(57) is conservative. The search for the Hamiltonian of this system is
avery difficult task, as the integration is complicated by the dependence of the nonlinear coefficients A2 a,ﬂl 2 on
the fields ( W, H ), that takes it beyond the class of elementary functions. A complete qualitative analysis of this
system is extremely complicated because of a high dimensionality of the phase space and large number of the
parameters in the system. According to the general ideas, we can expect that this system of conservative equations may
contain structures of resonance and non-resonance tori in the phase space and, consequently, chaotic stationary
structures of hydrodynamic and magnetic fields. The considered system of nonlinear egs. (54)-(57) can be studied using
the Poincaré cross-section method.
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STATIONARY CHAOTIC STRUCTURES IN THE ABSENCE OF EXTERNAL MAGNETIC FIELD B=0.
Let us build the Poincaré cross-sections using the standard Mathematica programs for the trajectories in the phase
space for the case of rotating €elctroconductive fluid stratifified with respect to temperature (Ra = 0) without the

external magnetic field E =0. All the numerical calculations are performed for the following parameters: fO =10,
D=2, Q=1, Ra=0.1 and the constants C, =1,C, =-1, C,=-0.5,C, =0.5. For the initial conditions

W,(0) =1.25, W2 (0)=1.25, H,(0)=1.4, H,(0) =1.4 the Poincaré cross-sections presented in Fig. 10a-10b
demonstrate regular trgjectories for the velocity and magnetic fields. With the increase of the initial perturbation
velocity W,(0) =1.398, W, (0) =1.398, H,(0)=1.4, H,(0) =1.4 the regular trajectories become chaotic.
They correspond to the Poincaré cross-sections shown in Fig. 10c-10d.

W, H,
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Fig. 10. In the figures &) and b) are shown the Poincaré sections for atrajectory with initial conditions W,(0) =1.25, W,(0) =1.25,

H,(0) =14, H,(0) =14. These are trgjectories of regular type, which are wound on the tori. The figures c) and d) correspond to
Poincaré sections for a trajectory with initial conditions W,(0) =1.398, W, (0) =1.398, H,(0) =14, H,(0) =1.4. These pictures
show stochastic layers, to which belong the corresponding chaotic trgjectories. The calculations were carried out for the
case B=0.

Fig. 11a11d present the dependence of the stationary large-scale fields on the atitude Z . It was obtained
numerically for the initial conditions corresponding to the Poincaré cross-sections presented in Fig. 10a-10d. These
figures show also the emergence of stationary chaotic solutions for magnetic and vortex fields. To prove the existence
of chaotic regime of stationary large-scale fields, we use aso the method of autocorrelated function. As is known (see
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e.g. [52]), the autocorrelated function K(7) is the value which characterizes the intensity of chaos. It is defined as
averaging of the product of random functions P(t) and P(t+7) at the moment of time t and t+ 7, respectively,

. 1 At
over dlarge» interval of time At: K(z) = AItl m N IP(‘[) P(t + 7)dt . So we consider the coordinate Z as the time
0

t, whereas the product P(t)P(t + 7) consists of 16 components:

Wi(t)
P(t)P(t+7) = \I’ES; [Wi(t+7) Wy(t+7) H(t+7) Hy(t+7)]
H,(t)
a) b)
0) d)

Fig. 11. The upper plots (a), b)) show the dependence of the velocity and magnetic field on the height Z for the numerical solution
of equations (54)-(57) with theinitial conditions W, (0) =1.25, W, (0) =1.25, H,(0) =1.4, H,(0) =1.4. This
dependence corresponds to regular maotions of the Poincaré section which are shown in Fig. 10a-10b. Plots (c),d)) show the similar
dependence for the numerical solution of equations (54)-(57) with the initial conditions: VVl(O) =1.398, VVZ (0) =1.398,

H,(0) =1.4, H,(0) =1.4. This chaotic dependence corresponds to the Poincaré sections in Fig. 10c-10d.
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Fig. 12. The plot of the dependence of the autocorrelation function K"Wﬁ ontime 7 for atrajectory with initial conditions

W,(0) =1.398, W,(0) =1.398, H,(0) =1.4, H,(0) =1.4 (chaotic motion) .

InK(1)
17.03

16.81

16.52

16.12
4300 4400 4500 4600 4700 T

Fig. 13. A rectilinear dependence of the autocorrelation function Kv(gl - inlogarithmic scales from thetimeinterval 7 for strongly

1

chaotic motion.

The plot of the dependence of the autocorrelated function for the component K . - onthetime 7 is presented in

W
Fig. 12. The case of chaotic motion corresponds to the section of the trgjectory with the exponential decay of the
function KVVﬁVVl . It is evident that in this region, the autocorrelation function K‘Wﬁ on a logarithmic scale is

approximated as a straight line (see Fig. 13). The data presented in Fig. 13 allow to determine the characteristic
correlation time 7, ~1324 of the stationary random process qu . If we take into account the introduced definition

of «ime» t, it becomes clear that we have found the estimated value of the dtitude Z_, ~1324 corresponding to
onset of chaotic motion of the large-scale fields. In Fig. 11c-11s are shown the chaotic solutions for the velocity and
magnetic fieldsof Z = 90 height which is much lessthan Z_, . However, even in this case one can see the start of the
complex intricate trajectory for the large-scale fields with the increase of the atitude Z . Therefore, such trajectories
cannot be plotted. Thus, with the increase of the altitude Z up to critical value Z_, , the quasi-periodic motion of the
stationary large-scale fields becomes chaotic.

cor ?

