В.А. Лисенко, д.т.н., Ю.О. Закорчемный, к.т.н., С.Е. Верёвкина

ИНЖЕНЕРНАЯ АРХИТЕКТОНИКА ЗДАНИЙ ИСТОРИЧЕСКОЙ ФОНОВОЙ ЗАСТРОЙКИ Г. ОДЕССЫ 1820-1920 ГГ. В УСЛОВИЯХ ЭНЕРГОИНТЕГРАЦИИ

Одесская государственная академия строительства и архитектуры, Украина

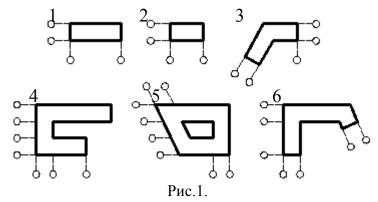
В статье рассматривается проблема энергосбережения существующих зданий фоновой исторической застройки г. Одессы построенных в конце XIX - начале XX ст. и вопрос термомодернизации, как вариант ее решения. Предложены конструктивные решения для проведения работ по утеплении наружных стен рассматриваемых зданий.

Постановка проблемы. Согласно постановлению Кабинета Министров Украины от 17.05.2012г. № 397, одним из приоритетных направлений инновационной деятельности отраслевого уровня на 2012-2016 гг. является проведение теплосанации жилых зданий и сооружений бюджетных учреждений [1]. Поэтому разработка энергоэффективных конструктивных решений является важной проблемой на пути к энергоинтеграции страны[2,3,4].

Проанализировав жилищный фонд г. Одессы было установлено, что застройка XIX-XXст. составляет около 54%, в связи с чем, проведение термомодернизации данного жилищного фонда является актуальным [5].

Анализ последних исследований и публикаций. В данной работе были рассмотрены исследования и публикации отечественных и зарубежных ученых, работающих в этом направлении: В.Н. Богословского, Ю.А. Матросова, Н.М. Гусева и др. В статье рассмотрены определенные вопросы на уровне предложения рекомендаций относительно выбора энергоэффективных конструктивных решений наружных стен зданий исторической фоновой застройки на примере города Одессы.

Целью статьи является определение путей повышения энергоэффективности конструкций зданий исторической фоновой застройки г.Одессы на основании предложенных конструктивных решений.


Для достижения цели были определены следующие задачи исследования: проанализировать объемно-планировочные и архитектурно-конструктивные решения зданий исторической застройки г. Одессы в период с 1820г. по 1920г; на основании выполненной классификации современных теплоизоляционных материалов и конструктивных решений, представленных на рынке Украины, предоставить рекомендации по проведению термомодернизации рассматриваемого жилищного фонда.

Основная часть. Жилой фонд г. Одессы составляет 43196 дома, из них больше половины строений построены в конце XIX - начале XX ст. [5]. Актуальность выполнения работ по доведению параметров жилых помещений зда-

ний старой застройки до нормативных значений основывается на исторической, культурной и материальной ценности, а также количестве зданий данной застройки.

Системное исследование проблемы энергосбережения возможно путем выполнения интегрированного анализа архитектурно-планировочных и конструктивных решений рассматриваемого жилищного фонда, который позволил выявить ряд характерных объемно-планировочных особенностей.

Основную часть фоновой исторической застройки представляют здания, по своему назначению используемые как доходные дома прямоугольной, Побразной или угловой конфигурацией в плане (рис. 1). По конструктивному решению - бескаркасные с продольными несущими стенами.

Конфигурация планов зданий. 1- прямоугольная; 2- точечная; 3- угловая; 4- $\Pi-$ образная; 5- замкнутая 6- открытая.

Конструкции фундаментов - бутовые ленточные, перекрытия - по деревянным балкам, лестницы — по металлическим косоурам, форма крыш — односкатные, двускатные или ломаной конфигурации. Стены выполнены из местного строительного материала - пильного известняка Нерубайского, Карповского, Булдынского и других месторождений Одесской области. Плотность материала в пределах от 1200 до 1600 кг/м³. Для построек данного периода времени характерно изменение толщины стены по высоте здания от 600 до 1400мм.

Выполненный расчет сопротивления теплопередачи в зависимости от толщины стены и плотности материала показал, что при минимальном значении 1,76 (м²К)/Вт только материал с плотность 1200 кг/м³ и толщине стены от 700 до 1400мм удовлетворяет требованиям. Для стен из камня-ракушечника, обладающего большей плотностью необходимо проводить мероприятия по утеплению (рис.2).

