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The widespread use of mathematical applications, which include differential equations
solvers, and the increase in the speed of computing devices have led to a decreasein interest in
operator methods, in particular, the z-transform. Nevertheless, the use of the z-transform
capabilities allows the implementation of efficient high-speed computing schemes with high
numerical stability. The need for this may arise in the case of real-time simulation or the
synthesis of digital control systems. Based on the analysis of literary sources, the relevance and
advantages of using the z-transform for modeling the dynamics of electrical engineering systems
are shown.

The method of computer modeling is considered, the basis of which is the use of the
method of matching zeros and poles of an equivalent continuous transfer function to build a
computer model. The processof implementingthemodeling recurrent formulasobtained by this
method is shown for three elementary dynamic blocks, which are obtained as a result of the
expansion of the transfer function according to the Heaviside residue theorem: integral (zero
pole), first-order inertial (real pole) and second-order blocks with a real zero and by a pair of
complex-conjugated poles. In this way, the parallel decomposition of the researched system is
implemented, which makesit possible to reduce the negative impact of the limited bit precision
of the system and facilitate the execution of parallel calculations. A discrete transfer function
and a simulation recurrent equation were obtained for each such block.

The practical use and advantages of this method are shown on two examples: asimple
elastic joint mechanical system, which is described by a second-order differential equation,
and a nonlinear model of an asynchronous machine based on a single-phase T-shaped
equivalent circuit. Both problemsareillustrated by examples of solutionsin the environment
of the Mathcad mathematical application. The effectiveness of the zeros and poles matched
method of compared to classical numerical methods for solving ordinary differential
equationsis shown.

The use of this method of mathematical modeling makes it possible to provide a stable
numerical solution with a specified accuracy for a wide range of solution steps.

Key words: computer simulation; electrical systems; integration numerical methods; transfer
function; z-transform; zero-poles matched method.
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Application of the zeros and poles matched method for modeling of electrical systems

Introduction

The development of modern microelectronics causes both an increase in the computing power of
modern computer systems, which makes it possible to expand the range of solved problems in electrical
engineering, in particular, in power engineering and the emergence of advanced microcontroller systems,
which lets to implement intelligent control laws in almost all technology’s fields. The other side of this
process is the progress of a wide range of software, which greatly facilitates access even for an untrained
user to the capabilities of modern computer systems. It is worth noting that all this together contributes to
the set of problems, the solution of which was previously impossible to even dream of. As an example, we
can cite the task of analyzing the dynamics of a large electric power system, in particular, studying its
stability, in real-time [1], which is necessary for the operational management of such systems, especially
with the development of SmartGrid technologies.. Another example of the task of a complex electrotechnical
systems’ analyzing is the study of the modern steel furnaces modes [2].

The mathematical foundation of computer modeling of electrical engineering systems is based on
classical numerical methods, which, given their origin, are designed to work with smooth continuous
functions without discontinuities, that is, those for which there is a Taylor series expansion. As the practice
of computer modeling shows, the existing traditional methods of studying the dynamics of modern electric
power systems, in particular, with impulse elements, are in many cases poorly adapted or just unsuitable for
practical use, but currently, the developers of mathematical applications do not offer any alternative [3]. The
development of electrical engineering and its emergence to a new level requires a new method that will
provide information about the arisen problem and ways to fast solve it with great accuracy in real-time.
Therefore, there is a need to create new effective methods for the development of high-speed computer
models of electrical systems, which would be expedient to use in modern systems with impulse elements,
starting from simple control algorithms for microcontroller systems and ending with advanced models of
whole electrical power systems intended for development programming on powerful multiprocessor systems.
As the research carried out by the authors showed, integral methods, in particular, z-transformation, turned
out to be quite effective.

Formulation of the problem
Thus, the goal of the research, which proposed in the article, is to illustrate the advantages for the
digital control systems synthesis and computer simulation of the electrical systems dynamics in real-time the
using z-transformation, in particular, the zeros and poles matched method.
The possibility of using zeros and poles matched method for the transient processes analysis of linear
and nonlinear electromechanical systems with higher computational efficiency than classical numerical
methods is shown.