STATIONARY CHAOTIC STRUCTURES IN THE PRESENCE OF EXTERNAL MAGNETIC FIELD B 0.
Using the standard Matematica programs we construct the Poincaré cross-sections of trajectories in the phase
space for the nonlinear system of egs. (54)-(57) with the external homogeneous magnetic field. All the numerical

calculations are carried out for the following dimensionless parameters: f, =10, D=2, Q=1, Ra=0.1,
B =0.1 and the constants C =1C,=-1, C,=-0.5,C, =0.5. InFig. 14a-14b are shown regular trajectories of
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the velocity and magnetic fields built at the numerical solutions of egs. (54)-(57) with the following initial conditions :
W, (0)=1.31, W,(0)=1.31, H,(0)=1.4, H,(0)=1.4. These trgectories correspond to quasi-periodic

character of motion for large-scale perturbations of the velocity (VVH) and magnetic fields (H 1,2) . By increasing only

the amplitudes of the initid values of perturbations for the magnetic field W,(0) =1.31, W,(0)=1.31,

H,(0) =1.8, H,(0) =1.8 we find that the quasi-periodic motion transforms into chaotic. This case demonstrates
the Poincaré cross-sections shown in Fig. 14c-14d.
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Fig. 14. The figures a) and b) shown the Poincaré sections for a trajectory with initial conditions W,(0) =1.31, W,(0) =1.31,
H,(0) =14, H,(0)=1.4. This is a regular type of trgectory, which is wound on the tori. The figures c) and d) correspond to
Poincaré sections for a trajectory with initial conditions W,(0) =1.31, W,(0) =1.31, H,(0)=1.8, H,(0) =1.8. These pictures show
stochastic layers, to which belongs the corresponding chaotic trajectory. The calculations were carried out for the case B=01.

Using the initial data for the regular (W,(0) =1.31, W,(0) =1.31, H,(0) =1.4, H,(0) =1.4) and chaotic

(W,(0) =1.31, WZ(O) =1.31, H,(0) =1.8, H,(0) =1.8) trajectories, we can build numerically the dependence
of the stationary large-scale fields on the altitude Z (see Fig. 15a-15d). The emergence of stationary chaotic solutions
for the magnetic and vortex fields is also shown in Fig. 15c-15d. To confirm the onset of chaotic regime of the
stationary large-scale fields we plot the dependence of the autocorrelated function for the component KW& ontime 7

(see Fig. 16). The trgjectories of chaotic motion correspond to the part of the plot with the exponential decay of function

K\A-ﬁv-vl in Fig. 16. In the logarithmic scale of the autocorrelated function K\W& this part is approximated by a straight

line (see Fig. 17). Using this plot it is easy to find the estimated value of the characteristic correlation time for a
stationary random process: 7, ~2000. The obtained value of the correlation time corresponds to the atitude
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Z., ~ 2000 . Above this value arise strongly chaotic stationary structures of the large-scale fields. In Fig. 15¢-15d are
shown chaotic solutions for the velocity and magnetic fields at the atitude Z ~ 50 which issignificantly lessthan Z_, .
It is evident that for Z tending to a critical value Z_, the motion trgjectories become more intricate and, finaly,
completely chaotic.

c) d)
Fig. 15. The upper part (a),b)) shows the dependence of the velocity and magnetic field on the height Z for the numerical solution of
equations (54)-(57) with the initial conditions W,(0) =1.31, VV/Z(O) =131, H,(0) =14, H,(0) =1.4. This dependence corresponds
to regular motions of the Poincaré section shown on top of Fig. 14a-14b. Below (c), d)) show a similar dependence for the numerical
solution of equations (54)-(57) with the initial conditions: W, (0) =1.31, W,(0) =1.31, H,(0)=1.8, H,(0) =1.8. Thischaotic
dependence corresponds to the Poincaré sections shown at the bottom in Fig. 14c-14d
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Fig. 16. The plot of the dependence of the autocorrelation function K . - ontime 7 for atrajectory with initial conditions

W
W,(0) =1.31, W,(0) =1.31, H,(0) =18, H,(0) =1.8 (chaotic motion) on condition B=0.1.



25
Nonlinear Dynamo in Obliquely Rotating Stratified Electroconductive Fluid... EEJP. 1 (2020)

InK(1)
16.33
16.32
16.31
16.30
16.29

4890 4900 4910 4920 4930 4940 T

Fig. 17. A rectilinear dependence of the autocorrelation function K - - in logarithmic scales from thetimeinterval 7 for strongly

RN

chaotic motion on condition B=0.1.

