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The method for investigating the dynamics of concrete systems of small dimension and
obtaining strict results is demonstrated on the example of M. Henon'’s system. The program
realized as the C# — application and with usage of technology Open Maple is used here. The
program allows to discover strange attractors for dynamical systems and to prove the hyperbolic
dynamics on them, using outcomes of evaluations on the computer. However we get the strict a
posteriori results here based on theorems of the article while the numerical evaluations are used
only for checking the validity of assumptions of these statements.

A structural stability of the model leads to a possibility of mathematically justified
numerical analysis. It is the based concept of two traditional university courses: “Mathematical
modeling and system analysis” and “Methods of calculations”. This article is an introduction to
a solution of this problem proposed by the author. It became clear that for this purpose it suffices
to consider the dynamics with an explicit account of unavoidable random fluctuations. More
precisely, for a given classical system we construct its perturbation by a Markov process called a
dynamic quantum model (DQM). The structurally stable realizations of DQM are dense
everywhere, that allows one to investigate DQM by numerical evaluations. On the other hand, as
the fluctuations tend to zero, the results obtained for DQM become statements about initial
classical dynamics.
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Introduction. Stability of a mathematical model with respect to small variation of the
parameters is a necessary condition of its correctness. If an arbitrarily small perturbation may lead
to a qualitatively different picture of dynamics, then such a model is not applicable to the real
process investigated experimentally. Strictly speaking, errors are included in the model by
definition. Neither numerical analysis nor computing experiment is applicable to unstable models
as there are inevitably sampling and rounding off errors.

The qualitative invariance of a mathematical model under small perturbations is usually
called structural stability. This formally means equivalence, in some exact sense, between the
model and its small enough perturbation. For the smooth dynamical systems (set by differential or
difference equations) this equivalence is usually a homeomorphism between the phase portraits of
these systems. Such theory of structural stability going back to H. Poincare, has been developed
by A.A. Andronov and L.S. Pontrjagin in the case of small dimension of the phase space (1 or 2)
[1]. However, the optimism generated by the successes of this theory disappeared after S. Smale's
works [2]. It was shown in [3] that when the phase space has larger dimension, then there exist
smooth dynamic systems which neighborhoods do not contain any structurally stable system. For
the theory of smooth dynamical systems (its old name is the qualitative theory of the differential
equations) this result has the same value as Liouville’s theorem on insolvability of the differential
equations in quadratures as for the theory of their integration. Namely, it shows that the problem
of full topological classification of smooth dynamical systems is hopeless. This meant that there
was no strict mathematical basis for modeling and the numerical analysis of systems in general
position. This is a contradiction in a science since the physicists believe that the dynamics should
be arranged simply and universally.

This article is an introduction to a solution of this problem proposed by the author. As a
matter of fact, it became clear that for this purpose it suffices to consider the dynamics with an
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explicit account of unavoidable random fluctuations. But really only such dynamics is given to us
in experiment and evaluations. More precisely, for a given classical system we construct its
perturbation by a Markov process called a dynamic quantum model (DQM) [4]. For Hamiltonian
systems, there is a simple connection between these Markov processes and the quasisolutions of
the corresponding Schrodinger equation, while construction of DQM is a method of solution of
spectral problems of quantum mechanics [5].

However, as a matter of fact, DQM is not connected with Hamiltonian systems in any
way. It is defined for an arbitrary ordinary differential or a difference equation on any smooth
Riemannian manifold. Non-Hamiltonian quantum dynamics obtained this way appears to be
easier than the classical one, and allows returning in essence to a simple picture of H. Poincare’s
dynamics. The structurally stable realizations of DQM are dense everywhere (Theorem 4) and
opened (Theorem 5) on the set of DQM realizations. This dynamics has a clear structural theory.
Unlike the classical systems, the attractor of DQM is defined uniquely, without alternatives
(Theorem 1) and Lyapunov's exponents exist for every DQM (Theorem 3). As a Markov cascade,
DQM can be with any accuracy approximated by a Markov chain, and on a compact set by a
finite Markov chain (Theorem 2). This allows one to present DQM dynamics clearly and to build
effective algorithms for investigating concrete systems. On the other hand, as the fluctuations tend
to zero, i.e. in the semiclassical limit, the results obtained for DQM in general position become
statements about initial classical dynamics. Thus, the structural stability of DQM leads to a
possibility of mathematically justified numerical analysis.

This DQM method for investigating the dynamics of concrete systems and obtaining strict
results is demonstrated on the example of M. Henon’s system [6]. We choose the values of
parameters at which this system is hyperbolical on the attractor; we will determine the support of
this “strange attractor” within given error and the dynamics on it within topological equivalence.
The program realized as the C # — application with usage of Open Maple technology is used here.
Let us notice, however, that we get here the strict a posteriori results based on corollaries of
Theorem 5 (Corollary 1 and 2) while the numerical evaluations are used only for checking the
validity of assumptions of these statements.

The DQM method, as a matter of fact, is universal for investigation of systems of small
dimension. The purpose of this article is only an illustration of DQM method. A detailed account
of the results obtained by this method is supposed in subsequent publications.

Definition of the dynamical quantum model (DQM).
Let p(x) be an n — dimensional smooth vector field on an n — dimensional smooth

Riemann manifold M, where x(x1, x2, ... , xn)e R" are local Euclidean coordinates on M, pi(x)
eC”(R")(1=1, ..., n). On every phase curve x(t) € M of the dynamical system (DS),

generated by this vector field,
dx,

E:pi(X) (izla"'an)’ (1)

t
consider the integral of the “shorten action” s(t) = J.p(x)dx = I”P(T)sz T, Wwhere
x(1) 0

||p(2')||2 =Y pl(r). The value s(t) on each curve x(t), different from a stationary point, is
i=l

diffeomorphically expressed through t and is called “optical time “. Let p be a metrics such that

st) = [dp: dp=|p@)| dt.
x(t)
We will now give a heuristic derivation of definition of dynamical quantum model (DQM)
of DS(1) (Definition 1). The distance d, covered by a point on a trajectory in time At is equal to
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At

d= j||p(r)||dr =|p(t.)|-At, where p.=p(,) is the average value (0<t,<Af). (Single
0

trajectory traversal is assumed intime At; turning points is a special case). Further, we assume
that the fluctuations generate a “white noise” & (t) defined on the configuration space with

dispersion DE(t) = o°t, where the diffusion factor o is a constant on the considered time
interval. A certain time At should pass while the point will displace on such distance d from a
starting position which will exceed the root-mean-square mistake caused & (t) in time At, i.e.

|Ip.|At will exceed VoAt . At such minimal At ||p.[At = o/Ar, whence o =|p,| At and,
hence,

2 2

M= d=[pat=

[p.| [

Here, under the assumption, At is that minimal time interval, after which there is an
opportunity to make new measurement, which difference from former will exceed an error. Thus
only through time At we can get new significantly different measurement. Owing to (2)

()

At
o’ =|p. ‘At~ _[ [ p(T)||2dT =s(At) . Thus, 1) the time interval between the nearest significant
0

measurements is constant everywhere on the scale of optical time and is equal to . (In other

words the distance between them under the metrics p is equal to o).

2) In this time “ white noise ” & (t) generates an ineradicable casual error which root-
mean-square deviation is equal to the distance d on a trajectory between the nearest significant
measurements.

So, the dynamic quantum model at first shifts each point on phase curve of the given
dynamic system in optical time o> (or on p — distance &*). And then it displaces this point
casually on the distance, which is not less than the length of a trajectory from initial up to a new
point. The following strict definition generalizes this description. Definition of quantum model is
given for any dynamical system (1) on any compact Riemann manifold M.

Let G be a shift map on phase trajectories of dynamical system (1) in a given time At. We
shall consider continuous function q(y,z)>0 (y,z€M), and

A(y,2) >0 < [z2-Gy| <d(y). [d(y,2)dz=1, [zq(y,2)dz=Gy, €)

where d(y) > 0 is continuous function on M. Here q(y, z) is a density of “the local
casual dissipation caused by white noise”, numbers d(y) are assumed small enough. Certainly
the function q(y, z) can be assumed as continuous at any given accuracy by its approximation on
M by smooth function. Then

Definition 1. The Markov process with transitive function

Py, A) = [q(y,2)dz (A= M)

we will call the Dynamical quantum model (DQM) of the given dynamical system (1).