Analysis of previous resear ch and publications

Historically, the traditional way of solving problems of the technical systems’ dynamics is to describe
the investigated system by ordinary differential equations followed by their solution [1]. Most often,
appropriate numerical methods are used for this as the most universal method [3-5]. As mentioned earlier,
classical numerical methods are an approximation of the solution by a limited expansion in the Taylor series
[4], which exists in the condition of smooth continuous differentiable functions. At the same time, in most
problems of modern electrical engineering, this situation doesn't work in the case of the need to analyze
impulse systems, switching in equipment, etc., that is, in the case of real practical problems of electrical
engineering, for which the solution function is not smooth and differentiated. To some extent, this problem
is solved by new algorithms for adapting the step of solving the numerical method to the behavior of the
function, for example, they search for the switching point, choosing it as the initial conditions for the next
step [3, 4].

The advantages of integral methods of solving problems of the technical systems' dynamics are shown
in the publications of Prof. A. F. Verlan [6-8], prof. R. V. Filts [9, 10] etc. Integral methods also include
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operator methods, in particular, z-transformation, the effectiveness of which for solving a wide range of
problems of the technical systems’ dynamics has been shown both by its authors [11, 12] and by more
modern authors [13].

The explanation of the traditional method shortcomings of solving dynamics problems is quite simple:
during the differentiation operation, some part of the information is lost, for example, we can cite the
operation of differentiating a polynomial, which leads to a decrease in its order. In the case of solving
differential equations, they try to recover lost information by taking into account the initial conditions
(Cauchy problem), however, in the occasion of using numerical methods, there are problems with the
appearance of numerical instability and the accumulation of errors in the solution function. By the way, from
a technical point of view, there is a simple explanation: the differentiator (or its mathematical analog — the
operation of differentiation) is very sensitive to noise and interference, moreover, the higher the frequency
of interference, the stronger its impact. Such noises and interferences in the situation of numerical methods
are arithmetic rounding errors, numerical method errors etc. At the same time, integral methods are “not
afraid” of discontinuities in the solution function, they solve problems of dynamics with impulse elements
without any problems [6-10].

Due to the efficiency, one of the main engineering methods of designing and simulation the widest
range of discrete systems, in particular, digital regulators of control systems and digital filters, has become
an approach using z-forms (known as the Tustin substitution) — an approximate method of obtaining a
discrete transfer function on the basis of an analog prototype by replacing the continuous integration

operation % with its discrete approximation %T i_i
disadvantage of this method is low accuracy, which decreases with increasing step, due to which the Tustin
substitution is used in digital systems and computer models with an operating frequency that is at least 10—
15 times lower than the sampling frequency, which is determined for a digital system by the sampling
theorem of Claude Shannon [13].

One of the main disadvantages of using the z-transformation for computer models is the significant
amount of necessary analytical work, which is quite difficult to automate even with the help of modern
mathematical computer programs. As the complexity of the modeling object grows, the complexity of the
building process of a discrete model increases disproportionately, this motivate the residue the complete
model into simpler components, which usually causes a loss of accuracy due to the appearance of additional
discretization nodes [11-13]. The transition to engineering methods that use simplified methods to build the
discrete transfer functions, for example, bilinear transformation or z-forms, leads to a decrease in accuracy
and dependence on the discretization period [13].

(corresponds to the implicit trapezoids formula). The

Presenting main material
Theoretical information

The Z-transform arose from the need to define a samples of discrete signal values in the form of a
numbers sequence, which is used by communications and control engineers to study the digital control and
in telemetry systems. One of the main problems with applying the Z-transform is to obtain a discrete transfer
function W(z) that describes the system.

After obtaining the discrete transfer function, the problem of finding the output signal in the time
domain y(t) arises. The most appropriate procedure for solving such a problem with the assistance of
computer technology is to obtain a recurrent formula, which can be used to calculate sequential values of the
desired original function.

The great value of the z-transform is that with its using, as well as with the using Laplace transform,
for a known input signal and for a linear system, it is possible to obtain an analytically true solution for the
output signal. Unfortunately, this situation rarely happens in modeling, because in complex feedback
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systems, the input signals of the internal units are often the sum of the signals from the outputs of the previous
components and the feedback. In such a case, it is practically impossible to obtain an analytical expression
of the Laplace transform for the input signal of a separate block or system, so it is necessary to apply
procedures for transforming the input signal — its approximation by simpler functions for which the Laplace
transform exists.