CONCLUSION
In this work we have obtained the closed system of nonlinear equations for vortex and magnetic large-scale
perturbations (magneto-vortex dynamo) in an obliquely rotating stratified electroconductive fluid in external uniformly
magnetic field. At the initia stage small amplitudes of large-scale perturbations increase due to the average helicity

V,rotv, # 0 of small-scale motion in a rotating stratified electroconductive fluid excited by the external non-helical

force Iforotlfo =0. The mechanism of amplification of the large-scale perturbations is associated with the

development of large-scale instability of « -effect type. In the absence of external magnetic field (|_5> =0) the linear

equations of magneto-vortex dynamo are split into two subsystems. vortex and magnetic ones. In this case the large-
scale vortex and magnetic perturbations are generated du to the development of the instability of HD « -effect and

MHD « -effect, respectively. Both instabilities occur when the vector of angular rotation velocity Q is deflected from
the vertical axis OZ . Unlike the case of a homogeneous medium [46-47], the combined effects of rotarion and
stratification of the medium (at heating from below) give rise to an essential amplification of the large-scale
perturbations. This phenomenon becomes especially noticeable at the parameters of the medium D — 3 and Ra — 5
(see Fig. 3). In this case arises the mode of the maximal generation of the small-scale helical motion caused by the

action of the Coriolis force and temperature inhomogeneity. With the external magnetic field (B # 0) the evolution of

the vortex and magnetic perturbations is characterized by a positive feedback due to which the growth rate of the vortex
and magnetic large-scale perturbations coincide. The «weak» external magnetic field favours generation of the
perturbations, whereas «strong» field suppresses them (see Fig. 8c). Generation of the large-scale vortex and magnetic

perturbations aso depends on the angle of deflection of the vector of angular rotation velocity Q. It is minimal at

€ — 0 or @ — 7 (nearby the poles) and maximal at & — 7112 (nearby the equator) (see the left part of Fig. 9). The
performed analysis of the influence of rotation on the growth of the vortex and magnetic perturbations shows that at
«fast» rotation they are suppressed. With the rise of the perturbation amplitude the instability is stabilized and then
becomes stationary. With these conditions arise the nonlinear stationary vortex and magnetic structures. The dynamic
system of equations which describes these structures is a Hamiltonian system in a four-dimensional phase space. The
possibility of the existence of the large-scale chaotic vortex and magnetic fields in stationary mode is proved by

numerical methods. In the absence of external magnetic field (B = 0) stationary chaotic structures arise in a rotating

stratified electroconductive fluid at the increase of the initial velocity of perturbations VVLZ (0) . Wwith the external

magnetic field (B # 0) these structures are formed at the rise of the initial values of the perturbed field H,,(0).

APPENDI X
A. MULTI-SCALE ASYMPTOTIC EXPANSIONS
Let us consider the algebraic structure of the asymptotic expansion of egs.(10)-(13) in different orders in R

starting with the lowest of them. In the order R we have only one equation:
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6P,=0 = P,=P,(X) (58)

In the order R™ there is the following equation:
0,P,=0 = P,=P,(X) (59)
Egs. (58) and (59) are satisfied automatically, since P, and P, are the functions of «slow» variables only. In the

order R™ we obtain the system of equations :
O, + WG W, = —0,P, — VP, + OW,, + £, W, D, +

+Qgijk‘c"jmlamBl—lBl(l+Qgijkg amB[1E+e, RaT,

jml
0B, — PM™0;B!; = £,,60,0 W1B’ + &4 60,0 W1 B, (60)
0T, —ProiT, =-Wko, T, +W?
oW, =0, 0,B,=0
The averaging of egs. (60) over the «fast» variables gives the secular equation :

-V.P,+ gijkV\/j D, +e RaT, =0, W}=0, (61)
which corresponds to geostrophic equilibrium. In the zero order in R we have the following system of equations:
OV +WHXO, Vy +VEO W', = —-0,P, — V. P, + 02V, +

+£; Vo Dy + Q&8 (0,,B,Bs +0,B3B, )+ Q52,4 0,,By B, +6 RaT, + F
0,8y — PM07B} = £ &y (0, WBY +0,V5BY, )+ £, £4s 0 Vo B, (62)
0,T,— Pr'o?T, = -W¥0,T, — 0, (Ve T.,) + V¢

8ng =0, aiB(i) =0
These equations give only one secular term:
VP,=0 = P,=const

Now consider the first-order approximation R':

OV, +WAD VL + V5OVl + VO W', + WAV W, =~V P, =8, (B +Pu)+ 00, + 20,V W', + £,/ D, +

+Qgijk8jm (amBl—1Blk + amBéBg + amBlI Bfl + VmBI—lBEl) + Qgijkgjml (5m|31'§+ VmBl—lgk) +¢ RaT,
0,B - PM0;B — Pm™*20,V, B!, = &, 6,,, (0 \W1BP +0,VyBf +0,\/B”, +V W/B" )+  (63)
+ & Einp (8 jV{'B_p +V jW_”lgp)
0T, —Pro’T, —Pr*20,Vv, T, =-W5,T,-W V, T, - Vs, T, -0, T, +V/

8ivl + Vinl =0, o, B{ +V; Bil =0
This system yields the following secular equations:
WAV W, = VP + Qeyéy (VBB + VBB, (64)
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npp np |—

Eyp(V WIBP +V W, )= 0 (65)

W—lekT—l =0, ViVV—i1 =0, V, Bi—l =0 (66)

For the second order R? we obtain the equations:
i k i k i k i k i k i k i —
oV, +W30,V, +Vv,0,v, + W3V, vy + VoV W, +V0,V, +V,0 W, =
=-V,P, = VR + 0V, + 20,V Vg + &, V, D, +

+Q& & m (0,B,BS +0,B)Br +0, BB +0,B,BY +V, B Bl +V BB )+

+Q6 &1 (0,B,B + VBB, ) + 6 I;aTz
0,B, - PmM0¢B, — Pm*20,V, B = &, (a WIB) +0,vgBF +0,vBf +
= &by (OW1BS +0,VgBP + 0,V BY +8 v, B, + VWBY +V V) BF, ) +
+ & (6jv2§p + VjvgB_p) (67)
o.T,—Pr'oiT,— Pr'20,v, T, =-W,T, -WV,T, -
—Vgo, T, —VEV, T, — V0, T, - Vio, T, + V7
oV, +Vv,=0, 0,B,+V,B,=0

