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The widespread use of mathematical applications, which include differential equations 
solvers, and the increase in the speed of computing devices have led to a decrease in interest in 
operator methods, in particular, the z-transform. Nevertheless, the use of the z-transform 
capabilities allows the implementation of efficient high-speed computing schemes with high 
numerical stability. The need for this may arise in the case of real-time simulation or the 
synthesis of digital control systems. Based on the analysis of literary sources, the relevance and 
advantages of using the z-transform for modeling the dynamics of electrical engineering systems 
are shown. 

The method of computer modeling is considered, the basis of which is the use of the 
method of matching zeros and poles of an equivalent continuous transfer function to build a 
computer model. The process of implementing the modeling recurrent formulas obtained by this 
method is shown for three elementary dynamic blocks, which are obtained as a result of the 
expansion of the transfer function according to the Heaviside residue theorem: integral (zero 
pole), first-order inertial (real pole) and second-order blocks with a real zero and by a pair of 
complex-conjugated poles. In this way, the parallel decomposition of the researched system is 
implemented, which makes it possible to reduce the negative impact of the limited bit precision 
of the system and facilitate the execution of parallel calculations. A discrete transfer function 
and a simulation recurrent equation were obtained for each such block. 

The practical use and advantages of this method are shown on two examples: a simple 
elastic joint mechanical system, which is described by a second-order differential equation, 
and a nonlinear model of an asynchronous machine based on a single-phase T-shaped 
equivalent circuit. Both problems are illustrated by examples of solutions in the environment 
of the Mathcad mathematical application. The effectiveness of the zeros and poles matched 
method of compared to classical numerical methods for solving ordinary differential 
equations is shown. 

The use of this method of mathematical modeling makes it possible to provide a stable 
numerical solution with a specified accuracy for a wide range of solution steps. 

Key words: computer simulation; electrical systems; integration numerical methods; transfer 
function; z-transform; zero-poles matched method. 
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Introduction 
The development of modern microelectronics causes both an increase in the computing power of 

modern computer systems, which makes it possible to expand the range of solved problems in electrical 
engineering, in particular, in power engineering and the emergence of advanced microcontroller systems, 
which lets to implement intelligent control laws in almost all technology’s fields. The other side of this 
process is the progress of a wide range of software, which greatly facilitates access even for an untrained 
user to the capabilities of modern computer systems. It is worth noting that all this together contributes to 
the set of problems, the solution of which was previously impossible to even dream of. As an example, we 
can cite the task of analyzing the dynamics of a large electric power system, in particular, studying its 
stability, in real-time [1], which is necessary for the operational management of such systems, especially 
with the development of SmartGrid technologies.. Another example of the task of a complex electrotechnical 
systems’ analyzing is the study of the modern steel furnaces modes [2]. 

The mathematical foundation of computer modeling of electrical engineering systems is based on 
classical numerical methods, which, given their origin, are designed to work with smooth continuous 
functions without discontinuities, that is, those for which there is a Taylor series expansion. As the practice 
of computer modeling shows, the existing traditional methods of studying the dynamics of modern electric 
power systems, in particular, with impulse elements, are in many cases poorly adapted or just unsuitable for 
practical use, but currently, the developers of mathematical applications do not offer any alternative [3]. The 
development of electrical engineering and its emergence to a new level requires a new method that will 
provide information about the arisen problem and ways to fast solve it with great accuracy in real-time. 
Therefore, there is a need to create new effective methods for the development of high-speed computer 
models of electrical systems, which would be expedient to use in modern systems with impulse elements, 
starting from simple control algorithms for microcontroller systems and ending with advanced models of 
whole electrical power systems intended for development programming on powerful multiprocessor systems. 
As the research carried out by the authors showed, integral methods, in particular, z-transformation, turned 
out to be quite effective. 

 
Formulation of the problem 

 Thus, the goal of the research, which proposed in the article, is to illustrate the advantages for the 
digital control systems synthesis and computer simulation of the electrical systems dynamics in real-time the 
using z-transformation, in particular, the zeros and poles matched method. 