It is worth noting that understanding the necessity of the process of transformation (or approximation)
of the input signal and the physical sense of such a process in z-transformation is a non-trivial problem. It
may help to realize that finding the system output using the z-transform is an analytical process, just like the
Laplace transform.

If it is impossible to obtain an analytical expression for the signal at the input of the studied component,
devices that are called holders in the theory of automatic control come to the rescue — on a given interval of
length h, they approximate (hold) an arbitrary input signal by the pieces of low-order polynomials (usually
not higher than the first order). In this case, the analytical description of the input signal becomes the transfer
function of the corresponding holder. However, in this occasion, this description is approximate, because, as
is known, polynomial approximation for an arbitrary curve is performed only with definite accuracy
(approximation).

The progress of mathematical applications with the symbolic mathematic capabilities, for example,
Mathcad, Maple, MATLAB (Symbolic Math Toolbox) etc., allowed to simplify the obtaining procedure of
discrete transfer functions for systems described by continuous transfer functions using the Laplace
transform. For this, the method of matching zeros and poles of the transfer function is used, a short algorithm
of which is given below [11-13].

1. For the continuous transfer function of the studied system model, find all zeros Zi (i=1 ... m)
and poles Pj (j =1 ... n), where the order of the numerator polynomial is m, and the order of the denominator
polynomial is n, moreover n > m.

2. Go to the discrete transfer function, which is written in the form of zeros and poles using the well-

known relation [13] z = e®" , where h — is the sampling period (time discretization step):

o accordingly, discrete zeros will be determined by the expression Zdi =gt ,wherei=1...m;

e accordingly, the discrete poles will be determined by the expression de =eP", wherej=1...n.

3. Find the corrected K* transfer coefficient for the discrete transfer function.
This method can be summarized as follows:

2.0-2) X fz-e) o Me-zy  T(z-e)
Kiter— = K8 = K'=limk2 Aim :
2.(s=P) 2 (z-e"") E(S—Pj) I(z-¢"")

Note that for linear and linearized system models and known input signals, this method gives an
analytically true result [14, 15].

The application of the transfer function decomposition of the electrical system into elementary
dynamic components simplifies the process of using this method — responses (or discrete transfer functions)
are found for elementary components, and then summed up to obtain the final system response. In the
presence of non-linear elements, the principle of piecewise linear approximation can be applied, which
makes it possible to consider the electrical system as linear at each separate interval. In this case, the sampling
time can be chosen sufficiently small under the condition of the errors reducing of the piecewise linear
approximation. Such a procedure is possible for real electrical systems, which, as mentioned earlier, can be
described by fractional-rational transfer functions, for which the order of the numerator polynomial does not
exceed the order of the denominator polynomial. This makes it possible to decompose the transfer function
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of such a system into elementary components according to the basic theorem of algebra (also known as the

Heaviside decomposition theorem) — fractions of the form 2, —2 i __€S*4 (see Fig. 1 and Fig. 2):
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Fig. 1. Decomposition scheme of the transfer function into elementary components
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Fig. 2. Location of the poles of elementary dynamic blocks and their corresponding impulse response
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S+ o
2!

oy which has an impulse response W(t)=e"*"-cos(cy, t)
s+0)2 + o

— with a transfer function
(cosine component).

Using the decomposition of the complete transfer function of the electrical system into elementary
components with impulse responses w;(t) makes it possible to apply its parallel decomposition to further find
the response of the entire system as the sum of the responses of simpler (elementary) components (Fig. 3).
The use of parallel decomposition has a significant advantage over other methods:

¢ in this occasion, only one point (node) of discretization of the continuous signal x(t) is introduced
in order to create its discrete approximation x"(t), which reduces the total errors due to the loss of information
during the transition to a discrete system;

o determination of the roots of the characteristic equation of the continuous transfer function
followed by obtaining their discrete mapping in the unit circle (for a discrete system) significantly reduces
the impact of possible singularity of the denominator polynomial of the discrete transfer function with a
step’s decrease. This makes it possible to reduce the sensitivity of the synthesized discrete system (hamely,
the resulting recurrent equation) to rounding errors and the limited bit rate of the computing device [16].