As seen after the averaging of the system of egs. (67) over the «fast» variables, in the order R secular terms are
absent. Finally, let us consider the most significant order R®. Here the equations have the following form:

OV + O, W', +WH OV, + VEO, Vy +WEV V) + VEV VL + VED, v, + ViV, W +
VW, = 0P, =V, (B + P+ 02V, + 20,V + AW, +
+&,, V3D, + Q& & im (8mB[lB§ +0, BB +0_B/Bf+0 B,BX+

+0,B,BY ++V, BB +V, BB\ +V, BB )+

+G6,8 0 (VBLB, +V, BB )+ RaT,
0,B.+0,B', - Pm 2B, — 2Pm,V, Bl — PmAB', =
= 6 Eunp (O WIBY + 0 VJBP + 0 VB +0,ViB¢ +0,V]B", +
+VWIBP +V VIBP +V VIBP )+ 6610 (0,5 B, + V WIB, ) (68)
0T, +0,T,—ProiT,— Pr'2o,v,T,— PrAT , =
~W50, T, WXV, T, - Vo, T, = VeV, T, —
~\\V, T, -V, T, —Vs0, T, — V&0, T, + V2

Oy +VV, =0, 6,Bi+V,B =0
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By averaging this system of equations over the «fast» variables we obtain the basic secular equations which
describe the evolution of the large-scale perturbations:

aTW—il - AW—il + vk (ﬁ) = _vi El + Qgijkgjmlvm ( B<I)B<I)( ) (69)
0;B!; —PMAB!, = g6,V (V;B) (70)
0yT ,— PrIAT , = v, [T, )

B. SMALL-SCALE FIELDSIN THE ZERO ORDER WITH RESPECT TO R
In Appendix A we obtain the equations of asymptotic expansion in the zero-order approximation. Taking into

account the new denotations W = W_l, H= I§_l we write them down in the following form:

Du, = —3,P, + &, V4D, +QH, (9,B, —0,Bf )+ QB« (0, By — 9, B ) + g Rall, + F (72)
DuB, =(H,3, + Bid, V) (73)

DoT, = eV (74)

oV, =0,B¥=0F =0 (75)

where the operators are denoted as :
Dw =8, —62 +W,8,,D,, =6, — Pm 82 +W,8,, Do =8, — Pra? +W,a,.
The small-scale oscillations of the magnetic field and the temperature are easily found from Egs. (73)-(74):

~ (H_+By)o.V. z
Bg=( ” Ap) P T (76)
Dn Do

Now we substitute (76) into (72) and find the pressure P, using the condition of field solenoidality (75) :

FAVA
P =¢,—2D, +g6 Ra—= —=0_(H, 0%V} 77
0 ijk 82 k QQ azDa 82DH p( k o) ( )
Using the (77) we exclude the pressure from eg. (72) and obtain the equation for the velocity field of the zero-order
approximation:
~ O 2 B __ee ~ _ _
|:(DW - QH9) 6+ a Blakal)]é‘ij _(Ra /jlj P +8ijkaj Pip]V(J) =k, (78)
H 14

~ 0.0
Where Pip = é‘ip - ('32') is the projection operator. In order to find the small-scale field V; it is convenient to present

€g. (78) in the coordinate form:
3 X 3 3 Z =X
C|11VO + dlzvg + dlsvO =Fo
~ ~ ~ A~ y
da1vy +d22Vy +d2sv, = Fo (79)

A A~ A~ ~Z
daiv, +da2vy +daav, = Fo

The components of the tensor dij have the following form:

G = Dy - QUH2* +H,BO3) | D,0,0,-D00, 4

di; = Dw — > ,do -D
Dn 0

— D3ai — Dlaxaz
= —62

3
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~ D,0.0, — D,0? ~ D,0.0, — D02
dis =D, + 0~ 2 2 0. g, —p D000
0 0°Do 0
azz — BW _ 6((Hkak)2/\+ Hkglakal) " Dsayax — Dlayaz
D o2 ’
~ /\88 D,0>-D.,0,0 ~ D,0% - D,0,0
ds=R it 22yX_Dl’ 31:%_ s
8 De 0 0
2 P 2 n
A = D,0,0, — - -D,0; +D,, Az = Dw - Q((H,2,) ,\+ H,Bi0,0,) N
0 Dn
D,0,0,-D,0,0, Ra —~ &2
0 Do 0°Dy
It is obvious that the solution for the system (79) can be found using the Cramer rule:
Vy = U, ——{(dzzdss—dszdzs)F +(d13d32—d12d33)|: +(d12d23—d13d22)|:oz} (80)
V) =V, ——{(d23d31—d21d33) R +(d11d33 d13d31) R’ +(d13d21—d11d23) o ; (81)
zZ — 1 1 a3 a3 a3 X a3 1 1 3 y o~ 1 1 1 z
Vo =W, = X{(d21d32 —d22d31) F +(d12d31 —d11d32) Fo +(d11d22 - d12d21) F } (82

