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In the present research we investigate pressure driven flow in the transition and free-molecular flow regimes with the 

objective of developing unified flow models for microchannels. These models are based on a velocity scaling law, which 

is valid for a wide range of Knudsen number. Simple slip-based descriptions of flowrate in microchannels are corrected 

for effects in the transition and free-molecular flow regimes with the introduction of a rarefaction factor. The resulting 

models can predict the velocity distribution, mass flowrate, pressure and shear stress distribution in rectangular 

microchannels in the entire Knudsen flow regime. 

 

Key words: Flow; Microchannel; Model; Velocity Scaling Law; Knudsen Flow Regime; Flowrate Scaling; 
Microelectronics Thermal Control Systems 

__________________________________________________________________ 
 
© The Author(s) 2017. This article is an open access publication 

This work is licensed under the Creative Commons Attribution 4.0 International License (CC BY)  

http://creativecommons.org/licenses/by/4.0/   

__________________________________________________________________ 

 

1  Velocity Scaling 

 

Practical development of micro-devices is creating a 

need for better understanding of microscale transport 

phenomena. This is causing a worldwide redirection of 

transport research and development, from macroscale 

(conventional) to microscale situations. Significant 

differences in transport phenomena have been reported at 

the microscale as compared to the microscale, [1].  

From the Direct Simulations Monte Carlo (DSMC) 

results and solutions of the linearized Boltzmann equation, 

it is evident that the velocity profiles in pipes and channels 

remain approximately parabolic for a large range of 

Knudsen number. This is also consistent with the analysis 

of the Navier–Stokes and Burnett equations in long 

channels. Based on this observation, we model the velocity 

profile as parabolic in the entire Knudsen regime, with a 

consistent slip condition. We write the dimensional form 

for velocity distribution in a channel of height h, 
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where F (dP/dx, μ0, h, λ) shows the functional dependence 

of velocity on the pressure gradient, viscosity, channel 

height, and local mean free path. Temperature is assumed to 

be constant, and therefore the dynamic viscosity is also a 

constant. Here Us is the slip velocity, which satisfies the 

general slip boundary condition given by 
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where b is the general slip coefficient. Using this boundary 

condition yields 
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Assuming this form of velocity distribution, the average 

velocity in the channel ( hQU / ) can be obtained as 
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By nondimensionalizing the velocity distribution with 

the local average velocity, dependence on the local flow 

conditions F (dP/dx, μ0, h, λ) is eliminated. Therefore, the 

resulting relation is a function of Kn and y only. Assuming 

diffuse reflection (σv = 1) for simplicity, we obtain 
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Equation (2) solely describes the shape of the velocity 

distribution, but it does not properly model the flowrate, 

which requires additional corrections, as will be shown in 

the next section. 

 

In Figure 1 we plot the nondimensional velocity 

variation obtained in a series of DSMC simulations for Kn 

= 0.1, Kn = 1, Kn = 5, and Kn = 10. We also included the 
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corresponding linearized Boltzmann solutions obtained in 

[2]. It is seen that the DSMC velocity distribution and the 

linearized Boltzmann solutions agree quite well. We can 

now use equation (2) and compare with the DSMC data by 

varying the parameter b, which for b = 0 corresponds to 

Maxwell’s first-order and for b = −1 to the second-order 

boundary condition in the slip regime only. Here we find 

that for b = −1, equation (2) results in an accurate model of 

the velocity distribution for a wide range of Knudsen 

number. From the figure, it is clear that the velocity slip is 

slightly overestimated with the proposed model for the Kn 

= 1 case. To obtain a better velocity slip, we varied the 

value of the parameter b by imposing, for example, b = 

−1.8 for the Kn = 1 case. Although a better agreement is 

achieved for the velocity slip, the accuracy of the model in 

the rest of the channel is destroyed.  

 

 
 

Figure 1 – Velocity profile comparisons of the model 

(equation (2)) with DSMC and linearized Boltzmann 

solutions [2]. Maxwell’s first-order boundary condition is 

shown with dashed lines (b = 0), and the general slip 

boundary condition (b = −1) is shown with solid lines. 