For given initial distribution we will obtain the Markov process P with this initial
distribution and transitive function P(y, A). If u: is a distribution at time t and At is a time
period between two nearest significant measurements, then DQM get new distribution P(ut) =
At attime t + At

Definition 2. Let Ai be cell of some splitting of phase space for the given dynamic system
on cells in diameter €. Let po be an initial state (initial distribution). Then the Markov chain with
initial values pi = po( Ai ) and with probabilities psj of transition from Ai in A
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= ! IP(y, A ) du, we will call a € - discretization of DQM with transitive function
ILlO(Ai) YEA, .
P and the initial state po.

Thus, starting from the differential equation (1), we come to the difference equation with a
time period at least o* on a scale of optical time. At first sight step-type behavior of time in
DQM can surprise: in traditional model of quantum mechanics only spatial variables errors are
taken into account. But, apparently from the derivation of DQM definition, step-type behavior of
process of time measurement is an inevitable consequence from presence of casual errors at
coordinates and impulses. Really, a clock or some other device finally is necessary for
measurement of time. But as these measure indications and speeds of their changes are
determined inexactly, then also time is known with only some error [7].

DQM attractors.

Attractor is the key concept of the theory of dynamical systems. It is a “space of the
established modes” on its physical sense. The point of phase space contained in attractor if it
belongs to the support of “a stationary state of system”, i.e. belongs to a support of measure,
which does not vary in due course.

Let phase space M is compact; P isaset DQM on M.

Definition 3. We will call a probability measure p on M a stationary (equilibrium) state of
DQM if Pp = p. We will call the union of supports of all DQM stationary states a DQM
attractor.

Theorem 1. (The Perron — Frobenius theorem for DQM). Let A < M be an invariant set of
DQM P, which does not contain nonempty proper invariant subsets (i.e. it is minimal with
respect to P). Then 1) there is a unique stationary set p, whose support is A. The state p is
ergodic.

Pij

n
2) For any DQM state (probability measure) v on A, IimZP”v = L
n—ow k=1

3) If u, isa probability stationary measure of some ¢ — discretization of the given DQM,
then Iing H, = W
Proof. Let A < M be the invariant closed set of DQM which is not containing proper

invariant closed subsets. Let g, is a stationary measure of some discretization of given DQM

on A with cells in diameter ¢ (i.e. a probability invariant measure of the Markov chain given by
definition 3). A set of probability measures M = M(A) is a convex metric compact set on a
compact subset A of a phase space in weak topology [7]. Therefore from any sequence of

measures z, it is possible to select subsequence z, , converging to some measure z from M:
lim zz, = e M in sense of weak topology on M. As Pz, — g1, — —5—> 0 (in sense of weak

n—oo &0

topology) then, owing to definition of discretization 2, Pz = z, i.e. i is a stable DQM state.
As, on the assumption, A does not contain nonempty proper invariant of DQM subsets (i.e. it is

metrically transitive), then for any P — invariant measure z on A the ergodic theorem of
Neumann is fulfilled: for any continuous function fon A

L2~ im= > £ (P) = [ o7 . @)

nawn —
As the left part of this equality does not depend on a choice of sequence of measures £, |,
then any weakly converging sequence z,_ - will converge to the same measure zz . Hence Iirr(')\ o, =

u , it proves 3). As (4) is fulfilled for any stable state on A, then from (4) follows as well
uniqueness of invariant measure zz, that establishes 1). At last, as for any other probability
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n
measure v on A Iimiz P*y exists owing to (4) and it is an invariant measure, then it is equal to
n—oo n k=1

n according to 2), as it is required.

Obviously, there is only a finite number of components of DQM attractor Ax on M, i.e. the
invariant subsets of an attractor, which are not containing proper invariant of nonempty subsets.
Any stable state on M is a convex combination of the stationary conditions px on Ax. The
following statement specifies the theorem 1, gives constructive estimations for convergence of
DQM ¢ — discretization s to DQM.

Theorem 2. For all small enough ¢, the DQM distribution p: at time t and the distribution
of its € — discretization : ® at the same time differ from each other only by a value of order

Je ‘(p(yt) —¢(,uf)‘ < A||(p||0\/§ (0<t<o0), where @ is an arbitrary continuous function on
M, |¢], s its C° — norm, A is a constant. In particular, if 7z is a stable DQM state, z, is a stable
state of its ¢ — discretization , then |o(zz) — o(z,)| < A||<p||0\/§ .

Proof. By definition, a distribution of any & — discretization P of DQM P on the
compact manifold M will be concentrated in € — neighborhood of DQM attractor after a finite
number of steps. Therefore it is enough to obtain this theorem on a component A < M of DQM
attractor, i.e. on the invariant closed set, which is not containing proper invariant closed subsets. It
is possible to suppose without loss of generality that P (A) < A, otherwise considering P instead
of P for such natural k that P(A) < A1, P(A1) c Az, ..., P(Ak1) C A

By DQM definition, for any initial measure xo on A distribution P(u0) has a density
function

[a(y.2)duy(2)
p(y) = YA and, thus, a density function exists for iteration P" (uo) at all n > 0. Let A
is a domain inside A, separated from boundary A on distance /¢ . Let's show, that at some natural
N density function PN (1) for any probability measure o on A in each point z € A is not less, than
r at some r > 0. Really, as A does not contain proper invariant with respect to DQM dynamics
closed subsets, then any point from A will appear in the image of each point y € A after some
number of Ny iterations of DQM. Thus, if the density function o is positive in a point y, then

density function P™ (u,) will be positive in all interior points A. But ny < N for some natural N at

all z € A. Really, for each pointy € A there is an open set of the points passing in y as a result of
one iteration of DQM. Union of these sets covers a compact set A. Hence it is possible to discover
a final subcovering, and then N = maxn, +1at chosen yi. ~ As function q(y, z) > 0 is defined on

compact set M x M by DQM definition, then q(y, z) is limited and continuous in this compact.
Therefore for all probability measures 1 on A density functions p(z) = Iq(y, z)dy,(z) are regular
yeA
limited and equicontinuous. Hence the set of these functions is a precompact set in the set of
continuous functions on M according to the Arzela — Ascoli theorem. And it is a compact set in
view of compactness of set of measures uo on A in weak topology. So, if densities of distributions
PN (o) are close enough to zero on A, then some of such densities will be equal to zero on A, that
contradicts positivity of the densities of distributions PN (1) in all interior points A. Thus, density
function PN (1) > r on A at some r > 0 for any probability measure 4 on A. Then it is obvious that
density function PN (uo) >wr on A for any measure o on A with u(A) =w <1:
wo(A) =w <1 = PNuo)(y) >wr (y € A) (5).
There is a unique probability invariant measure v: P (v) = v on A under the theorem 1,
whence PN (v) = v. Then v has on A a nonnegative density as shown above and this density v (y) >
ratally € A in view of (5).
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Let c=max{v(y)} (y € A), f(y)= rvT(y) Function f(y) = f(y)|A is f(y), limited

on A, i.e. redefined by zero at y € A \ A. Function F(y) = 1=(y)|A\A is f(y), limitedon A\A, i.e.
redefined by zero at y € A. Let g (y) be a density function for the measure PN (xo) given by an
initial probability 1o on A; let ¢i(y) = g(y) — f(y). Then ¢:(y) >0 atall y € A owing to (5)

and g(y) = f(y)+ @u(y) = f(y) — F(y) + @u(y). Supposing g =If (y)dy, we will get that
A

I¢1(y)dy = Ig(y)dy—j f(y)dy =1 - q. Further in this proof for arbitrary distribution x with a

A A A

density function y (y) we will designate density function of Pu through Py (y).

In such denominations PNei(y) = PNg(y) — PN f(y) . But in view of (5) PNou(y) > (1 - q)
-t on A. Then ¢a(y) = PNoi(y) —(L—q) - f(y)=0 atall ye A and g2y) = (PNg(y) —
PNE(y) - (L —a) - F(y)=PNay) - (PN Hy) = PN T (y)) — (L — @) - (FY) — F (y)) = PNg(y) — (1 +
(L—a) fy) + (PN F(y) +(L—q)- T(y)), whence

PNg(y) = (L + (1 -0) ) f(y) — (PN T (y) +(L—) T (y)) +oa(y).