The possibility of using zeros and poles matched method for the transient processes analysis of linear 
and nonlinear electromechanical systems with higher computational efficiency than classical numerical 
methods is shown. 

 
Analysis of previous research and publications 

Historically, the traditional way of solving problems of the technical systems’ dynamics is to describe 
the investigated system by ordinary differential equations followed by their solution [1]. Most often, 
appropriate numerical methods are used for this as the most universal method [3–5]. As mentioned earlier, 
classical numerical methods are an approximation of the solution by a limited expansion in the Taylor series 
[4], which exists in the condition of smooth continuous differentiable functions. At the same time, in most 
problems of modern electrical engineering, this situation doesn't work in the case of the need to analyze 
impulse systems, switching in equipment, etc., that is, in the case of real practical problems of electrical 
engineering, for which the solution function is not smooth and differentiated. To some extent, this problem 
is solved by new algorithms for adapting the step of solving the numerical method to the behavior of the 
function, for example, they search for the switching point, choosing it as the initial conditions for the next 
step [3, 4]. 

The advantages of integral methods of solving problems of the technical systems' dynamics are shown 
in the publications of Prof. A. F. Verlan [6–8], prof. R. V. Filts [9, 10] etc. Integral methods also include 
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operator methods, in particular, z-transformation, the effectiveness of which for solving a wide range of 
problems of the technical systems’ dynamics has been shown both by its authors [11, 12] and by more 
modern authors [13]. 

The explanation of the traditional method shortcomings of solving dynamics problems is quite simple: 
during the differentiation operation, some part of the information is lost, for example, we can cite the 
operation of differentiating a polynomial, which leads to a decrease in its order. In the case of solving 
differential equations, they try to recover lost information by taking into account the initial conditions 
(Cauchy problem), however, in the occasion of using numerical methods, there are problems with the 
appearance of numerical instability and the accumulation of errors in the solution function. By the way, from 
a technical point of view, there is a simple explanation: the differentiator (or its mathematical analog – the 
operation of differentiation) is very sensitive to noise and interference, moreover, the higher the frequency 
of interference, the stronger its impact. Such noises and interferences in the situation of numerical methods 
are arithmetic rounding errors, numerical method errors etc. At the same time, integral methods are “not 
afraid” of discontinuities in the solution function, they solve problems of dynamics with impulse elements 
without any problems [6–10]. 

Due to the efficiency, one of the main engineering methods of designing and simulation the widest 
range of discrete systems, in particular, digital regulators of control systems and digital filters, has become 
an approach using z-forms (known as the Tustin substitution) – an approximate method of obtaining a 
discrete transfer function on the basis of an analog prototype by replacing the continuous integration 

operation 
s

1  with its discrete approximation 
1

1

1

1

2 −

−

−
+

z

zh
 (corresponds to the implicit trapezoids formula). The 

disadvantage of this method is low accuracy, which decreases with increasing step, due to which the Tustin 
substitution is used in digital systems and computer models with an operating frequency that is at least 10–
15 times lower than the sampling frequency, which is determined for a digital system by the sampling 
theorem of Claude Shannon [13]. 

One of the main disadvantages of using the z-transformation for computer models is the significant 
amount of necessary analytical work, which is quite difficult to automate even with the help of modern 
mathematical computer programs. As the complexity of the modeling object grows, the complexity of the 
building process of a discrete model increases disproportionately, this motivate the residue the complete 
model into simpler components, which usually causes a loss of accuracy due to the appearance of additional 
discretization nodes [11–13]. The transition to engineering methods that use simplified methods to build the 
discrete transfer functions, for example, bilinear transformation or z-forms, leads to a decrease in accuracy 
and dependence on the discretization period [13]. 

 
Presenting main material 
Theoretical information 

The Z-transform arose from the need to define a samples of discrete signal values in the form of a 
numbers sequence, which is used by communications and control engineers to study the digital control and 
in telemetry systems. One of the main problems with applying the Z-transform is to obtain a discrete transfer 
function W(z) that describes the system. 

