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Abstract—The article is focused on properties of switch-on functions which allow performing operational
and spectral calculus of multiple signals without Laplace and Fourier transform.
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[.LINTRODUCTION & PROBLEM STATEMENT

The switch-on function (SF) is deemed to be the
Heaviside step function, A(¢), [1], [2]. Henceforth the

SF is denoted by a product v(¢)=u(t)h(t), where
u(¢) is any function within an interval ¢ e (—o0,00).
The Laplace operator of wu(¢), (the unilateral

transform) [3], is in fact the operator of SF:
Llul=L[v]. (1)

The spectral density S[u] of signal is generally
calculated by Fourier transform [3]. The expressions
S[u] of many functions u(z) are given, for instance,
in [4], [5]. For many years the spectral density S[u]
of signals u(f), t > 0 has been proposed to define as:

S[u]=lim L[u]. )

pojo

However, the formula (2) is proved to be right
only for damping, integrated by Fourier signals. For
the n-power derivative of the signal u(¢) it is known

[1], [2] that:

n

Lu™]=p"Llu]- D p""u""(0). 3)

k=1

This expression is the operator of SF as
u™ (t)h(¢t), but is not same of derivative v (7).

It is of practical interest to consider the properties
of the SF asv(z), their
integrals v(™")(¢),
Lv™ Y, L™ .

It turned out that the SF use makes easy

substantially operational and spectral calculus of
signals.

II.  PROPERTIES OF SWITCH-ON FUNCTIONS

their derivatives v\ (¢),

and also the expressions

Let us deduce the following properties of the SF:
Property 1. Unlike any original function u(¢)

the SF can be differentiated infinitely.

Example. Let u(t) = 1t, v(t) = uh, where
h=h.(t), [3]. Then u" =1,u" =0 at n>1, but
v = v® =8(1), v =8"?(),n>1, & is the
Dirac pulse [6], where 8(f) =9, (?), [3]

Property 2. The formula v  contains
information of all initial conditions:
u(0), u(0), ..., u"™"(0).

Example. Let u=lcoswyt,v=uh. Then

v = -] cosw,th(t) +18" (). The coefficients at
S(k)(t) are the initial conditions «"*™"(0). Herein:
u?0)=1u4"(0)=0.

The formula v  allows
only possible antiderivatives

Property 3.
determining the

v =)y using repeated integration as:

v=[vdi+ 0=
Jytaico=]]..
00

0
%,_/
n

Let

1
u = w, cosmyt,

I v didt. di+0=[v"]".

n

Example. u=1+1sinwyt,v=uh. Then
but v?" =§(f)+ ®, cos,th(t).
Hence [u®]"V = Isinwyt+C, where C is an
unknown additive. But [v" 1" = (1 +1sin o t)A().

Property 4. Operational calculus of v is much
casier than same of derivative of the original
function (3):

Ly 1= p"Llv]=p"Llu].
(This property has been proved in [7]).
Example. Let u(f)=1coswyt,v=uh, v
-cosyth(t)+8"(¢). Then L[v®]=p*/(w}+ p?),

as L[v]= Llu] = p/(e; + p*), L[5V] = p.
Property 5. Operation calculus of the integral

(2) _ 2
= —Q)O .

v is obtained by multiplying L[v] by the factor

—n
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Let L[v]=p’/(02+p*). Then
Lv? )= p/(ooé +p?). (Here v is the SF of second

Example.

derivative of the function 1coswm,t and v is the

SF as lcoswth(t).

Property 6. The Delay Theorem for the SF is
always valid, even upon failure to comply with the
required condition [3]: u(2)=0 at ¢t <0. Then

Liv(t - ol =e " Lv()], (6)

even though u(f) #0at ¢ <0, u(r—1)#0 att <r.
The wvalidity of this property is related to the
equalities 4(¢) =0 at 1 < 0 and A(z—7) at t <.
Example. Let u(t)=1sinwyt, u(t)=0 at t < 0.
Llu]=L[v] = 0,/(02 + p*).For  the
u(t—t)=—lcosm,t at
Lv(t—1)]= e"”ooo/(og +p.

function

®w,t=n/2 we have

Let us consider the use of the SF properties for
operational calculus of signals, without Laplace and
Fourier transform.

III. USE OF THE SF PROPERTIES

1. Operational calculus of any harmonic function

This approach comprises differentiation of the
function v(¢) and use the relation (4).
Example. Let u=1coswth(t).

Then
V2= 80(0)—wpv, LI = p - 0y LIv] = p*LIv].
Hence, without Laplace transform:

L= p/ (e + p*).

2. Spectral calculus of an impulse described by
power functions

This approach comprises an impulse w(f)
differentiation that reduces to the primitive time
functions with known symbolic representations.