[ f(y)dy [PYaydy [P o (y)dy
As A =g, and A = A =
in accordance with DQM definition (3), then

[e:(n)dy = [PYa(y)dy—(1-q) - [f(y)dy = 1-q -(1-q)-q=(1-0)?

[a(y)dy
.= A =1-q

It is similar further PNoa(y) = PNg(y) — (1—q) - PN f(y). As well as above, owing to
(5), PNoay)>(1—q)2-r on A. Then ¢3(y) = PNoa(y) — (1 —g)?- f(y)>0 atally e A and
¢s(y) = PNgi(y) - PN f(y)— (1 - q) - PN f(y)— (1 - 9)% - f(y) = PNg(y) — (PPN f(y) - PPN F(y))
~(@-q) - (PNF(y) - PN F(y)) — (1 - a2 (f(y) — F(y)) =P™MNg(y) - (1 + (1 —q) + (1 - 9)?) f(y) +
(PN f(y)+(1-q) -PNF(y)+(@L-0)?- f(y)), whence PPNg(y) = (1+(1-q)+ (1)) f(y) -
PN F(y)+ (- PYF(y)+ (L - a? - T(y) + ealy). As well as above, [gy(y)dy =

I¢2(y)dy —(1-0)*: j fydy = 1-q)?-(1-q)?-q = (1-q)° Generally on an induction
P&DNg(y) > (1 — ) r on A, whence owing to (5) owe(y) = PNok(y) — (1 —q)*-f(y)=0 at
all ye A andthen PNg(y) = (1+(L—q) + (L—q)% +...+ (1-q) fy) — PNF(y)+(L-
Q) - PEINE(y) +
(1) PENF(y) + ..+ (1-0)T(y)) + grea(y) (6).
As well as above, [o,,(Y)dy = [o (y)dy — (1 - a)* - [f(y)dy = (@ - q)~ (1 - q)*-
q=(1-q)?, ie ¢ly) kjwo . Besides, (1+(1-q)+(1—-q)?+...0-qf(y) <A+ —-q)+

Q—gP+...(1=qk +...)f(y) =

1—-q fly)=f(y)/a=(f(y) + f(y))/q. As J\‘f(y)dy =

q, then f(y)/q = 17(y)|A i a unique invariant probability measure v on A, limited on A. And
[(PUE) + @-a - PNy + (@ -af -PENE(y) £+ (- af () dy =
A
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JPNE()) dy + (@ —q) - [(PENF(y)) dy + (1 - a - [(PENT(y)dy + ...+ (1 -0

[ty dy =@+@-a)+@-0P?+... (- [(f(y)dysA+A-aq) +(@-gP+... +

(1-qg)X +...)-I( f(y))dy = ﬁ _[( f(y))dy = %J'( f(y)) dy. Butvolume A\A

V(A \A) < A+e, and as f (y) = 0 on boundary A, at enough small ¢ F(y) < Be,B isa
constant defined by function q(y, z) from DQM definition (1). Therefore I( f~(y)) dy <A+e -
A

B+e = De. On the other hand, at small enough e ¢ = max{v(y)} (y € A) isreached inside A;
and r is the minimum of density function PN () on A is reached near to boundary A. Thus

bve <r<B+e, where b, B are DQM constants. Therefore
. re~ b
= | f(y)dy = — dy > — 7),
a = [Ty = [[7idy = 50 Ve ™

as Iﬁ(y)dy > % at enough small ¢ . Thus %I( f(y))dy < De/ 2%\/} - 2D -
A A
Cye.

Thereby, P"gi(y) converges to 17(y)|A at n — o andthenat ¢ — 0 converges to

v (y), that establishes again 2) from the theorem 1.

In addition € — discretization brings in described above process a discretization error, i.e.
modification of order ¢ in distribution. Under the influence of DQM this modification is
transformed to modification of order ¢ in density functions. Namely, for any probability
distribution p of DQM with a density function y (y) and for its € — discretization s z, with values

3

Z‘rrlax;((y)—nli_n;((y)‘-y(Ai) < bSZﬂ(Ai) = be, where b is DQM constant, defined by

xi on a cell Aj in diameter ¢ an error d = <

[2(ndy -3z,

[Ge(y)— )y

function g (y, z) from DQM definition. Thus, an estimation of an error of discretization for N
steps is equal Nbe = Be. By definition of DQM discretization P, dynamics of this Markov chain
can be presented as at first DQM P operation, and then an average on cells Ai: P . = Py, +d

and |p(Pu,) - o(Pu,)
whence |p(P" 1) ~P"1,)

< |l¢|, be for arbitrary continuous function ¢ on M, |¢],— its C°—norm,

< |¢|,Be. On the second step P*" 1, = PN(PN i, +d) + da, on the

next step P°" = PN(PN(PN 1, + d) + di) + d2 . Generally P™ x4 =PN( ... + (PN(PNPN x, + d)
+0d1)+d2)+... +dk2) + dka. According to process (6) ‘(p(PN (PNu, +d)-P™Np) <(1-q)-

| ], Be, on the second step
[p(PNPNPY 1, + )+ ) —P™ )| <((1- Q)2+ (L - ) - o], Be.

Generally on continuous function ¢ the difference between P™ u and PNy s
estimated from above by value (1+ (1 -q)+ (1 —-q)?+...+(1—-q)* +...)Be = Be/g. Asq>

% Je by (7), then the upper bound is equal Bs/% Je = % Je =Eve, asitis required.

There is a unique probability invariant measure ¢ on a component A of DQM attractor, P
() = u under the theorem 1. Hence PN () = 1. On proved p has a nonnegative density function on
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A and positive on A. On trajectory space of DQM, as on casual process, the invariant measure # ,
induced there by a measure p, is defined according to Kolmogorov's theorem [9]. Further the
product DG(yn) - ... - DG(y1) - DG(yo), where Yo, Y1, ..., Yn is @ DQM trajectory o at time t, and
DG(y) is a differential of initial smooth DS in a point yx € A, we will call the DQM differential
Dn(w) for DQM trajectory o at time tn.

Theorem 3. Let A be an invariant set of DQM of dimension m not containing proper
invariant nonempty subsets. Then we have for DQM with small enough d(y) that

1) For almost all with respect to measure £ DQM trajectories o and for every

nonzero vector u € R™ the limits exist

lim ﬁln”Dn(a))u” =+
where Ar = A(U), r<m.
2) For every point y and for every such trajectory o, the filtrations of subspaces are
uniquely defined:
forward L*;(y) c L% (y) = ... < L% (y) = R™ and backward Ls(y) = ... c L2(y) c L1 (y)
= Rm'
connected with the numbers Ar in such away that A <X, <...<As and

Lim%ln||Dn(w)u|| = hoUuel(y)nue LY a(y), lim %In||Dn(a))u|| = kU e Liy)

u ue¢ L-r+1(y).

These filtrations are invariant with respect to DQM differential. Namely, if yn and yn+:
are consecutive points of a trajectory o at the moments t, and tn + 1, then the differential Dy (®)
translates the filtrations in a point yn into a filtration in a point yn + 1.

By analogy to the theory of smooth dynamic systems, we will name the numbers Ar as
Lyapunov's characteristic exponents for a component A of DQM attractor.

Proof. We will consider DQM on A, as casual process X (t, o), where t is discrete time, t
=t, k=0,1,2, ..., o — DQM trajectory. Namely, let n = (1, ..., Nk, ...), where nk € M. Then
trajectory of DQM o = o (t, yo) with an initial point yo is sequence X (to, ®) = yo, X (t1, ®) = y1 =
Gyo+ 11, X (2, ®) =y2 = Gy1 + 12, ..., X (tk, ®) = yk = GUk-1 + Mk, .... (Here all d (y) are assumed
so small that addition Guk.1 + nx, where |, < d(y,), is fulfilled on a local map of manifold M in

R"). Thus, DQM trajectory o is given univalently by sequence of vectors n = (ng, ..., N, ...) and
an initial point yo: ® = ® (yo; m).