After obtaining the discrete transfer function, the problem of finding the output signal in the time 
domain y(t) arises. The most appropriate procedure for solving such a problem with the assistance of 
computer technology is to obtain a recurrent formula, which can be used to calculate sequential values of the 
desired original function. 

The great value of the z-transform is that with its using, as well as with the using Laplace transform, 
for a known input signal and for a linear system, it is possible to obtain an analytically true solution for the 
output signal. Unfortunately, this situation rarely happens in modeling, because in complex feedback 
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systems, the input signals of the internal units are often the sum of the signals from the outputs of the previous 
components and the feedback. In such a case, it is practically impossible to obtain an analytical expression 
of the Laplace transform for the input signal of a separate block or system, so it is necessary to apply 
procedures for transforming the input signal – its approximation by simpler functions for which the Laplace 
transform exists.  

It is worth noting that understanding the necessity of the process of transformation (or approximation) 
of the input signal and the physical sense of such a process in z-transformation is a non-trivial problem. It 
may help to realize that finding the system output using the z-transform is an analytical process, just like the 
Laplace transform. 

If it is impossible to obtain an analytical expression for the signal at the input of the studied component, 
devices that are called holders in the theory of automatic control come to the rescue – on a given interval of 
length h, they approximate (hold) an arbitrary input signal by the pieces of low-order polynomials (usually 
not higher than the first order). In this case, the analytical description of the input signal becomes the transfer 
function of the corresponding holder. However, in this occasion, this description is approximate, because, as 
is known, polynomial approximation for an arbitrary curve is performed only with definite accuracy 
(approximation). 

The progress of mathematical applications with the symbolic mathematic capabilities, for example, 
Mathcad, Maple, MATLAB (Symbolic Math Toolbox) etc., allowed to simplify the obtaining procedure of 
discrete transfer functions for systems described by continuous transfer functions using the Laplace 
transform. For this, the method of matching zeros and poles of the transfer function is used, a short algorithm 
of which is given below [11–13]. 

1. For the continuous transfer function of the studied system model, find all zeros  Zi (i = 1 … m) 
and poles Pj (j = 1 … n), where the order of the numerator polynomial is m, and the order of the denominator 

polynomial is n , moreover n ≥ m. 
2. Go to the discrete transfer function, which is written in the form of zeros and poles using the well-

known relation [13] shez = , where h – is the sampling period (time discretization step): 

• accordingly, discrete zeros will be determined by the expression hz
d

i

i
eZ = , where i = 1 … m; 

• accordingly, the discrete poles will be determined by the expression 
hp

d
j

j
eP = , where j = 1 … n. 

3. Find the corrected K* transfer coefficient for the discrete transfer function. 
This method can be summarized as follows: 
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Note that for linear and linearized system models and known input signals, this method gives an 
analytically true result [14, 15]. 

The application of the transfer function decomposition of the electrical system into elementary 
dynamic components simplifies the process of using this method – responses (or discrete transfer functions) 
are found for elementary components, and then summed up to obtain the final system response. In the 
presence of non-linear elements, the principle of piecewise linear approximation can be applied, which 
makes it possible to consider the electrical system as linear at each separate interval. In this case, the sampling 
time can be chosen sufficiently small under the condition of the errors reducing of the piecewise linear 
approximation. Such a procedure is possible for real electrical systems, which, as mentioned earlier, can be 
described by fractional-rational transfer functions, for which the order of the numerator polynomial does not 
exceed the order of the denominator polynomial. This makes it possible to decompose the transfer function 
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of such a system into elementary components according to the basic theorem of algebra (also known as the 

Heaviside decomposition theorem) – fractions of the form 
s

b
, 

as

b

+
 і 

qsps

dsc

+⋅+
+⋅

2
 (see Fig. 1 and Fig. 2): 

 

 

Fig. 1. Decomposition scheme of the transfer function into elementary components 
 

 

Fig. 2. Location of the poles of elementary dynamic blocks and their corresponding impulse response 
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− with a transfer function 
2
0