wa(t)
Holder wa(t)
A g S | o I ECV Ty -
Sampling Wi-1(t) 71
Wa(t)

Fig. 3. Parallel decomposition of the continuous transfer function

Recurrent equations for ssmulation
Reducing all possible options for finding transient processes of dynamic blocks to only a small set
makes it possible to develop an acceptable option for building a computing scheme. We note that all recurrent
formulas obtained in this way are absolutely stable for any sampling periods (and in the situation of
mathematical and computer simulation — the solution step).
In the case of a continuous integrator, we will have a zero pole, which correspond to a single discrete
pole. Based on the obtained discrete transfer function, we obtain a recurrent equation for simulation:

1 h/T h
— = —4Y— = V.=V +t—X.
Ts z-1 R
The first order block corresponds to a unit real pole and is an analog of the ordinary differential

equation of the first order Td—)t/+ y =K -x — this is its universality as a basic element in the process of

synthesis of digital systems, in particular, during computer simulation. Using the matching of the unit pole,
we get its digital model [13, 17]:

h
(1—eTjK
K _h _h
—— e yi+1=yi~eT+(1—eTJ~K~Xi-
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Applying the matching (correspondence) of zeros and poles to the continuous transfer function of the

c-s+d . . .
second-order block ————— leads to such a discrete transfer function and to the corresponding recurrent
S+ p-s+q

formula:
Z, =-d/c; * _ a-dh/c.
c-s+d — (S—Zl) ' / 2 = Zl © ’ —
— 0 = _n+ _ Y
s+ p-s+q (s-P)(s-P,) plzzu B e
, 2 12 ’
K'(z-2;) K'(z-2;) _ (2-Ve) K
(z-P")(z-PR,) 2 —(P +P)z+P'P; -V, 72+V,

where the auxiliary variables are:
-Ph 24 .
V,=2e? cosh[%h]; V, =e ", V. =e Ch.

Find the corrected transfer coefficient of the discrete transfer function:

. Cs+ - (z2-V)- K o d 1=V, +V,

im_Cstd 4 4 (22Ve) K AV, #Vy)
s208°+p-s+q Q q 1z°-V,-2+V, q-(1-V.)

After simple algebraic transformations, we will have a recurrent modeling formula:

Yir =Va¥ —Va¥ia +K '(Xi VeXy).

The found discrete transfer function has one real discrete zero and two discrete poles, which in the
case of a stable continuous system will also fall into the unit circle of the region of discrete systems stability.

Note that these recurrent equations, which are obtained from the corresponding discrete transfer
functions, are stable for any simulation step (sampling period).

Practical use

The recurrent equations obtained by the zeros/poles matching method, as already mentioned, are stable
for any sampling period or simulation step, since they have, as it is usual to say in applied mathematics, the
property of strong stability. In this case, the choice of the sampling period for the recurrent equations obtained
in this way is no longer determined by the stability conditions of the numerical method, but by the desired
level of accuracy and detail of the investigated process. Practically the only negative factors in case of step
increase are:

e Phase shift or phase error due to time sampling processes [13, 18]. Such a phase error in a
feedback digital control system or in the computer simulation process of feedback automatic control systems
can lead to an unstable digital model, although the continuous prototype is stable.

e Loss of information arising as the result of the Shannon sampling theorem, when due to a long
sampling period (simulation step) the system no longer passes the high-frequency components of the working
signal spectrum. This situation is less critical than the previous one, because:

1) a correctly designed automatic control system is a low-pass filter, so the content of higher
components in the operating spectrum is insignificant;

2) the loss of a small part of the higher components of the spectrum usually does not lead to phase
shifts and therefore does not affect the system stability.

Experimental results
We will show the use of the zeros and poles matching method for the calculation of dynamic processes
on the examples of models of electromechanical systems elements: model of a simple elastic mechanical
system and a single-phase model of an asynchronous motor with a squirrel cage.
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Elastic mechanical system
An example of the procedure for finding simulation recurrent equations for a mechanical system with
elastic connections is illustrated on a simple model (Fig. 4), which is described by a second-order differential
equation m-x"+pB-x'+C-x=F , where m is a mass of the moving part of the mechanical system; B is the

damping factor; C is a coefficient of elasticity; F is an external force; x is a movement of the moving part of
the mechanism [19].