Here A isthe determinant of the system of equations (79), which in the open formis:
A = d11d22d33 + d21d32d13 + d12d23d31 - d13d22d31 - d32d23d11 - d21d12d33 (83)
Now let us present the external force If0 in the complex form:
- f |¢2 - fO igﬁl
F i2e24+j-2e"+ce (84)
2 2
Then all the operators contained in (80)-(83) act on the eigenfunctions from the | eft:
Dw.r06" = €4 Dwmo (Kl, a)o) Dw.n0€” = €” Dw o (122,—@0),
A" =€MA (R, —@,), Ae™ =€”A(R,, —,) (85)

To simplify the formulae, assumethat x, =1, @, =1 and introduce the new denotations :

~

~* ~ Uk
Dw (/Zl,—a)o) = Dv\ﬁ =1-i (1—VV1), Dw (1?2,—600) = Dw2 =1-i (l—WZ)
~ ~* ~ ok
Dy (I?l,—a)o) =Dn, = Pmt—i (l—V\/l), Dx (I?z,—a)o) =Dwn, = Pm*—i (1—W2) (86)
~ ~F ~ Uk
Do (/Zl,—a)o) = Del =Prt-j (l—Wl), Do (Ez,—wo) = D92 =Prt-i (1—VV2)
Note that the complex-conjugate terms are marked by asterisk. Further in the calculations some components in the

tensors d;; (1?1, —a)o) and djj (122 ) —a)o) vanish, and there remain the non-zero components:

w, alz(,}y_a)o) =0, 813(121,—600) =0,
Dn

~ *
dn(r?l,—a)o) = Dv\ﬁ +

1
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d21( a)o) DS,azz(lfl,—a)o):all(l?l,—a)o),azs(lfl,—a)o):—Dl, (87)
831( 41,—600) =-D,, ds (I?l,—a)o) =D, ass(l?l,—a)o) = azz(l?l,—a)o)— /F\?
Do,
~ /\* O R ~ ~
dll(fz,—wo) = Dw, +w, dlz(fz,—wo) =-D,, d13(l22,—a)0) =D,,
Dn,
azl(l?z,—a)o =0, dz (&, ~@,) = du (K, ~, ), dza (%, —@) =0, (88)

~

)
- ~ A A~ Ra
d31(l(‘2,—a)0) = _D21 d32 (K‘l,—a)o) = D11 d33(K‘2,—a)0) = dzz(l(‘z,—a)o)——

Do,
Taking into account the expressions (87)-(88) we find the velocity fieldsin the zero-order approximation
f, B
Uy = ———= e ycc.= Ugg + Uy, (89)
2 A>B2 + D2
f, B
v,=2—— €% ice=v,+V, (90)
2
2 ABL+D;
fo_ D gu,fo
WO :——A*A*— T e + C.C. _W01+W02+W03+W04 (91)
2 ABi+D? 2Asz+D2
where
G * Q ~ Ra
Auz = Dw, + 12(H 2+Blz) BlZ—Al (92)
DH12 D91,2

* *

The velocity components satisfy the following relations: W, = (WOl)*, Wy, = (Wog) v Voo = (V01) Vo = (Vog) ,
Uy = (u01) Uy = (Uos) . In the limiting case of non-electroconductive fluid (o = 0), without temperature gradient

(V'F =0) and external magnetic field (El,z =0) the formulae (89)-(91) coincide with the results obtained in [41].
Now we calculate the small-scale oscillations of the magnetic field éo using the expressions (76) and (89)-(91):

fo I(H + Bz)Bz
25

By = Uo = €% +¢.C. = Uos + Uoa (93)

(Asz+D )
B(3/=\~/o:h '(H, +Bl)Bl € +C.C. = Uos + Uoe (94)
DHl(AlBl"rD )
i(Hl-I-Bl)D1 ei¢l+ fo I(H +Bz)D

/\* PN
Bu (AB+D?) 2 D (AuBr+D2)

e”2 +cc.= (95)

= Wy + Wy + Wog + W,

In the expressions for the small-scale oscillations (V,, |_3>0 , Tp) the component of the angular velocity D, is absent due
to the choice of the external force. Further Egs. (89)-(95) will be used while calculating the correlation functions.

C.CALCULATION OF REYNOLDSAND MAXWELL STRESSESAND TURBULENT E.M.F.

To close the system of egs. (17)-(20) which describe the evolution of the large-scale fields, it is necessary to
calculate the following correlators:
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31 _ _ * *
™= Wollg = Weg (uos) +(W03) Ugg (96)
32 _ _ * *
T = WoVo = Woy (V01) + (W01) Vou (97)
S = WOEIO = \7V03 (Clos) + (\7V03) Clos (98)
S* = \7V0\~/o = \7V01(~01) +(\7Vo1) \~/o1 (99)
G®= UO\TVO = Uy, (\7V03) + (uos) \7V03 (100)
G = Wol]o = Wy, (003) +(W03) l]os (101)
G® = VO\7V0 = VOl(\7V01) +(V01) \7V01 (102)
G® = WO\Nlo =Wy, (\701) +(W01) \~/o1 (103)

At first let us calculate the Reynolds stresses (96)-(97). For this purpose we use the expressions for the small-scale
velocity fields (89)-(91). Their substitution into (96)-(97) gives:

T3 = f_02 D4,

s (104

A2B + D22

2

T = _%O—A Aqul =, (105)

‘A1 B + D12

where
QH,,(H,, +Bu2) Ra
quz — 1+ 1,2 1,2 >

1+ P (1-W,, )’ 14Pr? (1-w,,)

To calculate the correlators of the magnetic field or the Maxwell stresses S* and S¥, we use the expressions (92)-
(94). By substituting (92)-(94) into (98)-(99) we obtain :

S3l — H 22 T31 832 — H]_2 T 32 (106)

- 2 ’ T~ 2
‘DH1

~

Dn

2

The differences T — (NQS31 and T¥ — (5832 contained in the right sides of Egs. (17)-(18) can be easily found using
the expressions (105)-(106):

- Q(H, +B2)?