2)( ω+α+
α+

s

s , which has an impulse response )cos()( 0 tetw t ⋅ω⋅= ⋅α−  

(cosine component). 
Using the decomposition of the complete transfer function of the electrical system into elementary 

components with impulse responses wi(t) makes it possible to apply its parallel decomposition to further find 
the response of the entire system as the sum of the responses of simpler (elementary) components (Fig. 3). 
The use of parallel decomposition has a significant advantage over other methods: 

• in this occasion, only one point (node) of discretization of the continuous signal x(t) is introduced 
in order to create its discrete approximation x*(t), which reduces the total errors due to the loss of information 
during the transition to a discrete system; 

• determination of the roots of the characteristic equation of the continuous transfer function 
followed by obtaining their discrete mapping in the unit circle (for a discrete system) significantly reduces 
the impact of possible singularity of the denominator polynomial of the discrete transfer function with a 
step’s decrease. This makes it possible to reduce the sensitivity of the synthesized discrete system (namely, 
the resulting recurrent equation) to rounding errors and the limited bit rate of the computing device [16]. 
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Fig. 3. Parallel decomposition of the continuous transfer function 
 

Recurrent equations for simulation 
Reducing all possible options for finding transient processes of dynamic blocks to only a small set 

makes it possible to develop an acceptable option for building a computing scheme. We note that all recurrent 
formulas obtained in this way are absolutely stable for any sampling periods (and in the situation of 
mathematical and computer simulation – the solution step). 

In the case of a continuous integrator, we will have a zero pole, which correspond to a single discrete 
pole. Based on the obtained discrete transfer function, we obtain a recurrent equation for simulation: 
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The first order block corresponds to a unit real pole and is an analog of the ordinary differential 

equation of the first order 
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T y K x
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+ = ⋅  – this is its universality as a basic element in the process of 

synthesis of digital systems, in particular, during computer simulation. Using the matching of the unit pole, 
we get its digital model [13, 17]: 
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Applying the matching (correspondence) of zeros and poles to the continuous transfer function of the 

second-order block
2

c s d

s p s q

⋅ +
+ ⋅ +

 leads to such a discrete transfer function and to the corresponding recurrent 

formula: 

2

*
1 1

1 2 42
* 21 2 1,2 1,2

; ;
( )

4( )( ) ;2

d h c

p p q
h

Z d c Z e
s Zc s d

p p qs p s q s P s P P P e

− ⋅

− ± −
⋅

= −  =−⋅ +  
 − ± −+ ⋅ + − − =  =

    

( )
( )( )

( ) ( )* * * * *
1 1

2 * * * * 2* *
1 2 1 21 2

,
( )

C

A B

K z Z K z Z z V K

z P P z P P z V z Vz P z P

− − − ⋅
− + + − ⋅ +− −

    

where the auxiliary variables are: 
2

2
4

2 cosh
2

p
h

A

p q
V e h

−  −
 = ⋅
 
 

;  h p
BV e− ⋅= ; 

d
h

c
CV e

−
= . 

Find the corrected transfer coefficient of the discrete transfer function: 
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After simple algebraic transformations, we will have a recurrent modeling formula: 

( )*
1 1 1i A i B i i C iy V y V y K x V x+ − −= − + ⋅ − . 

The found discrete transfer function has one real discrete zero and two discrete poles, which in the 
case of a stable continuous system will also fall into the unit circle of the region of discrete systems stability. 

Note that these recurrent equations, which are obtained from the corresponding discrete transfer 
functions, are stable for any simulation step (sampling period). 

 
Practical use 

The recurrent equations obtained by the zeros/poles matching method, as already mentioned, are stable 
for any sampling period or simulation step, since they have, as it is usual to say in applied mathematics, the 
property of strong stability. In this case, the choice of the sampling period for the recurrent equations obtained 
in this way is no longer determined by the stability conditions of the numerical method, but by the desired 
level of accuracy and detail of the investigated process. Practically the only negative factors in case of step 
increase are: 

• Phase shift or phase error due to time sampling processes [13, 18]. Such a phase error in a 
feedback digital control system or in the computer simulation process of feedback automatic control systems 
can lead to an unstable digital model, although the continuous prototype is stable. 