On space Q of the DQM trajectories X(t, ®) on A DQM induces the dynamic process T:
Two= w1, To1 = oy, ..., TOk1 = @k, ...., where mo = ©(yo; Mo), yo = X(to, ®), no = (M1, N2, ..., Nm,
...), and o1 = ©(y1; M1), y1 = Gyo + 1 = X (1, ®), N1 = (M2, M3, ..., Mm, ...). Thus T is a trajectory of
trajectories. If w2 = (32; N2), then y2 = Gy1 + N2 = X (2, ®), 2 = (N3, N4, ..., Mm, ...). Generally for
ok = (yk; Mk) we will obtain yk = Guk1 + Mk = X (t, ®), Nk = Mk+1, Nk+2, ... N, -.2).

According to Kolmogorov's theorem [9] on a trajectory space Q the probability invariant
measure 4, induced there by a stable state u on A, is defined. T is an endomorphism of Q,
keeping measure 4 and ergodic on construction owing to ergodicity of DQM on A. Let's
suppose a(n, ®) = Dn (o) for ® = o (y; n) (here y = yo). Then a(n + k, ®) = a(k, T" ®) - a(n, o).
This equality means that square matrixes a(n, o) of an order m are a multiplicative cocycle on a
trajectory space Q with respect to its endomorphism T.

As maps G (y) are diffeomorphisms, then |DG(y)|# 0 at all y € A. Thus In|DG(y)| is a

continuous function on a compact set A and jln||DG(y)||dy < oo. But for any characteristic
yeA

function yc of an open subset C — A j zedg = {o=@n)lyeC) = n({ylyecy=
Q
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= j;{c du by measure u definition. Therefore for any sectionally continuous function g on M
M
Ig dz = Igdy. As on each trajectory o = o(y; ) a(0, ®) = Do (y), then Iln||a(0,a))||d/7 =
Q M weQ
jln||DG(y)||dy < oo. This inequality means that for a cocycle a(n, ®) the multiplicative ergodic
yeA
theorem [10] is fulfilled.
This theorem states that almost all DQM trajectories m € Q with respect to measure 4 are
correct on Lyapunov. It means, in particular, that
1) for such  there are limits
lim 1

n—+owo |n|

Infa(n, o)u| = + M(w),

wherer=1,2, ... s=s (o), s (0) <m.

2) On each such trajectory o filtrations of subspaces are univalently defined: forward
L% (w) c L% (0) = ... © L% (0w) = R™and backward L's (0) = ... = L (0) < L1 (w) = R™,
connected with numbers A; (o) < X2 (o) <... <As (o) (S =S (®)) such that

Iimlln||a(n,a))u|| = Mo) & Uel'(®w) u uegL' 1(0),

n—oo n
lim %In”a(n,a))u” - o) o Uelt®) u ugLiei(o).

These filtrations are invariant with respect to endomorphism T. Namely, if T (on) = ©n +1
then cocycle a(n, o) translates filtration wn in a filtration on+1. As T is ergodic on Q, then A(®)
does not depend from o, i.e. Ar (®) = Ar almost everywhere with respect to measure g ; similarly

almost everywhere s (o) = s. In view of correspondences a(n, ®) = Dn (®), o(y; n) — Y, from here
the theorem statement directly follows, as it is required.

Thus DQM attractor is defined uniquely, without alternatives. It can be investigated
algorithmically as DQM, the Markov cascade, and it can be approximated by a Markov chain.
Thus, received discrete dynamics has the clear structural theory and good algorithms of research
of concrete systems, and at & — 0 passes in DQM.

Structural stability in DQM.
Letn =n (t, y) € M is a smooth vector field on phase manifold M, wherey € M, tis a

discrete time: t = t, k = 0, 1, 2, ..., |7(t, »)|.. <d(y). On sense n is a small casual deviation,

called by white noise, in a point y at time t. Then at the set field n(t, y) a trajectory @ of DQM, as
casual process X(t, ®): X(to, ®) = yo, X(t1;, ®) = y1 = Gyo + n(tz, yo), ..., X(tk, ®) = yk = GUk-1 +
N(tk, Uk-1), ... is uniquely given by an initial point yo € M. (All d (y) are assumed small enough
that addition Guk-1 + n(tk, uk-1) is fulfilled on a local map of manifold M in R").

<d(y). Then

Definition 4. Let n(t, y) € M is a given smooth field on R x M, |n(t,y)|.. <

the sequence of maps Gi(y) = G(y) + 1 (t1, y),..., Gk(y) = G(y) + n(t, y), ... we will call a DQM
realization.

All maps Gk (y) are diffeomorphisms on M at enough small d(y). DQM is a smooth
stratification over base of the M, which stratum is the set of sequences of vectors n(y) = (n(ts,
¥),..., N(tk, y), ...) at all admissible smooth fields of vectors n(t, y). Then DQM realizations are
cuts of such smooth stratification. It is possible to set DQM realization on subset S of manifold
M, invariant with respect to this realization, and thus considering it, as a base of sub stratification.
It is natural to consider generalization DQM, constructed not on map of shift G, but on some
realization.

Let Gk (y) (k=0, 1, 2, ...) is some DQM realization; Qk(y, z) > 0 (y, z € M) is such smooth
functions regular limited in C!, that at any k
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Ay, 2)>0 < [2-G (V)| <dy), [a(y.2dz=1, [za(y,2)dz=G,(y), (®)

where d (y)> 0 is a continuous function on M. Then
Definition 1 ". Dynamic quantum model for given realization Gk(y) (k =10, 1, 2, ...) we
will call nonautonomous Markov process with a transition function

P(y, A) = [a(y,2)dz (4= M).

For DQM in sense of definition 1" at the set smooth vector field n(t, y) on phase manifold
M its trajectory , as casual process X(t, ), is the sequence X(to, ®) = yo, X(t1, ®) = y1 = Gyyo +
N1, X(t2, ®) =y2 = Gay1 + n2, ..., X(tk, ®) = yk = GkUk-1 + Nk, ..., where all nk € M. The statement
and the proof of the theorem 3 literally are transferred on such DQM. Further in all statements
DQM is understood in sense of definition 1, but at proofs will be used also DQM in sense of
definition 1" and it will be always specially mentioned. Following definition we will introduce by
analogy to the theory of smooth dynamic systems.

Definition 5. DQM realization Gk (y) (k =0, 1, 2, ...) with set of initial points on compact
set K < M, invariant with respect to this realization, we will call hyperbolic DQM realization on
K, if in any point y € K and at any time tx there is an expansion of tangential stratification TK in
the sum of Whitney sub stratifications Ei’* (y) and Ex" (y): TK = Ei’ (y) @ Ex" (y), satisfying to
such conditions:

1) Tangential map DGk keeps sub stratifications:

DGk(E%) < E*k+1, DGK(E') < E"k+1;

2) DGk contracts E%; more precisely, there will be such constants ¢ > 0 and A (0 <A
<1) that at any v € E% and any natural n,

IDGy,,---DG (V)| < cA"|v];
3) DGk stretches EY, i.e. for any v e E" and natural n with the same c and A
1
IDGy.,.-DG, (] 2 —IM.

Theorem 4. The hyperbolic realizations are everywhere dense on the set of DQM
realizations. More precisely, for any DQM realization Gk (y) (k= 0, 1, 2, ...) with the set of initial
points on a subset S < M invariant with respect to this realization, and for small enough € > 0

there exists a hyperbolic realization G, (y) of this DQM on compact set K = M such that 1)
(S/K U KI/S) < ¢ for the probability invariant measure p of this DQM; 2) on S n K we have
|G (1) -G (y)]. <ek=0,1,2,...).

Proof. It is enough to prove this statement assuming that S = A is a component of attractor
of DQM (generally at the discovered compact set K for A taking K n S for given S). We will
consider DQM X(t, ) for the dynamic system, generated by realization Gk (y) (k=0, 1,2, ...) on
A, in which d(y) = /3 for all y € M at small enough ¢ > 0. On a connective component A of
DQM attractor the unique stable state p is defined, owing to the theorem 1. By Kolmogorov's
theorem [9], the invariant measure 4 is defined on trajectory space of DQM, induced there by a
measure p. Then for the almost all DQM trajectories X(t, @) with respect to the measure
statements of the theorem 3 are fulfilled. We will show that it is possible to find such smooth
realization ék(y) of this DQM, in which the measure of all trajectories in a general position is
equal to 1, i.e. the theorem 3 is fulfilled for a full measure of initial points from A.