T31 _ 6831 - T31 — e = T31Q2 (107)
Pm|Dw,
_ Ry
T2 _QOS® =T%| 1- Q(Hli— Blz) =T=Q, (108)
Pm|Dx,

To calculate the group of oscillators (100)-(103) we will use the expressions for the small-scale velocity field (89)-(91)
and the magnetic field (92)-(94) . Simple mathematical operationsyield:
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Gl3 _ f02 I(H2 +§2)D2 éZ /B\;
=02 7 — ==

4 ‘Asz+D22 D:z D,

G = f7 i(H2+E2)D2 B. B
T~ < 2 | *x A

4 ‘Asz+D22 D, D+,
stzf_;i(HﬁEl)Dzl_ B. B
~ A~ =2 %

4 AlBl+D12 DHl DHl
G32:f_02i(H1+§1)D1. B. B
A A 2 = K

4 16\1.Bl'i‘Dl2 DHl DHl

(109)

(110)

(111)

(112)

To close the equations for the large-scale magnetic field (24)-(25) , it is necessary to calculate the differences
G" -G* and G® - G* corresponding to the turbulent em.f. components E,=€& y and &, =E&,. Taking into

account the expressions (109)-(112) we obtain:

2 =y B _ A *
SZZGlg_GM:f_OI(AHZA—i- BQ)D;_(Bi |322)_(DH2+DH2)
4 |A.B, + D? ‘DH2

5 :GZ3_632 :_f_OZI(Hl+§1)Dl . (/B\l_él) -(A*
1

Dx +6Hj
~ A~ 2 ~ |2 1 1
4 ‘AlBl-i-Dlz ‘DH1

Using the expressions (86) and (92) let us write down some useful formulas:

~ A 2~ 2 [~ 2 A AE A A
‘AI,Z Bi2 + sz = ‘AI,Z |Buz2| + sz “(A2B12 + A2 Bi2) + sz,
D N A2 2 B .\2
~ 2 a2 < — D D H- (H,,+B
‘Al,z :‘DW.I.,Z +QH1Y2(HL2+BI,2) AIV'L’Z ,\V\ﬁ’z +Q 1’25\ 12 > 12) ,
DH1,2 DH1,2 DHL2
2 2 Ao A Ra’
Bi2 Z‘Al,z -Ra A*'Z FREACE —,
D‘91,2 D91,2 ‘Dalyz
P 2 a2 A A
Ai2Bi2 + A2 Bao Z(Al,z) +(A1,2) - Ra fi’z + fq,z ,
D91,2 DHl,Z
[N 2 _ 2 1R 2 _ 2 2 1R 2 _ o2 2
B, | =1+ (@-W,)2, Dy, | = Pm o (1-W,)2, D | = Pro (W),

~ /\* ~ ~ /\* /\*
DH1’2 + DHL2 = 2Pm‘1, DW1,2 DH1’2 + DWLZ DHL2 = 2(Pm‘1 —(1—\/\/1’2)2),

2

~ o ~ * ~ 2 ~*
Dsy, Dry, +Diy , Doy, = 2(PMPr ™ +(1-W,,)°), ( D, | +(D%2j = 2(1- (1-W,)?),

(113)

(114)

(115)
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*
DW.L,Z

~ ~ * * ~ ~ *
D‘91,2 + DW.L,2 D91’2 = 2(Pr‘l + (1_W1,2)2)’ Dv\iz DHL2 + Dv\ﬁ’2 DHl’Z = 2(Pm"1+ (1—VV1Y2)2).
L et us subgtitute these relations into (107)-(108). So, we can find the difference of the Reynolds and Maxwell stresses:

T3 6831 — f_02 . quzQz

= > , (116)
2 4(1-W,)* g2Q, +[ DF +W, (2-W,) + 41, | +&,
T32 _ 6832 - f_oz. qulQl

2 4(1-W) qPQ, +[ D +W(2-W)+ s |+

with the following denotations:

—1+ QH1,2(H1,2 +§1’2) Ra
2~ -

Q. =1 QPM(H, , + B2)?
1+ PP (1-W, )" T+PrE(-WL) ™ T 1P (1-w,)”

5, =1 QPMH, ,(H, , + Br2)
12—+

RaPr
1+ P (1-W, )’

1+Pr3(1-wW,)*’

2 2
— _ 1+Pm(1-W, _ 1- P (1-W,
t, = 2QH, ,(H,, +Bi2)- 2( i) >+QH/,(H,, +Bu2)*- ( 1'2)2 7~
1+ Pm*(1-W,, ) 1+ P (1-W, ) )
, — . 1-PrPm(1-W,)’
1+ Pr(1-W, )2+ 2QH, ,(H, , + B12)- 2
1+ P (1-W,, )

—Ra-

1+ Pr?(1-W,,)?