Для выбора наиболее эффективных конструктивных решений, удовлетворяющих современным требованиям по энергосбережению в строительстве при реконструкции и реставрации, была выполнена классификация (рис.3) и проведен анализ существующих на строительном рынке Украины теплоизоляционных материалов, который показал, что наиболее востребованными и доступными являются: экструдированный пенополистирол, минеральная вата, пеностекло и теплоизоляционные штукатурные смеси. Сравнительный анализ свойств теплоизоляционных материалов по плотности и коэффициенту тепло-

проводности позволил определить наиболее эффективный материал в каждой из рассматриваемых групп.

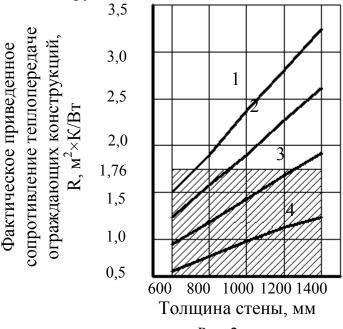


Рис. 2.

Зависимость расчетных значений сопротивления теплопередачи ограждающей конструкции из камня известняка-ракушечника от толщины стены и плотности материала. 1- плотность 1200~ кг/м 3 , 2- 1400~ кг/м 3 , 3- 1600~ кг/м 3 , 4- 2000~ кг/м 3 , - значения, не удовлетворяющие требованиям ДБН.

Рис.3.

Классификация теплоизоляционных материалов и изделий.

Однако, на энергоэффективность ограждающих конструкций оказывает влияние не только материал, но и способ его применения в конструкции. Тепловую изоляцию стен можно условно разделить на внутреннюю, наружную и утепление внутри стены, каждая из которых обладает своими достоинствами и недостатками.

Поставленная задача термомодернизации зданий фоновой исторической застройки с сохранностью внешнего облика здания возможна с применением внутренней теплоизоляции, которая может быть выполнены в виде: теплоизоляционной штукатурки, без вентилируемого зазора и с облицовкой ГКП. В случае проведения термомодернизации здания, фасад которого не обладает архитектурной ценностью, возможно устройство наружного утепления в виде плит из экструдированного пенополистирола и минераловатных плит.

Выводы. Проведенный анализ конструктивных решений зданий исторической фоновой застройки г. Одессы показал, что в качестве материалов стен зданий использован камень ракушечник с плотность 1200 - 1600 кг/ м³ с толщиной стен 600-1400мм, сопротивление теплопередачи таких стен не удовлетворят современным требованиям предъявляемым к ограждающим конструкциям, при реконструкции и реставрации.

Выполненный анализ существующих на рынке Украины теплоизоляционных материалов и возможного их применения в конструкции утепления зданий определил, что термомодернизация зданий фоновой исторической застройки может быть проведена с применением внутренней теплоизоляции с использованием теплоизоляционной штукатурки и облицовки гипсокартонными комбинированными панелями и наружного утепления в виде плит из экструдированного пенополистирола и минераловатных плит.

Перспективы дальнейших исследований в этой области заключаются в проведении исследований экономической целесообразности выполнения работ по термомодернизации исторической фоновой застройки г. Одессы в условиях реконструкции и реставрации.

Литература

- 1. Постанова Кабінету Міністрів України «Деякі питання визначення середньострокових пріоритетних напрямів інноваційної діяльності галузевого рівня на 2012-2016 роки» від 17 травня 2012р. № 397.
- 2. Галузева програма підвищення енергоефективності у будівництві на 2010 2014 роки [Электронный ресурс] : URL: http://document.ua
- 3. Комплексна державна програма енергозбереження України (1996 2010 року) [Электронный ресурс] : URL: www.uazakon.com.
- 4. Енергетична стратегія України на період до 2030 року// www.andrda.gov.ua
- 5. Управление ЖКХ и топливно-энергетического комплекса Одесского горсовета. Характеристика жилого фонда г. Одессы на 16.04.07 [Электронный ресурс] : URL: http://www.odessa.ua/numbers/810.

Annotation

The article deals with the problem of energy saving of historic buildings in Odessa. Alternative constructive solutions of thermo modernization are proposed.