Really, we will consider smooth DQM realizations X(t, ®), consisting of such trajectories
o=oly;n),n=00, ..., Nk ...), that nx does not depend on yeA at all k =0, 1, 2, .... Such
realizations, as sets of trajectories, are not intersected at different . And their union contains all

trajectories ® = w(y; n), coincides with all stratification, i.e. this is partition of DQM. As the
measure of all trajectories in general position is equal to 1, so the measure of atypical trajectories
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is distinct from zero only on a zero measure of such smooth realizations. For any smooth
realization Gk(y) of this DQM, in which the measure of trajectories in general position is equal

to 1, is also HGk _ékucl < &/3 by construction.

Now we will rebuild DQM X(t, ). At first at each point y we will bound the random
deviation, given by continuous function q(y, z) > 0 in definition of DQM, to deviation radius

d(y)/e’’* (instead of d(y) for DQM X (t, ®)). And then we will make linear expansion
(homothety) with factor of expansion e*’*. Then we get a DQM X (t,®), which by construction

coincides pointwisely with X(t, @) and has the same trajectories and realizations, but all
Lyapunov's characteristic exponents on the component A increase by e/4. If some characteristic

exponent of X(t, ) is zero, then all characteristic exponents of )Z(t,a)) will be nonzero for
small enough ¢ as a result of such reorganization. Thus smooth realization ék(y) of DQM X({t,
®) will be transformed into a smooth realization ék(y) of )Z(t,a)), coinciding pointwisely with
ék(y), but its Lyapunov's characteristic exponents are nonzero for almost all y € A. And
Hék _ékHcl < ¢/3 for small enough & on construction.

We will suppose E°® o (y) = L% (y) for realization ék(y) with nonzero Lyapunov's

characteristic exponents for any y on a trajectory in general position. Subspace L™ (y), defined in
theorem 3, is such, that Ar- has the greatest (i.e. the least modulo) negative characteristic exponent.

We will suppose further that  ES;(y) = DG,(y) (ESo(Y)), ... Eksa () = DG, (y) (E (), -
We will similarly suppose E" (y) = L + 1 (y), where Km is the least positive characterlstlc
exponent, and further EY;(y) = DG oY) (E" o (), ..., E',e1 (y) = DG (V) (E% (Y)), .... Thus the

sum of Whitney substratifications E% (y) and E"« (y) of tangential stratification TK are given in
any point y of a typical trajectory: TK = E% (y) @ E'% (y). This expansion is invariant with

respect to differential of DQM X (t, ) by construction. Besides, Iim%ln||Dn(w)u||§ A foru e LY

(y) by theorem 3. Hence %In”Dn(a))u” < M2 on compact |u| =1 in LY =E%,, if n>N for

large enough N (here A+ < 0). Then forn >N |D,(@)u] < o", where o= e*'? <1, |u| = 1. So

[Pue)] o atall u e E%o. Let's ¢s = cs(w) = max,—t Gl then D, (@)u] < esa”ul for all

ul "N D, (@)u]

u e ESo(y), i.e. ESo(y) sets contracting foliation. Similarly, taking p = e**'> > 1, such N that for

n>N |D,(@)u|>p"u] and cu = c(w) = min ||D€n Tk we will obtain, that ||D, (@)u] > cu"|u]

forall u e EYo(y), i.e. E"o(y) sets stretching foliation. At last, having chosen X =min{a; 1/ 5}, C
= ¢(w) =max{cs, cu}, on the given trajectory o with an index point y we will obtain, that

IDG,,,--DG, (V)| < V| (v e Ec’(y)), IDGy.,...DG, (V)| > U(y))

k+n® kene

at all n and k according to definition 5.

It is obvious that DQM trajectories o for which ¢ = ¢(w) < C are closed, i.e. make compact
set Kc. Union of compact sets K¢ on all C > 0 coincides with the set of points of all typical
trajectories of DQM X(t, @) on construction. We will choose C so large that u(S/K U K/S) < ¢ for
agiven ¢ >0and K = K¢. Then inequalities

IDG,,,,-.DG, (V)| <CA'|v| (v e Ec*(y)), IDG

V),

k+n* k+n-*
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are fulfilled for all y € K, as it is required.

For DQM realization it is possible to convert time: to study the sequence (..., Gk(x), ...,
Ga(X), Go (X)) at Gk (X) = Gk (x) is equivalently to study realization (G, (X), Gi (x), ..., Gk (X),
...). Naturally therefore to generalize concept of realization on arbitrary two-sided sequences
Gk(x) (k=0,+1,£2,...): (..., Gk -.-, G1(X), Go(X), G1(x), ..., Gk (X), ...).

Definition 6. DQM realization Gk (x) (k = 0, £1, 2, ...) with the set of initial points on
compact set K < M, invariant with respect to this realization, we will call structurally stable if any

realization ék(x) of this DQM (k =0, +1, £2, ..., x e K), close enough to Gk(x) in C! — topology,

is topologically equivalent Gy, i.e. there are such homeomorphisms Hg that G, ° Hk = Hk+1° Gk

(k=0,#£1, 2, ...).

In applications, as a rule, compact set K is a DQM attractor and by that is the closure of
some invariant area of DQM in M.

Theorem 5. Any hyperbolic DQM realization Gk(x) (k =0, 1, 2, ...) with the set of initial
points on invariant compact set K < M of this realization, is structurally stable.

Proof. By definition, it is required for any k = 0, £1, +2, ... to find such homeomorphism
Hk (X) = x + hk (x), that the following diagram is commutative.

K_% , K

Hk Hk+1
Gk

K—+ K

Here ék(x) = Gk (X) + fk (X) (x e K) where all functions f« (x) € C* also are small enough
in C! — topology. Let DGk« be the differential of Gk (x) at a point X; Rix is a nonlinear part of
Gk(x) in a point x: Gk (X + hk (X)) = Gk (X) + DGkx (hk (X)) + Rkx (hk (X)). From the diagram we
obtain G, °Hk=Hk+1° Gk (k=0, £1, +2, ...), whence

Gi(X + k(X)) + fu(X + h(X)) = Gk(X) + hiea(Gk(X));
Gk(X) + DGk (k(X)) + Rix(Nk(X)) + (X + hi(x)) = Gk(X) + hk+1(Gk(X));
hit1(Gk(X)) — DGix (hk(X)) = Rix(hk(X)) + f(x + hk(x)). 9)

It is the system of nonlinear functional equations with respect to sequence of functions
he(x) (k =0, £1, £2, ...). We will get the corresponding homologous equations, i.e. we linearize
(9):

hi+1(Gk(X)) — DGix (hk(X)) = f(X). (10)

Let's suppose Lk = hk+1 (Gk (X)) — DGkx(hk (X)) (k =0, +1, £2, ...). Then L = (..., L., Lo, Ly,
...) is a linear operator on Banach space B of sequences of regularly limited continuous vector —
functions h = (..., h1(x), ho (X), h1 (x), ...) withnorm | h |, = sup(m3x|hk(x)|) (k =0,

k

+1, +2, ...). We will prove convertibility of operator L: then a solution of the system of
homologous equations L(h) = f looks like h=L?(f), where f =(...,f1(X), fo (X), f1(x), ...).
Let's assume for simplicity and without loss of generality that the Riemannian metricon M is
the Lyapunov's one with respect to hyperbolic realization Gk (x). Then any h € B for small

enough || h |, can be so spread out on contracting and stretching foliations hi (x) = his(x) +
1
hku(x), that for some p (0 <p <1) |DG,, (h (X)]| < s (X)], DGy (i (X)] > ;||hku ()], where

| | isaC®—norm. Thus also (10) breaks up on two subsystems:
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Lsths) = fs: hk+15(Gk(X)) — DGix(hks(X)) = fis(X) (11s)
Lu(hy) = fu: hk+1u(Gk(X)) — DGkx (hku(X)) = fru(X). (11u)
Let's consider operators S(h) on B: hk (x) — hw.1 (Gk (X)) and DG(h): hk (x) — DGux (hk (X).
Here | S|, = || S* | =1 and | DG |, < p. Then the system of the homologous

equations (11s) on contracting foliation can be noted in the form Ls(hs) = (S — DG)(hs) = = f;,

whence S(E-S?-DG)hs) = fs. As| S?-DG |, <] S?|, | DG |, < n <41, then

operator E—S?- DG is reversible and
(E-S*TDGT=E+St-DG + (ST-DGY + (ST-DG)® + ...,

| E-s*-DG?|, < B operator Ls is reversible also: Ls* = (E - S™* -

1-u
DG)*- st and | Lst |, < % . On stretching foliation Lu(hy) = (S — DG) (hy) = fu. Here
—u

operator DG is reversible and || DG ||B < u. Consequently operator L, = S—-DG = (S-