_ 2 2 ~2 _ _
G2= 285, + 2(1_\/\/1,2) I, - 2(1_\/\/1,2) (1-Q I, , —2(1- 0112:2)51,2 +E,00,, +
2
X2 (1_VV1,2) + 2, (14 07,),

= 4(1_\/\/1,2 )2 szRaPr 2(1_\/\/1’2)2 RaZPr 2
Sy = n

2 2 2\2 *
1+Pr?(1-W,) (1+ Pr?(1-W,,) )

2
v = 1= PrPm(1-W,, )
1+ Pr(1-W,,)? + 2QH, ,(H, , + B.) .
1+ P (1-W,, )

+Ra-

1+ Pr?(1-w,,)?

4q, ,Ra 2Ra’
HlZ = 2

B 2 z " 2\?
1+Pr(1-W,) (1+ Pr?(1-W,,) )

2
2 = 1- Prem(1-W, , )
1+ Pr(1-W,,)" +2QH, ,(H,, + B12) 2
1+ P (1-W,, )

—Ra-

1+ Prz(l—V\/1’2)2
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_ QH,,(H,, +Br2)
012 = 5 2’
1+ P (1-W,, )

2(1+ P (1_VV1,2 )2 ) + QH1,2 (H1,2 + El,z)} 1

_ 2Ra -&—(l—P 1-w P
’ 1+Pr2(1—V\/l]2)2{ )

QH, ,(H,, + Bi2)(L+ PrPm(1-W,, ))
+
1+ P (1-W, )’

By substituting the relations (115) into (113)-(114) we find the expressions for a turbulent em.f. 51’2 in the explicit

form:

D, (1-W,) PmQ, (H, + B1)

T .(1+ Pm? (1—W1)2)[4(1—W1)2 *Q, +[D12+W1(2_W1)+”1T +§1},

(117)

D, (1-W, ) PmQ, (H, + B2)

s .(1+ Pm? (1—VV2)2)[4(1_W2)2 ¢Q, +[ D +W2(2_W2)+ﬂ2]2+§2]
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HEJIHIMHE IUHAMO B CTPATU®IKOBAHIN EJEKTPOIIPOBIIHI M PIIVHI,
10 MOXNJIO OBEPTAETHCSA B OJHOPIJTHOMY MATHITHOMY HOJII
Muxaiino W. Konn?, Anaroaiii B. Typ®, Kocrsinrun M. Kyauk?, Bosogumup B. SIHoBchKmii?P
alucmumym monokpucmanis, Hayionanena Axademis Hayx Yrpainu
np. Hayxu 60, 61001 Xapxie, Yrpaina
bXapxiecoxuil nayionansruii yrisepcumem imeni B.H. Kapazuna
matioan Ceoboou, 4, 61022, Xapxis, Yrkpaina
¢ Vuieepcumem Tynyszu, Incmumym acmpo@izuunux 00ciodicenb ma nianemonozii
npocnexm nonxosnuxa Poute 9, BP 44346, 31028, Tyry3a Cedex 4, @panyis

B poGoTi MU HOCTiKyBanu HOBY BETMKOMACIITaOHY HECTIHKICTb, sSika BUHHKA€ B KOHBEKTHBHIH €NEKTPONpPOBIMHINA pifuHi, 10
TOXHMJIO 00EPTAETHCS B 30BHIIIHHOMY OJHOPITHOMY MarHiTHOMY IOJI 3 IpiOHOMAcIITaOHOIO 30BHIIIHBOIO CHIIOK), SIKA MA€ HYJIbOBY
coipanpHicTh. Ll cuna 30ymKye apidoHOMacmTabHI OCHMIIALIT MIBUAKOCTI 3 ManuM 4uciaoM PeifHonmbaca. 3a JOMOMOTOI0 METOXY
0araToMacIITaOHUX ACHMOTOTHYHHX PO3KJIAJAIB OTPHMAaHI HEMiHIIHI PIBHSHHS U1 BUXPOBHX 1 MarHiTHHX 30ypeHb B TPETHOMY
NopsAAKy 3a gucioM PeiHonbaca. ITokasano, mo B pe3ynbrati criteHOI Aif crmn Kopiomica i1 npibHOMacmTabHOT 30BHIMIHBOI CHIIN B
CJIIEKTPONPOBIHIA PiAKHI, O 00epPTAETHCS, MOXKIMBA BeNMKOMAcINTabHa HeCTikkicTh. JlocmimkeHa miHiIHHA CTajisi MarHitTo-
BHXPOBOTO JMHAMO, 110 BUHHUKAE B pe3yNbTaTi HeCTiHKocTel Tuiy O -edekty. BuBueHO MexaHi3M NOCHIICHHS BEJIMKOMACIITaOHUX
BUXPOBHX 30ypeHb BHACIIIOK PO3BUTKY TiAPOANHAMIYHOTO (X - epeKTy 3 ypaxyBaHHIM TeMIIepaTypHOi cTpaTudikarii cepeqoBHIIa.
INokazano, mo «cimabke» 30BHINIHE MAarHiTHE IOJIe CIpHUsE€ T'eHepalil BUXPOBHUX Ta MarHiTHHX BeJIMKoOMacmTabHHMX 30ypeHb, a
«CHJIbHE» 30BHILIHE MAarHiTHE I0Jie NPHUTHIYye TeHEepalil0 MAarHiTo-BUXpOBHX 30ypeHb. UHCENbHHMMH MeETOJAaMH 3HaljeHi
CTalllOHapHi pillleHHs PIBHAHb HETiHIIfHOO MarHiTO-BHXPOBOTO IMHAMO Y BHUIVIAI JIOKATi30BaHMX XAaOTHYHUX CTPYKTYP Yy JIBOX
BHIAJIKAX, KOJIM HEMAa€ 30BHIIIHBOTO OJHOPIIHOTO MAarHiTHOTO MOJIS 1 KOJIK BOHO MPHCYTHE.