 

 

In Figure 2 we show the nondimensionalized velocity 

distribution along the centerline and along the wall of the 

channels for the  entire Knudsen number regime considered 

here, i.e., 0.01 ≤ Kn ≤ 20. We included in the plot data for 

the velocity slip and centerline velocity from 20 different 

DSMC runs. It should be noticed that the velocity scaling 

model is independent of the gas type. The linearized 

Boltzmann solution of Aoki for a monatomic gas is also 

shown by triangles. This solution closely matches the 

DSMC predictions. Maxwell's first-order boundary 

condition (b=0) (shown by a solid line) erroneously predicts 

a uniform nondimensional velocity profile for large 

Knudsen number. The breakdown of slip flow theory based 

on the first-order slip boundary condition is realized around 

Kn=0.08 and Kn=0.5 for the wall and the centerline 

velocity, respectively. This finding is consistent with the 

commonly accepted limits of the slip flow regime. The 

prediction using b=-1 is shown by small dashed lines. The 

corresponding centerline velocity closely follows the 

DSMC results, while the slip velocity of the model with b=-

1 deviates from DSMC in the intermediate range for 0.1 < 

Kn < 10. One possible reason for this is the effect of the 

Knudsen layer, a sublayer that is present between the 

viscous boundary layer and the wall, with a thickness of 

approximately one mean free path. For small Kn flows the 

Knudsen layer is thin and does not affect the velocity slip 

prediction too much. For very large Kn flows, the Knudsen 

layer covers the entire channel. However, for intermediate 

Kn values both the fully developed viscous flow (boundary 

layer) and the Knudsen layer exist in the channel. At this 

intermediate range, approximating the velocity profile to be 

parabolic neglects the Knudsen layers. For this reason, the 

model with b=-1 results in 10% error of the velocity slip at 

Kn=1. However, the velocity distribution in the rest of the 

channel is described accurately for the entire flow regime. 

 

 
 

Figure 2 – Velocity scaling at wall and centerline of the 

channels for slip and transition flows. The linearized 

Boltzmann solution of Aoki is shown by triangles, and the 

DSMC simulations are shown by points. Theoretical 

predictions of velocity scaling for different values of b, and 

Hsia and Domoto's second-order slip boundary condition 

are also shown. 

 

 

For a comparison we also included similar predictions 

by the second-order slip boundary condition of Hsia and 

Domoto (large dashed line). This boundary condition 

performs worse than even the first-order Maxwell's 

boundary condition for large Kn values. Only the general 

slip boundary condition predicts the scaling of the velocity 

profiles accurately. 
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2  Flowrate Scaling  

 

The volumetric flowrate in a channel is a function of the 

channel dimensions, fluid properties (μ0, λ), and pressure 

drop, and it can be written as 
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For a channel of height h, using the Navier–Stokes 

solution and the general slip boundary condition (1) we 

obtain 













bKn

Kn

dx

dPh
Q

o 1

6
1

12

3


 ,            (3) 

 

where Kn = λ /h. 

 

The flowrate for the continuum and free-molecular 

flows are both linearly dependent on dP/dx,  and thus we 

choose to normalize the flowrate with the pressure gradient. 

This quantity is computed based on the DSMC simulations 

and is shown in Figure 3. For comparison we present the 

Q / |dP/dx| predictions obtained using Maxwell’s first-

order slip boundary condition (b = 0, dashed lines) and the 

general slip boundary condition (b = −1, dashed-dotted 

lines). In both cases the predictions are erroneous. The 

general slip boundary condition performs the worst for it is 

asymptotic to a constant value, while the DSMC data show 

a considerable increase with Kn. The first-order boundary 

condition follows the DSMC data, however with a 

significant error.  

 

 
 

Figure 3 – Volumetric flowrate (per channel width) per 

absolute value of the pressure gradient in [m
3
/(sPa)] as a 

function of Kn. The solid line represents the proposed 

model. 

The model in equation (1) gives good agreement with 

DSMC data and the linearized Boltzmann solutions for the 

nondimensional velocity profile, but it does not predict 

correctly the flowrate. This is expected, since the Navier–

Stokes equations are invalid in this regime. In fact, the 

dynamic viscosity, which defines the diffusion of 

momentum due to the intermolecular collisions, must be 

modified to account for the increased rarefaction effects. 

The kinetic theory description for dynamic viscosity 

requires  vo  where v  is the mean thermal speed. 