M =

B
-j F, x

7/

<«

Fig. 4. Functional diagram of a simple elastic mechanical system

Using the zeros and poles matched method directly to a mechanical system with a transfer function
2;, corresponding to a pair of complex-conjugate poles P,,, begins with finding continuous
ms® + fs+C ’

zeros and poles of this system. This procedure is simple, in particular, with the use of mentioned modern

mathematical applications:
—f+4 > —4Cm

ms’*+ps+C = B, =

2m
. N 7ﬁ¢«/ﬁ274th
Accordingly, a pair of discrete poles B, will look like P,=e 2m . The resulting

characteristic equation of the discrete transfer function will have the form:

~p+iyacn-p? ~p-iacn-p? haCm—_ g2 ) &0
(z—Pf)(z_P;):[z—e 2m h}(z—e 2m h] = ZZ—ZCOS[—C;m P lempiem.
m

. : hy4Cm-p* | -2 WL
Let us denote auxiliary variables A= 2cos£—ﬂ}

> e 2m: B=e ™. Accordingly, the discrete
m

transfer function of the digital model will have the form [13] —zzl—_:-J;EB , from which, after simple
algebraic transformations, we will have a recurrent simulation formula:
X, =A-%—-B-x,+1-A+B)-F.

The calculation results by the proposed method of the behavior of a mechanical system after applying
a force F = 10 N to its moving part with a zero initial conditions are shown in Fig. 5. For comparison, the
same graph shows the graphs of the analytical solution and relative errors for the mechanical system with
the following parameters: m = 0.05 kg is a mass of the moving part of the mechanical system; = 0.1 N-s/m
is a damping factor; C = 2 N/m is a coefficient of elasticity.

For a fixed solution step h = 0.1s (50 points for the entire time interval of the transient process
calculation), the RMS error for movement relative to the analytical solution was 1.5 %.
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Fig. 5. Movement graphs for a model of a simple mechanical system

Simulation of the asynchr onous machine dynamics
One of the main elements of modern AC electric drives is an asynchronous motor, therefore,
when simulate it, it is appropriate to evaluate the advantages of the method proposed in the article. A
single-phase model of an asynchronous machine (further in the text — AM) is taken as the starting
point, which in many cases provides sufficient accuracy of reproduction of main coordinates and is
based on an T-shaped equivalent electrical circuit (Fig. 6) in effective values [20, 21], where
descriptions are used:

U is an effective value of the phase voltage;

I1 is an effective value of the stator current;

I, is a relative to the stator the effective value of the rotor current;
r. is an active resistance of the stator;

X1 is a stator leakage reactive resistance;

ry is an active resistance of the magnetization circuit;

Xy IS a reactance of the magnetization circuit;

ro' is an active resistance of the rotor relative to the stator;

X' is a reactive leakage resistance of the rotor relative to the stator;
s = (an — @)/ ax is a sliding AM where

ax is a synchronous angular speed of rotation;

wis an angular speed of the rotor.

Note: in this example, the variable s does not mean the Laplace operator, but the AM sliding.

Fig. 6. T-shaped equivalent electric circuit of the AM model
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This model is described by the corresponding system of equations [20, 21]:

X, + X, (S |

w.h+ll-|zl+2e(3)|zufl;
o,  dt

X| dl

_2.%+|;'

dt

Z;(S)|:Uf1_ |1'|Zl|;

e

31221 /s
Mo (6) = 22215,

0

dw

E: Mem(s)_Mmech(S)’

where ax is an angular frequency of the power supply voltage; x.(s) is a relative to the stator, equivalent
2,(8) 2,
z5(s)+2,

Jx

reactive resistance dependent on slip s; z.(S)= is a relative to the stator, equivalent

’

impedance of the rotor, which depends on the slip s; where z;(s):r—2+j-x;; Z, =1 +] %,
s

M een(8) =M, (0.14+0.9- (1-5)?) is a loading (mechanical) torque — simulation of a typical “fan” loading
torque, where Mnom is the nominal torque of an asynchronous machine.