• Loss of information arising as the result of the Shannon sampling theorem, when due to a long 
sampling period (simulation step) the system no longer passes the high-frequency components of the working 
signal spectrum. This situation is less critical than the previous one, because: 

1) a correctly designed automatic control system is a low-pass filter, so the content of higher 
components in the operating spectrum is insignificant; 

2) the loss of a small part of the higher components of the spectrum usually does not lead to phase 
shifts and therefore does not affect the system stability. 

 
Experimental results 

We will show the use of the zeros and poles matching method for the calculation of dynamic processes 
on the examples of models of electromechanical systems elements: model of a simple elastic mechanical 
system and a single-phase model of an asynchronous motor with a squirrel cage. 
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Elastic mechanical system 
An example of the procedure for finding simulation recurrent equations for a mechanical system with 

elastic connections is illustrated on a simple model (Fig. 4), which is described by a second-order differential 

equation FxCxxm =⋅+′⋅β+′′⋅ , where m is a mass of the moving part of the mechanical system; β is the 

damping factor; C is a coefficient of elasticity; F is an external force; x is a movement of the moving part of 

the mechanism [19]. 

 

C 

β 

m 

F, x 

 

 

Fig. 4. Functional diagram of a simple elastic mechanical system 

 

Using the zeros and poles matched method directly to a mechanical system with a transfer function 
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zeros and poles of this system. This procedure is simple, in particular, with the use of mentioned modern 

mathematical applications: 
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transfer function of the digital model will have the form [13] 
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, from which, after simple 

algebraic transformations, we will have a recurrent simulation formula: 

1 1 (1 )i i ix A x B x A B F+ −= ⋅ − ⋅ + − + ⋅ . 

The calculation results by the proposed method of the behavior of a mechanical system after applying 

a force F = 10 N to its moving part with a zero initial conditions are shown in Fig. 5. For comparison, the 

same graph shows the graphs of the analytical solution and relative errors for the mechanical system with 

the following parameters: m = 0.05 kg is a mass of the moving part of the mechanical system; β = 0.1 N·s/m 

is a damping factor; C = 2 N/m is a coefficient of elasticity. 

For a fixed solution step h = 0.1 s (50 points for the entire time interval of the transient process 

calculation), the RMS error for movement relative to the analytical solution was 1.5 %. 
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Fig. 5. Movement graphs for a model of a simple mechanical system 

 
Simulation of the asynchronous machine dynamics 

One of the main elements of modern AC electric drives is an asynchronous motor, therefore, 
when simulate it, it is appropriate to evaluate the advantages of the method proposed in the article. A 
single-phase model of an asynchronous machine (further in the text – AM) is taken as the starting 
point, which in many cases provides sufficient accuracy of reproduction of main coordinates and is 
based on an T-shaped equivalent electrical circuit (Fig. 6) in effective values [20, 21], where 
descriptions are used: 

Uf1 is an effective value of the phase voltage; 
I1 is an effective value of the stator current; 
I2' is a relative to the stator the effective value of the rotor current; 
r1 is an active resistance of the stator; 
x1 is a stator leakage reactive resistance; 

rμ is an active resistance of the magnetization circuit; 

xμ is a reactance of the magnetization circuit; 

r2' is an active resistance of the rotor relative to the stator; 
x2' is a reactive leakage resistance of the rotor relative to the stator; 

s = (ω0 – ω)/ω0 is a sliding AM where 

ω0 is a synchronous angular speed of rotation; 

ω is an angular speed of the rotor. 