DG - E) - DG also is reversible, as || S - DG? ||B < || S ||B- || DG! ||B < u < 1. Therefore
(E-S-DGHT=E+S-DGL+ (S-DGYH2 + (S-DGH® + ...,

| €563, = 72 and | Lt = | 06 (5-DG* - B)* | <

1L.Thus, operator L is reversibleand || L™ |, < :

- U 1-p
We will solve now by a method of contracting maps the nonlinear functional equation (1)
on B. We will suppose F (h) = (..., Rux (h1 (X)) + 1 (X + h.1 (X)), Rox (ho (X)) + fo (X + ho (X)), Rix
(h1 (X)) + f1 (X + h1 (X)), Rax (h2 (X)) + f2 (X + h2 (x)), ...) € B. We will give the iterative equation
by the formula hi = L (F (hi.1)). Let’s initial iteration ho= 0. Then the first iteration h; = L}(F
(ho)), whence L (hy) =F (ho) = (..., f-.(X), fo (X), f1 (x), ...) = f. Thus, h is a solution of system of
the homologous equations (10): hi = L™ (). Generally hi.. = (..., hix 0, hoica (X), h1ie1 (%), ...) € B
for iteration i—1 , hj=
Lt (F (hi) = (..., Rax (1 ia (X)) + f12 (X + haia (X)), Rox (ho iz (X)) + fo (X + ho it (X)),
Rix(hgi-1(X)) + f1 (X + h1i1(x)), ...) € B for iteration i. Here
Il <l o) sl ] 6 los gz | f b Ihes =t s
_ _ _ _ 1
IR - R, = [ E =R, <, - IR -Fal, < 1= IR Fle

The component k of vector Fi—Fix € B is equal to [Rix (hki (X)) + fic (X + hki (X))] — [Rix
(ki1 ) + fic (X + i1 (0)] = [Riex (M (X)) — Riex (i1 (X))] + [fic (X + hici (X) — fic (X + hicia 00)]-

By definition, |R,, (h, ()]|<[G,(X)|, -|h (x)||2 , where | ||, isanormin C? | | isanormin
cO.

All Gk(x) differ from G(x) only on value of an order &€ = maxd(y), therefore obviously

yeK

|G, (X)], < 2||G(x)], at enough small &and any k=0, 1, £2, ....

Therefore

[Rec (s 00) = R (N5 ()] <2[G, ([ GO + i oG - 1 () =Dy 1]
R (s (x)) =Ry, (e, ()] < 4G, - maxd g ()], i1 0 H[Pa 00 = hyis ()] (12)

Let's establish parameters at which this iterative process will be contracting. Let o <
inf_1—#_ 1-x
3G, 32

}; O is union of all full-spheres of radius a with the centers in points of
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compact set K (K < O < M). Then the small enough continuous vector — function hk (x) on O
can be decompose hk (X) = hks (X) + hka (X) for small enough o such that conditions

IDG (e (X)] < | (X[, [|DGy (i (X)] > l||hku(x)|| will be continued from compact set K to a
7]

neighborhood O o K by a continuity, perhaps increasing u by value of order a (i.e. worsening an

estimate). From this also inequality HL‘lu <
B 1-u
continuous vector — functions h on K to sequences of vector — functions on O as proved above,
perhaps with worsening the estimate by an order «. Obviously the inequality HL’luB < will
—u
be fulfilled for small o for h on O.
We get for the first iteration hg, i.e. for a solution of system of the homologous equations

_ ] 2 1-
I lle= Lt () lle< L7, - ], SH TH 22

supposing | f,|, < 1_7” : % forall k=0, £1, £2, ..., where | |, -norm in C*.

Let's prove by induction that from [lhills <aati=1,2, ..., m follows that ||hm |le<a
and | hi+1—hi |, < %|| hi —hia [, (1<i<m). Really, from [h;(x)]|< o, [h ()] <a forall
x and k by (12) follows that

|Re (s () = Ry, (hkil(x))u < 4[G(x)], - -Hhki(x)—hki,l(xﬂ\ <

< 4|G(x)], - 32||G( T [he () =h 2 ()] < ﬂ R 09 =2 ()]

On the other hand, at all k- || fiu(x + hii(x) — filx + hii-1(0)) || < [ e[, | (0 =, (9] <

Hhk,(x) h; l(x)” Therefore | [Rix (ki(X)) — Rie (i -1(X))] + [ fi(x + hici(X) — fi(x + hici -

128
0] | < |Re (hki<x»—R (a0 + | fk<x i) - R+ heioa() | o<
1-

5 =m0 + 58 0=y RS 7 [ 9=y 1(x)] for a component k of
the Fi—Fia at i=1,2, .., m.In other words, | Fi—Fia || < 1— | hi —his ||B

Therefore || hivs —hi |, = [L*(F)-L*(F
_2 1-p
1-u

= e R-FL, < HL* Jy - IR = Fial <
| hi—hia |, = %” hi —hi.1 |,. It means that the iterative process is contracting
with a compression constant < % fori=1,2,...,m

Thus, | he = ho |, > 2] he = hyfy > . > o[ hwa — ho [, Therefore
N R e R e I e e I e S R

o+ zim)” hi—ho |, <2 h1 |, <2 % = o, that it is required. So, all hi do not leave the
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neighborhood O and || hi+1 — hi || < 1 || hi —hi_1 || (i=1,2,...). Hence, according to a

principle of contracting maps, there exists Ilm hi = h € B, which is a solution of (9).
Continuous maps Hk(x) = x + hx(x) are homeomorphisms if they are injective. But Hx
(x1) = X1 + hk (1) = Hk (X2) = X2 + hk (X2) = X2 — X1 = hk (X1) — hk (X2) = [%, = %] <2 o, as

~ ~

| hi ||, <. From equality G, ©Hk = Hk+:° Gk follows that G, ° ... ° G,,,° G, ° Hk = Hsm

° Gk+m © ... © Gk by the commutative diagram. If x> — X1 has a nonzero component in stretching
foliation at large enough m the distance between Gi+m © ... © Gk (X2) and Gk+m ° ... © Gk (x1) will
exceed 2a, SO Hk+m © Gk+m © ... °© Gk(X2) # Hk+m © Gik+m © ... ° Gk(X1). But Hi+m © Gkm © ... °

Gk(x2) =G p°...° G ,,° G ° Hk(x2) = G, ° ... ° G ;° Gy ° Hk(X1) = Hikem © Gkem ©
Gk(x1) . If x2 —x1 belongs contracting foliation the similar reasoning leads to a contradiction to
the supposition, that Hm (X1) = Hm (X2). The theorem is proved.

The important feature of this variant of the theorem about sets of ¢ — trajectories is its
constructability, presence of explicit estimations, which can be used at the numerical analysis of
concrete systems. These formulas essentially become simpler in the most important for
applications case, when the compact set K from a theorem condition is DQM attractor and by that
is the closure of some invariant area of DQM in M.

In this case let O is a neighborhood of DQM attractor K, p is a coefficient of

hyperbolicity on O: |DG,, (h(X)| < gfhe(x)| and ||DGkX(hku(x)||>l||hku(x)|| for an any
u

continuous vector — function hi (x) on O, where hi (X) = hks (X) + hku (X) is a decomposition of hy
(x) on stratifications. Then, as shown in the proof of theorem 5, operator L on Banach space B of
the sequences of regularly limited continuous vector — functions hg (x) on O is reversible and

I, <
B

LY@ and | he |, < LHF) [, <L, F |, < % | f |- Here his first

iteration of the contracting maps given by the formula hi = L* (F (hi)), where F (h) =
Roix (N1 (X)) + f1 (X + h1 (X)), Rox (ho (X)) + fo (X + ho (X)), Rix (h1 (X)) + f1 (X + h1 (x)), ...) € B.
The convergence proof is spent on an induction: from |Ihills <aati=1,2, ..., m, where @ =

. Consequently a solution of the system of homologous equations (10) is h; =

2|l h1 || 8 we obtain, that || hm+1 /s <a and || hi+1—hi ||BS%|| hi —hi 1 ||B (1 <i<m). Here

_ _ _ 1
| hiva =hif, < U R)-L'FEY|, < U, IF-Faly < 1=y IRl
component k of vector Fi—Fi1 e B isequal to
[Ricx (hici (%)) — Riex (hicia (3))] + [ (¢ + hiei (%) = fie (X + hiciea (X))].
As

R (s () = Re, (i, ()] < 4GOI, -+ max{ g ()], i 0 3P 09 =y ()]
by (12) and | fi(x + hii(x) — fie(x + hki—l(X)) I <, - Hhki(x)—hki_l(x)u then

R I I R R G AT K S P
1 1
< el || | i |,
1 1
R A Rl Kot SO RS LR R
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- T T - _A-p)
for i=1,2,...,m. Then ” hi+1—hi ”B . 2 ” hi —hia ”B’ i ” f ”B = 4(4||G”2+1).