Example. Let w(t) =1£*[h(t) — h(t — 7)].
Then

w=2[h(t) - h(t — 1)] - T*8(t — 1),
w=2[h(t) - h(t —1)]-218(t — 1) — 128V (¢ — 1),
w=2[8(¢) - 8( —1)] - 218V (¢ — 1) — 18P (¢ — 7).

Hence, without Fourier transform, we have:

S[w(3)] =2(1-e /") =2 jote /" — (jw) tie /.

Using  the  property 5, we  have:
S[w]z(joo)3S[w(3)]. In this case we turn the
operational calculus (2) into the spectral one, since
the impulse w(¢) is an integrated signal.

3. Operational calculus of a sustained power
function of time

This approach comprises integration of the
Heaviside step function.

v(t) =162 h(1). Note that
RV @) =th(t), h™ = 0.5¢*h(¢). Hence v(t)=2h"7.
If L[h]= p~', we can find immediately L[v]=2p>.
There h(®) [4], 5]
S[h]=(j®)"' + n8(®). Then, vain attempting to
calculate Fourier integral we can obtain at once:

Example.

exist the spectrum for

SIv] = (jo) *28[h] = 2(jw) > +2(jw) * n8(w).
4. Operational calculus of an impulse using the

Delay Theorem

Let us explain this approach to the specific
example, when

w(t) =1sinwt[h(t) —h(t —1)], ®,T =T,

i. e. we have a positive sinusoidal impulse. Here
sinwth(t) =v(t). Let us denote sinw,th(t—1) by
v(t — 7). Now we can write down:

sinyt = sin[®, (f — 1) + ®, 1] = -sino, (t — 7).
then w=v(¢) + v(t — 7). Since it is known from [1]
that L[v(t)]= o, / 03(2) + p?,then according to the
Delay Theorem we receive

LIw]=o,(1+e ")/ (0 + p?),

which implies S[w]=,(1+e7°")/(0? - 0?).

5. Spectral density calculus of a modulated signal
Let us consider a modulated damped radio signal
as v, =e “u,()h(t),  where  u,=e"",

u, =cosm,t, u,=sinot. For v, we note:

v, =(—a+ jo,)v, + 6(¢). This implies:
Lv,]= pLv,]=(—a+ jo)L[v]+],

Lv]1=1/(p+a— jo,).

Likewise we have:

Liv,]= 1/([7 +o+ jo,).
Hence it follows:  L[v;]=0.5(L[v,]+ L[v,]),
Llv,]1=-j0.5(L[v,]-L[v,]),Then we have the

spectrum S[v4 ] as
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S[v,1=—j0.5[1/(a+ j(®—,)) +
+1/(a+ j(o+my))].

Note that an electric modulating signal can be
k

represented as a polynomial: £ = Zant" .Thus, it is
n=0

possible to obtain spectrum of an amplitude-

modulated damped oscillation or of a sustained

oscillation pulse.

6. Spectral calculus of some non-integrated signals

u(t), v(1)

Example 1. Let us assume the signal u(f) as
u(t)=u@)h(@) +u(@)h(-t). For example, 1=~h(t)+
+h(—t). Supposing that S[h]=(jco)’1+n6(co), we

down:  S[h(-1)] = (—j®)" + 18(-w),
0(—m) = d(m).
S[1]= S[h()] + S[h(-t)] = 2n8(w), that has been
obtained in [4], [5] using other special approach.

Example 2. A signal u=1sinow, can be

represented  as:  u =sinwyth(t) +sinwyth(—t) =
=sin,th(t) —sin o, (—t)h(—t) = v(t) — v(-t).

We know that L[v]= mo/(wé +p?), then
L[v(—t) = L[v(¢)], i.e. S[u] can be described by &-
impulses only. It is provided in [5]:

can write

where Then we have:

S[u]= jn[d(o + ®y) —0(®— ).

But substitution ¢ by -¢ in the time function
implies a sign change at ® in the formula of
spectrum. Since here we have u =v(¢) —v(—t), then

upon turning v(¢) into u(z) the spectrum component
S[v], which comprises &-impulses, should be
doubled. Hence we can rewrite the component S[v]

as 0.5S[u]. Thereby we can obtain:

S[v]=0.58[u]+ o, /(0 — ).

Likewise, for u =1coswyt, v=uh, we have:
Sl =7/ 20B(e+ 0g) +3(0—0,) ]+ jo (0 - ).

CONCLUSIONS

1. The SF w({) represented as v=uh has a
number of properties useful for operational calculus
of signals, without Laplace and Fourier transform.

2. The use of the SF properties sufficiently
simplifies formulas of Laplace and Fourier
transform for derivatives and integrals of time
functions.

3. Conforming to the type of the SF derivatives,
the operational and spectral calculus of many signals
may be defined without Laplace and Fourier
transform.

4. The properties of SF allow determining
unambiguously the original time functions by their
derivatives and symbolic representations of these
functions by the SF derivatives.

5. The properties of SF allow excluding the
constraint of the Delay Theorem upon spectral
calculus of the pulses.
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