Note: in this example, the variable s does not mean the Laplace operator, but the AM sliding. 
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Fig. 6. T-shaped equivalent electric circuit of the AM model 
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This model is described by the corresponding system of equations [20, 21]: 
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where ωe is an angular frequency of the power supply voltage; xe(s) is a relative to the stator, equivalent 

reactive resistance dependent on slip s; 
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2  is a relative to the stator, equivalent 

impedance of the rotor, which depends on the slip s; where 2
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))1(9.01.0()( 2
nom sMsMmech −⋅+=  is a loading (mechanical) torque – simulation of a typical “fan” loading 

torque, where Mnom is the nominal torque of an asynchronous machine. 
Experimental studies using the proposed calculation method were carried out for the process of direct start 

with load of fan torque of an asynchronous motor with a squirrel cage rotor type 4A200L6 with parameters: 
Pnom = 30 kW; nnom = 979 rpm; 
r1 = 0.18 Ohm; r2' = 0.09 Ohm; 
x1 = 0.47 Ohm; x2' = 0.5 Ohm; 
cos ϕnom = 0.9; JM = 0.45 kg⋅m2; 
Uf1 = 220 V; JΣ = 0.9 kg⋅m2; 
pп = 3. 
The total model is significantly nonlinear (Fig. 7): 
• the  loading torque of AM has a fan-like quadratic mechanical characteristic; 
• the electromagnetic torque depend to the slipping function of the machine s is described by a non-

linear dependence. 
 

 

Fig. 7. Dependencies of AM torque and loading from slipping 
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Let’s rewrite the system of equations in a slightly different way, introducing appropriate notations for 
the equivalent time constants of the model: 
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time constant of the rotor circle. 
Note that these equivalent time constants in the computer model are nonlinear and significantly 

depend on slipping (angular velocity), which is shown in Fig. 8. During computer studies, the results of 
which are presented below, during the AM start-up process (slip varied within 0.002–1), the value of 
the ratio between the simulation step h = 1 ms and the equivalent time constants of the stator and rotor 
varied within: 

72.033.0 1 ≤≤ Th  is a more than twice; 

3.2832.0 2 ≤≤ Th  is an almost a hundred times different. 

 

 
Fig. 8. Values of the equivalent time constants  

of the AM model depending on the slip 
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Finally, we write the system of equations in the form: 
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Based on this system of equations, we will create a system of recurrent equations for computer 
simulation. It is worth paying attention to the case that each explored coordinate (stator and rotor currents, 
angular velocity) is described by the first order differential equations (corresponding to the first-order block 
or circuit), which simplifies the problem and makes it possible to apply simpler recurrent formulas [13, 17], 
as shown lower: 
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The dynamic characteristics of AM start-up for a fixed simulation step h = 1 ms (500 points  
per start-up interval) are shown in Fig. 9. The obtained results were compared with reference 
calculations carried out in the Mathcad environment using standard function for solving ordinary 
differential equations with integration step automatic selection (combined Adams-BDF method) with 
an accuracy of 10–6. During the calculations, the relative RMS and maximum errors, respectively, did 
not exceed: 

• 0.4 %  and  2/4 %  is a for the stator current; 

• 0.4 %  and  6 %  is a for the rotor current; 

• 1.02 %  and  4.6 %  is a for torque; 

• 0.42 %  and  0.66 %  is a for the angular rotor speed. 
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Fig. 9. Mathcad simulation results of the AM start-up process for a step 1 ms 

 
Using zeros/poles matching method makes it possible to perform calculations for the simulation step 

increased to h = 5 ms (that is, 100 points for the entire startup interval), which is shown in Fig. 10. During 
these calculations, the relative RMS and maximum errors, respectively, did not exceed: 

• 1.5 %  and  7.3 %  is a for the stator current; 
• 1.5 %  and  44 %  is a for the rotor current; 
• 5.8 %  and  33.6 %  is a for torque; 
• 3.1 %  and  5.3 %  is a for the angular rotor speed. 
At the same time, the ratio between the simulation step h and the equivalent time constants of the 

stator and rotor varied within 6.363.1 1 ≤≤ Th  and 1416.1 2 ≤≤ Th  – for such ratios of the solution step and 

time constants, classical numerical methods are unsuitable due to numerical instability and low accuracy 
when using a fixed step calculation. 
 