In this case, in view of ho =0, | hme ||, = || hma—ho |, <[ Bmer—hm |, + ... +
| hi—ho |, < (@ +...+ Zi’")” hi—ho ||, <2 || h1 |, = &, asitis required. From this

Corollary 1. Let ék(x) be a hyperbolic ¢ — realization of DQM realization Gk (x) on
DQM attractor K: | G (X) — Gk(X)
there are the homeomorphisms Hx such that: ék °Hk=Hk+:° Gk (k=0, £1, £2, ...),

2
) . (13)
4(4|G||, +1)

The program for finding and analysis of DQM attractors.

In this work the program is used, which 1) builds DQM discretization s and discovers their
attractors; 2) checks the conditions, used at the proof of hyperbolicity of dynamics on a DQM
attractor. This program is realized as C * — application with use of Open Maple technology and
consists of 4 basic procedures (modules).

1. Prestep. Procedure to each cell Ai from a define area Q = {Ai} of DQM discretization
puts in correspondence the cells — images for one step of dynamics. In other words, this procedure
sets on Q a topological Markov chain.

2. Findattr. Procedure finds in Q coherent components of attractor of the topological
Markov chain set in Prestep.

3. Hyperproc. Procedure checks on discovered in Findattr components the assumptions
used at the proof of hyperbolicity of dynamics on them.

4. Animate. Procedure allows to localize area Q for Prestep procedure and visualizes
behavior of system, using animation technology in Maple.

Let's describe the basic algorithm of this program used in procedure Findattr. Further the
detailed flowchart of this procedure is cited (Figure 1).

Let's the partition of area Q on cells A; is already set by procedure Prestep. Let's Prestep
procedure sets symbolical dynamics of the topological Markov chain H on Q, which status are
cells Ai. We will consider a quasiorder transitive relation: A, <A, on the space of status Q =

{Ai}, if there is some trajectory of symbolical dynamics from A; in A;. The status A is reflexive,
if A; <A,. Reflexive status are divided into equivalence classes:
A~ A S A <A <AL

Then H(Q) DH?(Q) D H3Q) © ... © HY(Q) for area Q ={A}. If H'(Q) = H™Y(Q)
then H"(Q) is an attractor of DQM discretization. The following algorithm is based on it.

Procedure Findattr contains 5 parameters (arguments):

1) nis a number of the first considered cell.

2, 3) nx, ny are length and width of the rectangle Q, where Q is the procedure define area,
expressed in quantities of cells.

4) del. If the cell Aj is contained at an image of a cell A; then at this image there are also
cells at the right, at the left, below and above from a cell A; with the quantity del (by DQM
definition).

5) M is a matrix received from procedure Prestep. Its each string i contains the data about
an image of a cell Aj, it has eight columns. The first column in M contains the number of cell A in
the matrix R, which is a resultant for Findattr. The eighth column contains a number of first still
not considered cell from an image of a cell Ai. The others 6 columns contain coordinates of cells
in image of a cell Aj, to which three tops of a cell A;j get: lower left and two adjacent with it.

a<¢& Then ék (x) is topologically equivalent to G (x), i.e.
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Results of Findattr are written in matrix R containing 2 columns. The first column contains
number of an equivalence class of reflexive states for the given cell. The second one contains a
number of this cell in the initial matrix M.

Further we will use the detailed flowchart of Findattr procedure (Figure 1).

The initial number n of a
cell from the procedure

k:=M[n,1] ck:=R[k,1] M[n,1]=07? <
5
YeS
ck:=R[tn,1] R[tn,1] = ck tn:=tn+1
cn:=tn ck:=
: [
R[j,1] :=ck
where nl:= R[cn,2] M[n,1]:=tn M[n,8] := M[n,8] +1
M[n,1] <j<tn M[n1,8] := M[nL,8] +1 R[tn,1] := ck R[tn,2] :=ck
y
nl:=R[tn,2]
M[n1,8] := M[n1,8] +1 dx:= M[n,4]- M[n,2] x4:= M[n,4]+dx
dy:= M[n,7]- M[n,3] y4:= M[n,5]+dy
xmax:= max{M[n,i], x4} + del (i = 2,4,6)
xmin:= min{M[n,i], x4} —del (i = 2,4,6) 2
ymax:= max{M[n,i], y4} + del (i = 3,5,7)
ymin:= min{M[n,i], y4} —del (i = 3,5,7)
dx:= xmax — xmin dy:=ymax —ymin
ncn:=M[n,8] cig:=dx - dy
6
no
<— cni=cn-1 3
no yes ves
The end of = R[cn.2] ry:= quotient {ncn/dx} rx:=remainder {ncn/dx} 4
Pr‘%cedure ry:=ymin+ry rx:=xmin+ rx n:=nx(ry-1)+ rx
paboTs!

Figure 1.
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Here the variable cn sets a cell current number, the variable tn is a total number of already
considered cells, the variable ck is a number of an equivalence class of reflexive states for a
current cell.

In the block flagged in digit 1, for each cell it is checked, whether it is written already in
matrix R (in other words, whether it was handled already by Findattr procedure). If still is not,
then class number ck increases on 1 and this value is written in matrix R for this cell. Then in the
block flagged in digit 2 the set of images of the given cell cn is restored. There x4, y4 are
coordinates of a cell, that get an image of the upper right top of a cell cn; xmax, xmin, ymax, ymin
are the coordinates of tops of the rectangle containing all images of the cell cn; dx, dy are the
length and the width of this rectangle. Then ncn is a number of first still not considered cell from
the image of the cell cn; ciq = dx - dy is a total number of cells in a rectangle of images.

In the block flagged in digit 3 it is checked, whether there exists some cells from the
image of a current cell cn, that still are not considered by Findattr procedure. If yes, then in the
block flagged in digit 4 we find coordinates rx, ry of the first such cell; then its number n; and
then we come back to the block 1.

If while checking the block 1 it appears that the current cell cn already was considered by
Findattr procedure, then in the block 5 we check, whether it has current, i.e. the greatest number
of a class ck. If yes, then for this cell we select number of first still not considered cell from its
image; and we come back with it in the block 2. But if it has appeared in block 5, that class
number is less, than the current one ck, then besides we assign this greatest class number ck for all
cells between this and last one in matrix R. Really, it means that all these cells are in one
equivalence class of reflexive states.

At last, if in the block 3 it is clarified that all images of the given cell cn are already
considered, then in matrix R we pass to the previous cell. If in the block 6 it appears that it has
current (that is the greatest) number of a class, then with number of this cell we come back to the
beginning in the block 1. But if it has appeared that class number for the previous cell is less than
the greatest one, then the procedure is completed. Really, on procedure constructions, for all
previous cells all the images long are already considered. But then it means that all previous cells
from R belong to maximum class of an equivalence of reflexive states; and this cell does not
concern it any more.

Example of DQM method: study of Henon system.

We will consider here DQM method for investigation of dynamics of concrete systems on
an example of two-dimensional system of M. Henon [6]: (X, y) — (1 + y — ax?, bx). Values of
parameters a = 1.7, b = 0.5 we will choose those, at which for system of R. Lozi [11]: (X, y) —
(1 +y—alx |, bx) presence of an attractor with hyperbolic dynamics has been strictly proved.

1. Animate Procedure localizes area Q of a phase space, in which the system attractor
hypothetically contains. On the basis of outcomes of the numerical researches, visually presented
further in a Figure 2, we choose arectangle Q={(x,y) |-1<x<1.5;-0.1<y<0.1}.
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m,

Figure 2.