Experimental studies using the proposed calculation method were carried out for the process of direct start
with load of fan torque of an asynchronous motor with a squirrel cage rotor type 4A200L6 with parameters:

Prom = 30 kW; Nnom = 979 rpm;
r; =0.18 Ohm; r,' = 0.09 Ohm;
X1 = 0.47 Ohm; X2' = 0.5 Ohm;
COS Pnom = 0.9; Ju = 0.45 kg-m?;
Un =220 V; J: = 0.9 kg:m?;
p. = 3.

The total model is significantly nonlinear (Fig. 7):

o the loading torque of AM has a fan-like quadratic mechanical characteristic;

o the electromagnetic torque depend to the slipping function of the machine s is described by a non-
linear dependence.

o
-

0.2

0.6 - //
0.8

AM torque
* ** ¢ Loading torque

. \ \
0 100 200 300 400 500

Torque, [Nm]
Fig. 7. Dependencies of AM torque and loading from slipping
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Let’s rewrite the system of equations in a slightly different way, introducing appropriate notations for
the equivalent time constants of the model:

|X1+Xe(s)| d|1+ _ Ufl .
e i =—1
o, |z, +2,(5) dt |2, +2,(5)
X5 d|£+ ,_Uf1—|1'|21|,
o g T T T
@, - Z2(5)| dt 22(5)|
()
31521 /s
Mem(s): 2 2/ ;
W,
dw
‘]EEZMem(S)_Mmech(s)’
X +%(s) . : : . X :
T,(s) =————=—— is an equivalent time constant of the stator circuit; T,(S) =———=—— is an equivalent
QX '|Zl+ze(s)| @, - ZZ(S)|

time constant of the rotor circle.

Note that these equivalent time constants in the computer model are nonlinear and significantly
depend on slipping (angular velocity), which is shown in Fig. 8. During computer studies, the results of
which are presented below, during the AM start-up process (slip varied within 0.002-1), the value of
the ratio between the simulation step h = 1 ms and the equivalent time constants of the stator and rotor
varied within:

0.33<h/T, £0.72 is a more than twice;
0.32<h/T,<28.3 is an almost a hundred times different.
3.5¢10"
10" °
% A

2.5x10 /
Ti(s)  2x10°° /
T _3
ﬁ_ifi) 1.5x10 /1

1x10”
5x10 *H—[e=— T1 - stator equivalent time const
a2 T2 - rotor equivalent time const
0 \ \ \ \

0 0.2 0.4 0.6 0.8 1
S

Fig. 8. Values of the equivalent time constants
of the AM model depending on the slip
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Finally, we write the system of equations in the form:
U
T,(5) .%+ l, = -1 .
dt |2, +2,(9)|

4 U, -1,z
Tz(s)'%ﬂgz—fl l|l|'

/
r,/S
M, (s) = 12 2/8,
030

= I\/Iem (S) -M mech (5)

do
JZE
Based on this system of equations, we will create a system of recurrent equations for computer
simulation. It is worth paying attention to the case that each explored coordinate (stator and rotor currents,
angular velocity) is described by the first order differential equations (corresponding to the first-order block
or circuit), which simplifies the problem and makes it possible to apply simpler recurrent formulas [13, 17],
as shown lower:

Lo digitafl _h
; tri‘ﬁf?ﬁfm < t{f%st%rn 1-e T K Eéit‘g{t.rﬁ'n“ ) )
y _h _h
T24iy=Kx = — = 7 = e T+|1-eT [-K-X.
dt y TS+1 _E y|+1 yl ( J i
z—-e T
s= Wy — O ,
)
—h -h
iy =1y, -e"® [ 1670 _Yn .
1+ 1 1
|2, +2,(3)
-h
U -z
sl - {1 J iy fa),
Mem_ £|+l /S
W,
h
i+l em HOM .
0L =0+ (M, M, (0.1+0.9 - 1—5)?))

z

The dynamic characteristics of AM start-up for a fixed simulation step h = 1 ms (500 points
per start-up interval) are shown in Fig. 9. The obtained results were compared with reference
calculations carried out in the Mathcad environment using standard function for solving ordinary
differential equations with integration step automatic selection (combined Adams-BDF method) with
an accuracy of 107°. During the calculations, the relative RMS and maximum errors, respectively, did
not exceed:

e 04% and 2/4% isa for the stator current;

e 04% and 6% isa for the rotor current;

e 1.02% and 4.6% isa fortorque;

e 042% and 0.66 % is a for the angular rotor speed.
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Fig. 9. Mathcad simulation results of the AM start-up process for a step 1 ms