 
Fig. 10. Simulation results of the AM start-up process for a step 5 ms 
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example, Mathcad, MATLAB). All this leads to a certain complication of this method application, which 
causes certain limitations in the wide use of zeros and poles matching method. Additional competition is 
created by a large number of computer programs with modern functions for solving problems of the technical 
systems’ dynamics, even with elements of automation of this process – let’s just mention the Simulink 
environment of the mathematical application MATLAB. It is clear that the average user will choose the 
method that requires less effort. 

We note that in the situation of the need to implement a real-time computer model or in another case 
when the calculation must be performed with a fixed step, there is no other way to obtain a reasonable result 
in the occasion when the solution step can exceed the time constant more than tenfold. 

 
Conclusions 

Applying zeros/poles matching method to obtain simulation recurrence formulas allows you to get a 
number of advantages, in particular: 

• stability of the numerical solution for any simulation step size; 
• the possibility of implementing simulation systems in real time due to the simplicity of the 

formulas and their simple implementation on microcontrollers; 
• the possibility of implementing parallel calculations thanks to the application of parallel 

decomposition of the system model. 
It is worth noting that the zeros and poles matching method is also effective for the synthesis of 

digital control systems, and not only for computer simulation, because: 
• makes it possible to use known from the automatic control theory and widely understood methods 

of analog regulators synthesis; 
• provides simple and stable recurrent equations for a wide range of sampling periods for 

implementation on low-power microcontrollers. 
 

Planned further research 
Prospective research on the zeros/poles matching method involves the study of: 
• impact on the behavior of a digital system with limited bit computational precision due to the use 

of microcontrollers; 
• effect of the continuous system decomposition method on the properties of the discrete transfer 

function. 
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Поширення математичних застосунків, які надають засоби розв’язування диференціальних 
рівнянь, і збільшення швидкодії обчислювальних пристроїв призвели до зменшення 
зацікавленості операторними методами, зокрема z-перетворенням. Проте використання 
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можливостей z-перетворення дає змогу реалізувати ефективні швидкодіючі обчислювальні схеми 
із високою числовою стійкістю. Потреба в цьому може виникнути у випадку моделювання в 
реальному часі чи під час синтезу цифрових систем керування. На підставі аналізу літературних 
джерел показано актуальність і переваги використання z-перетворення для моделювання 
динаміки електротехнічних систем. 

Розглянуто спосіб комп’ютерного моделювання, основою якого є використання для 
побудови комп’ютерної моделі методу відображення (відповідності) нулів і полюсів еквівалентної 
неперервної передавальної функції. Показано реалізацію отриманих цим методом моделювальних 
рекурентних формул для трьох елементарних динамічних ланок, які одержують внаслідок 
розкладу передавальної функції за теоремою розкладу Гевісайда: інтегральної (нульовий полюс), 
інерційної першого порядку (дійсний полюс) і ланки другого порядку із дійсним нулем і парою 
комплексно спряжених полюсів. Отже, реалізована паралельна декомпозиція досліджуваної 
системи, що дає змогу зменшити негативний вплив обмеженої розрядності системи і полегшити 
виконання паралельних обчислень. Для кожної такої ланки одержано дискретну передавальну 
функцію та моделювальне рекурентне рівняння. 

На двох прикладах продемонстровано практичне використання та переваги цього способу: 
проста пружна механічна система, яка описана диференціальним рівнянням другого порядку, та 
нелінійна модель асинхронної машини за однофазною Т-подібною заступною схемою. Обидві 
задачі проілюстровані прикладами розв’язування у середовищі математичного застосунку 
Mathcad. Підтверджено ефективність методу відповідності нулів і полюсів порівняно з кла-
сичними числовими методами розв’язування звичайних диференціальних рівнянь. 

Використання цього способу математичного моделювання дає змогу забезпечити стійкий 
числовий розв’язок із заданою точністю для широкого діапазону кроків розв’язування. 

Ключові слова: комп’ютерне моделювання; електрична система; інтегральний числовий 
метод; передавальна функція; z-перетворення; метод відображення (відповідності) нулів і полюсів. 

 