Using mean free path λ in this relation is valid as long as 

intermolecular collisions are the dominant part of 

momentum transport in the fluid (i.e., Kn << 1). However, 

for increased rarefaction, the intermolecular collisions are 

reduced significantly, and in the free-molecular flow 

regime, only the collisions of the molecules with the walls 

should be considered. Therefore, in free-molecular channel 

flow the diffusion coefficient should be based on 

characteristic length scale h (channel height) and thus 

 vho  . Since the diffusion coefficient is based on λ in 

slip or continuum flow regimes and h in the free-molecular 

flow regime, we propose to model the variation of diffusion 

coefficient with the following hybrid formula: 
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which can be simplified to  
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where μ0 is the dynamic viscosity of the gas at a specified 

temperature and μ is the generalized diffusion coefficient. 

The variable diffusion coefficient model presented above is 

based on a simple analysis. 

 

In general, the increased rarefaction effects in our 

flowrate model can be taken into account by introducing a 

correction expressed as rarefaction factor Cr(Kn), which is a 

function of the Knudsen number. The flowrate is then 

obtained as 
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where Cr(Kn) is a general function of Knudsen number. A 

possible model for Cr is suggested by equation (4) as 
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KnKnCr 1)( ,     (6) 

 

where α is a parameter. If we assume that α is constant in 

the entire Knudsen regime, the flowrate in the slip flow 

regime will be erroneously enhanced, resulting in 
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where cM corresponds to continuum mass flowrate. This 

model becomes inaccurate for a nonzero value of α in the 

slip flow regime. Moreover, in the free-molecular flow 

regime, for very long channels (L >> λ >> h) there are no 

physical values for α, since the flowrate increases 

logarithmically with Kn. For finite-length channels the 

flowrate is asymptotic to a constant value proportional to 

loge(L/h). Therefore, for finite-length two-dimensional 

channel flows, the coefficient α should smoothly vary from 

zero in the slip flow regime to an appropriate constant value 

in the free-molecular flow regime. The physical meaning of 

this behavior is that the dynamic viscosity remains the 

standard diffusion coefficient in the early slip flow regime. 

The value of  increases slowly with Kn in the slip flow 

regime, and therefore the effect of change of the diffusion 

coefficient is second-order in Kn. For this reason the 

experimental slip flow results are accurately predicted by 

the slip flow theory, which does not require change of the 

diffusion coefficient length scale from  to channel height 

h. Variation of  as a function of Kn can be represented 

accurately with the following relation: 
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where o is determined to result in the desired free-

molecular flowrate. Note that the values for 1 and  are 

the only two undetermined parameters of the model. 

 

 

3  Conclusions 

 

We developed a unified flow model that can accurately 

predict the volumetric flowrate, velocity profile, and 

pressure distribution in the entire Knudsen regime for 

rectangular microchannels in microelectronics thermal 

control systems. The new model is based on the hypothesis 

that the velocity distribution remains parabolic in the 

transition flow regime, which is supported by the 

asymptotic analysis of the Burnett equations. The general 

velocity slip boundary condition and the rarefaction 

correction factor are the two primary components of this 

unified model.  

The general slip boundary condition gives the correct 

nondimensional velocity profile, where the normalization is 

obtained using the local channel averaged velocity. This 

eliminates the flowrate dependence in modeling the 

velocity profile. For channel flows, we obtain b=-1 in the 

slip flow regime. Evidence based on comparisons of the 

model with the DSMC and Boltzmann solutions shows that 

b=-1 is valid in the entire Knudsen regime. 

In order to model the flowrate variations with respect to 

the Knudsen number Kn, we introduced the rarefaction 

correction factor as Cr =1+ Kn. This form of the 

correction factor was justified using two independent 

arguments: first, the apparent diffusion coefficient; and 

second, the ratio of intermolecular collisions to the total 

molecular collisions. We must note that  cannot be a 

constant. Physical considerations to match the slip flowrate 

require → 0 for Kn ≤ 0.1, while → o in the free 

molecular flow regime. The variation of  between zero 

and a known  value is approximated using equation (7) 

which introduced two empirical parameters  and  to the 

new model.  

Therefore, the unified model employs two empirical 

parameters ( and ) and two known parameters b=-1 and 

o. Although this empiricism is not desired, the  value in 

Cr varies from zero in the slip flow regime to an order-one 

value of o as Kn → ∞.  
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