Using zeros/poles matching method makes it possible to perform calculations for the simulation step
increased to h =5 ms (that is, 100 points for the entire startup interval), which is shown in Fig. 10. During
these calculations, the relative RMS and maximum errors, respectively, did not exceed:

e 15% and 7.3% is a for the stator current;

e 15% and 44 % s a for the rotor current;

e 58% and 33.6 % is a for torque;

e 31% and 5.3% isa forthe angular rotor speed.

At the same time, the ratio between the simulation step h and the equivalent time constants of the
stator and rotor varied within1.63 < h/T, <3.6 and 1.6 < h/T, <141 —for such ratios of the solution step and
time constants, classical numerical methods are unsuitable due to numerical instability and low accuracy
when using a fixed step calculation.
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Fig. 10. Simulation results of the AM start-up process for a step 5 ms

Analysis of the obtained results
Using zeros and poles matching method requires the user to understand both the functioning of the
technical system and the mathematical description of the processes in the object. Added to this is the need
for some analytical work (currently it is simplified by the availability of mathematical applications, for
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example, Mathcad, MATLAB). All this leads to a certain complication of this method application, which
causes certain limitations in the wide use of zeros and poles matching method. Additional competition is
created by a large number of computer programs with modern functions for solving problems of the technical
systems’ dynamics, even with elements of automation of this process — let’s just mention the Simulink
environment of the mathematical application MATLAB. It is clear that the average user will choose the
method that requires less effort.

We note that in the situation of the need to implement a real-time computer model or in another case
when the calculation must be performed with a fixed step, there is no other way to obtain a reasonable result
in the occasion when the solution step can exceed the time constant more than tenfold.

Conclusions

Applying zeros/poles matching method to obtain simulation recurrence formulas allows you to get a
number of advantages, in particular:

o stability of the numerical solution for any simulation step size;

e the possibility of implementing simulation systems in real time due to the simplicity of the
formulas and their simple implementation on microcontrollers;

o the possibility of implementing parallel calculations thanks to the application of parallel
decomposition of the system model.

It is worth noting that the zeros and poles matching method is also effective for the synthesis of
digital control systems, and not only for computer simulation, because:

e makes it possible to use known from the automatic control theory and widely understood methods
of analog regulators synthesis;

e provides simple and stable recurrent equations for a wide range of sampling periods for
implementation on low-power microcontrollers.

Planned further research
Prospective research on the zeros/poles matching method involves the study of:
e impact on the behavior of a digital system with limited bit computational precision due to the use
of microcontrollers;
e effect of the continuous system decomposition method on the properties of the discrete transfer
function.
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3ACTOCYBAHHA METOIY BIIOBPAKEHHSA HYJIIB I ITOJIFOCIB
JJIA MOAEJIOBAHHSA EJIEKTPOTEXHIYHUX CUCTEM

© Mopos B. I., Baxapuyx A. b., 2022
IMomupenHss MAaTEMATHYHUX 32CTOCYHKIB, SIKi HAIAI0TH 3ac00H PO3B’ I3yBaHHA AN (epeHmiaIbHuX

pPiBHSIHB, i 30iMbIIeHHS MMBUAKOAII 00YHMCIIOBAILHUX NPHCTPOIB NPH3BeJIH /10 3MEHIICHHH
3aliKABJICHOCTI ONmepaTOPHUMM MeTOJAMHU, 30KpeMma Z-neperBopeHHsAM. IIpore BHKOpHcTaHHSA
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MOKJIMBOCTEN Z-TIlepeTBOPEHHS 1€ 3MOI'Y peaJizyBaTu e(peKTUBHI IIBUAKOAiII0Yi 00UHC/II0BATBbHI CXeMH
i3 BHCOKOIO 4McJI0BOIO cTiiikicTio. IloTpeda B bOMY MoOKe BHHMKHYTH y BHNAJKy MO/JETIOBAHHS B
peaJbHOMY 4aci 4u mia yac cuHTe3y nuppoBux cucreM KepyBanHsa. Ha mincrasi ananmisy gitepatypHux
JKepesl TMOKA3aHO AKTYAJIBHICTh i NHepeBarn BHKOPHCTAHHSA Z-NEPETBOPEHHA /UIA MOJEJIOBAHHSA
AUHAMIKH eJIEKTPOTeXHIYHMX CHCTEM.