KJIFOYOBI CJIOBA: piBHSHHS MarHiTHOi rifpoanHaMiku B HaOmmkeHHi byccinecka, cmma Kopiomica, GaratomacmralHi
ACHMIITOTHYHI pO3KJIaaHHs, qpiOHOMAcIITa0HA HecTlipaibHa TypOyIeHTHICTh, O -e(eKT, XaOTUIHI CTPYKTYpH.

HEJMHEWHOE TUHAMO B HAKJIOHHO BPAIIAIOIIENCS CTPATU®UIIMPOBAHHOMN
SJEKTPOITPOBOAIIEN )KUJIKOCTHA B OJHOPOJJHOM MATHUTHOM ITOJIE
Muxaua U. Konn? Anarosmuii B. Typ®, Koncrantun H. Kynnk?, Baagumup B. SInoBckuii®”
aUncmumym monoxpucmannos, Hayuonanvnan Axademus Hayx Yrpaune
np. Hayxu 60, 61001 Xapwvkos, Yrpauna
bXapwrosckuii nayuonanvuwiil ynusepcumem umenu B.H. Kapasuna
nn. Ceoboowi, 4, 61022, Xapvros, Yrpauna
¢ Vuusepcumem Tynysvt, Hncmumym acmpogpuzuueckux uccie0o8anuti u nianemonocuu
npocnexm nonxosnuxa Poue 9, BP 44346, 31028, Tyrysa Cedex 4, @panyus



36
EEJP. 1(2020) Michael |. Kopp, Anatoly V. Tur, et al.

B pabore MBI HcCleNOBalId HOBYIO KPYHMHOMACIITaOHYIO HEYCTOHYMBOCTb, KOTOpas BO3HHMKAeT B HAKIOHHO Bpallaiolencs
KOHBEKTHUBHOH JIEKTPOIIPOBOISAIIEH KHIKOCTH BO BHEIIHEM OJHOPOJHOM MAarHUTHOM IIOJIE € MEJIKOMACIITaOHON BHEIIHEH CHIION,
UMEOLIeH HyJEeBYIO CIHUPAJIBHOCTh. JTa Cuia BO30YXKAAeT MEJIKOMAcCIITaOHble OCHWUISALMU CKOPOCTH C MajlblM YHCIOM
PeitHonpaca. C moMompi0 METOAa MHOTOMACIITAOHBIX ACHMIITOTHYECKHX Pa3lIOKEHMI IOIydeHbl HENUHEHHbIe yPaBHEHUS LI
BUXPEBBIX W MarHUTHBIX BO3MYIIEHHH B TPETbeM MOpsAKe Mo uuciy PeitHombiaca. Iloka3ano, 4To B pe3yiabpTaTe COBMECTHOTO
netictust cmiabl Kopromica n MenkoMacmtabHOM BHEIIHEH CHIJIBI BO BPAIIAIOIICHCS AJICKTPOIPOBOAAIIEH KHUAKOCTH BO3MOXHA
KpynHOMacmrabHasi HeyCTOHIMBOCTE. VcciaenoBaHa JIMHEIHAS CTaAnsl MarHUTO-BUXPEBOTO AMHAMO, BO3HHUKAIOIIETO B PE3yJIbTaTe
HeycTolumBocTed THma O -3¢dekra. M3yueH MexaHH3M yCWICHHS KPYyIHOMAcIITaOHBIX BHUXPEBBIX BO3MYILECHHH, BCIEACTBHU
Pa3BUTHA TUAPOIUHAMUIECKOTO (X - 3 deKTa ¢ yIeToM TeMnepaTypHoil ctpatudukanuu cpeasl. [lokazano, 4ro «cnaboe» BHEIIHEE
MarHUTHOE IOJIE CIIOCOOCTBYET I'€HEepalMi BHXPEBBIX M MAarHUTHBIX KPYHMHOMAaclITaOHBIX BO3MYILECHHH, a «CHJIBHOE» BHEIIHEe
MarHUTHOE II0jI€ IOJABJIAET T'eHEPAlMI0 MarHUTO-BUXPEBBIX BO3MYIIEHHH. UHMCICHHBIMH METOJaMH Hai/eHbl CTalMOHAPHBIE
peleHns ypaBHEHHH HEITMHEHHOr0 MarHUTO-BUXPEBOTO AMHAMO B BHIE JIOKATUM30BAHHBIX XaOTHUECKUX CTPYKTYpP B ABYX CIIyYasX,
KOT/la HET BHEIIHETO OHOPOJHOTO MarHUTHOT'O TOJISt ¥ KOTJ]a OHO MPUCYTCTBYET.

KJIIOYEBBIE CJIOBA: ypaBHeHHS MarHUTHOH THAPOJUHAMHUKM B npubmmkennun byccuHecka, cuma Kopuomuca,
MHOTOMAcIITa0HbIE ACHMIITOTHYECKUE PA3I0KEHHs, MEIKOMAcIITa0Has HeciupanbHas TypOyJIeHTHOCTh, (X -3 QEKT, XaOTHYECKHE

CTPYKTYPBI.