Po3rnsinyTo cmocié KoOMI' I0TEPHOT0 MOJEJIOBAHHSI, OCHOBOIO SIKOT0 € BHUKOPHUCTAHHS Il
NOOYI0BY KOMI' I0TEPHOI Mo/IeJIi MeTO/LY BioOpa:keHHs (BiIMOBiIHOCTI) HYJIB i MOJIIOCIB eKBiBaJeHTHOT
HenepepBHOI nepeaaBaabHoi pynkuii. [lokazano peasizaniio oTpUMaHHUX MM MeTOI0M MOAETIOBAJIbHHX
peKypeHTHHX ¢(opMyJa sl TPhOX eJleMEHTAPHMX JUHAMIYHHX JAHOK, fAKi OJep:KYIOTh BHACJIIIOK
PoO3KJIaay nepenaBaibHoi pyHKII 32 TeopeMoro po3kiany I'eBicaiina: iHTerpajibHoi (HYJIbOBHIl OJIIOC),
iHepuiiinoi nepuoro mopsaky (aificHuii moJroc) i JIaHKKM Apyroro nopsaky i3 gilicHuM HyseM i mapoio
KOMILIEKCHO CHpsiKeHMX moJarociB. OTike, peasizoBaHa mnapaJjejibHa JIeKOMIO3MIS JOCJHIIKyBaHOU
CHCTEMHM, 10 AA€ 3MOI'Y 3MEHIIMTH HeraTUBHMIA BIUIMB 00MeKEeHOI PO3PSIAHOCTI CHCTEMH i MOJIermuTH
BHKOHAHHS NMAapaJIeJIbHUX 004MCJIeHb. 1 KOXKHOI TaKol JAHKH OJepPKAHO NUCKPETHY NepeAaBalIbHy
(dyHK1i0 Ta MoeTIOBA/IbHE PeKYPEHTHEe PiBHSIHHS.

Ha nBox npuk/agax npoAeMOHCTPOBAHO MPAKTHYHE BUKOPHCTAHHSA Ta MepeBaru Nboro cnocody:
NMPOCTA NPY’KHA MeXaHIYHA CHCTeMa, sIKAa ONHMCcaHA AU epeHniaTbHUM PiBHAHHAM JAPYroro Nopsiaky, Ta
HeJliHiliiHAa MoJeb ACHHXPOHHOI MamIMHM 3a ogHO(pa3How T-nmoaidHOI0 3acTymHOl cxemoro. OomuaBi
3aJa4i MpoOLIIOCTPOBAaHI NPHUKIAJAMH PO3B SI3YBaHHSl Y CepeJOBHINI MaTeMATHYHOIO0 3aCTOCYHKY
Mathcad. IlinTBepa:keHo edeKTHBHiCTHL MeTOdy BiAMOBiZHOCTI HYJIB i MOJIOCIB MOpiBHSIHO 3 Kja-
CHYHUMM YHCJIOBHMH METOJAMH PO3B’ I3yBaHHA 3BHYANHUX AH(epeHtiaTbHNX PiBHIHD.

Bukopuctanis Hbporo cnocody MaTeMaTHYHOTO MOJETIOBAHHS Ja€ 3MOry 3a0e3meyuTH CcTidkuii
YHCJIOBHUI PO3B’ 130K i3 32/1aHOI0 TOYHICTIO VIS IIMPOKOIO 1iana30Hy KPOKiB PO3B’ I3yBaHHS.

Kniouogi cnosa. xomn'iomepne mMoOenio6anHs; el1eKmMpUYHa CUCHEMA; [HMeZPAIbHULL YUCI106Ul
Memoo; nepeoasaibia YyRKYisa; Z-nepemeopeHts; memoo eidobparicenns (6i0nogionocmi) nynie i noniocie.
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