Outcomes of work of Animate procedure lead also to the supposition that on an attractor in
Q the system is hyperbolical: in Figure 3 for iteration n =1, 2, ..., 500 its coordinate X € Q
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In Figure 4 for iteration n=1, 2, ..., 500 its coordinate y € © answers.
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2. Prestep Procedure makes rectangle splitting Q on cells A;, i.e. squares with the sides of
length 0.01, parallel to coordinate axes. Then A; Prestep puts each cell in correspondence to the
collection of cells to which points from Aj can get for one step of dynamics of Henon system. It is
simultaneously strictly established, that the area Q is really invariant with respect to DQM
discretization given by the splitting of Q. Thereby this procedure sets the topological Markov
chain which space of status is the set of cells Ai c Q.

3. Findattr Procedure finds in Q a DQM attractor for given in Prestep DQM discretization
according to described above its algorithm. The attractor appears coherent that corresponds to the
data obtained by Animate procedure (Figure 2).

4. The basic outcomes of investigation are connected with following corollary from the
theorem 5 (and from corollary 1 of it), which statement is oriented especially on use at study of
concrete dynamic systems.

Corollary 2. Let’s Aj be the cells of attractor of DQM ¢ — discretization of the system,
given by a two-dimensional diffeomorphism G, xi € Ai (1 <1 < N). Let’s the average
eigenvalues Ai(xi) and  Ao(xi) of differential DG for m iterations G from a point X; (i.e. of

differentials in points xi, G (xi), G* (i), ..., G™}(xi)) satisfy the conditions Ai(xi) < p, A2(Xi) > Kl
Y7

for some p (0 < p<1) inany point Xj € Ai (1 <i<N) and

2
< & ) (14)
4m(4|G|, +1)

Then

1) the initial system given by diffeomorphism G, is hyperbolical on the attractor;

2) any DQM ¢ — realization of this system is also hyperbolical on DQM attractor and is
topologically equivalent to initial system;

3) the support of the attractor of initial system and its DQM attractor coincide with
accuracy of order ¢.

Here by an attractor of initial system we mean intersection O N G (0) " G2(0) N ... N
G" (0) n ... for some neighborhood O of an attractor of the DQM ¢ — discretization from
collorary 2. The value

oG oG 0°G 0°G o°G
G|, = max{l, [(—)*+ (=), 249 2 ,
[Gl, = max{ J(ax) ) J(GXZ) AL N
where for diffeomorphism G(x, y) = (X (X, ¥), Y (X, y)) we set (%_3)2:(%)2+(%)2'
2 2 2
(ZX?)Z = (aax)2< )* +(g):£)2 and so on, and the domain  of a phase space contains a system

attractor. In a corollary 2 we were limited to a two-dimensional case though its multidimensional
generalization is also true.

5. In our case, when G(X, y) sets the system of Henon, on a rectangle Q =
{x,y)|-1<x<1.5; -0.1 <y<0.1} is fulfilled

|G, = max{z. V(2ax)? +b? +1,2a} ~6,1.

Hyperproc Procedure establishes, that for m = 10 average eigenvalues Ai(xi) and A2(Xi)
of differential DG for m iterations G satisfy conditions A1 (xi) <0.4, Az (xi)> 1.7 for all x;. Value
1/1.7 = 0.59. Thus, u > 0.59; however we choose value p = 0.7 with a large supply: the reason
will clear up further. Then under the formula (14) €~ 0.0001.

6. Now it is necessary to repeat sequence of operations since item 2 with that only
difference, that rectangle splitting Q on cells A; contains squares with the sides of length not 0.01,
but 0.0001. The main size of calculations is necessary just on this stage of research. Therefore all
procedures of the program complex assume the possibility of definition of their operating time
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and saving the subproducts received in this time. It is possible further to continue work with
saving subproducts or to adjust the selected options, as a result of the analysis of these
subproducts.

Eventually, the purpose of all these evaluations is to check up that for DQM & —

discretization with this new smaller ¢ inequalities A1 (i) < pand A2 (xi) > 1 are still fulfilled with
y7j

the same p for all cells A;j from an attractor of ¢ — discretization . In this case for this & —
discretization all assumptions of a corollary are automatically satisfied 2. Otherwise all this cycle
of calculations since item 2 is necessary to repeat, preliminary having specified parameters. On
purpose to avoid it we have been selected the value of parameter u = 0.7 with a store in item 5. In
our case at the chosen parameters check has passed successfully.

Thereby in this case all conclusions of a corollary 2 are true. We already obtained the
structure of the topological Markov chain of DQM ¢ — discretization, as a result of evaluations. In
view of the theorem 2, it gives us the detailed and strictly proved information on dynamics of
Henon system on its attractor.

The chosen values of parameters a = 1.7 and b = 0.5 are not unique. For example, similar
outcomes turn out at a = 1.4 and b = 0.35. In following figures a view of attractor (Figure 5) and
dynamics visualization on this attractor on axis OX (Figure 6) and axis OY (Figure 7) are shown.
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Figure 7.

Conclusions. The DQM method for investigating the dynamics of concrete systems and
obtaining strict results is demonstrated on the example of M. Henon’s system. We choose the
values of parameters at which this system is hyperbolical on the attractor; we determine the
support of this “strange attractor” within given error and the dynamics on it within topological
equivalence. The program realized as the C* — application with usage of Open Maple technology
is used here. In this work the purpose is only the illustration of DQM method for study of
concrete dynamic systems. The detailed statement of results is supposed in the subsequent
publications.
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XepcoHcbkuii 1ep:kaBHUI YHiBepcuTeT, XepcoH, YKkpaina

YUCEJBbHUMN AHAJI3 JTUHAMIYHOI CUCTEMHU TA I CTPYKTYPHA
CTIAKICTb

VY cTarTi NpoJEMOHCTPOBAHO METOJ JOCIIIKEHHs AUHAMIKM KOHKPETHUX CHCTEM Malloi
BUMIPHOCTI Ta OTPUMaHH MaTeMaTUYHO TOYHUX Pe3yJbTaTiB Ha Npukiazl cucteMu M. XeHHOHa.
BinnosinHa nporpama pearnizoBana, ik C# — mogaTok i3 3actocyBaHHsAM TexHouorii Open Maple.
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Bona no3Bosie 3HAXOAWUTH aTPaKTOPH JWHAMIYHUX CHUCTEM Majoi BHUMIPHOCTI Ta JOBOJWUTH
rinepOoIiYHy MOBEIIHKY Ha HUX, BUKOPUCTOBYIOUM OOYMCIIeHHs Ha Komm totepi. [Ipore, Takum
YMHOM OTPHUMYEMO TOYHI aloCTEPIiOpHI Pe3yNbTaTH, IO IPYHTYIOTHCS Ha TeOpeMax i€l CTaTTi.
KoM’ toTrepHi 004nCiIeHHS BUKOPUCTOBYIOTHCS JJIs IEPEBIPKU BUKOHAHHS YMOB LIUX TBEP/KECHb.

MoXnMBiCTh OTPHUMaHHS MaTeMaTHMYHO OOIPYHTOBAaHMX pPE3YNbTaTiB YHUCEIbHUX
JIOCITIJDKEHB TOB’sS13aHa 3 CTPYKTYPHOIO CTIMKICTIO 3acTOCOBaHO1 Mojieni. CTPyKTypHA CTIHKICTh €
0a30BOI0  KOHIICTILI€I0 JIBOX TPAAULIAHUX YHIBEPCUTETCBKHX KypciB: “Maremaruune
MOJICITFOBAHHS Ta CUCTEMHUH aHani3” 1 “Metoau obunciaeHs”. ABTOPOM 3alpoOIIOHOBAHUN IMiIX 1],
IO JTO3BOJISIE /711 KOKHOT JJaHOT TUHAMIYHOI CHCTEeMM MOOYAYBaTH CTiMKy Mojaenb. s 1poro
BUSBIIAETHCS JOCTATHIM pPO3TJSAATH IO CUCTEMY pa3oM 3 BUNAAKOBUMH (IIYKTyallisMH,
HEYCYBHHMHU JUI KOXHOI peanpHOi cucTteMH. TOuHIIIe KaKydyH, A JaHOI KJIACHYHOI CHCTEMH
Oyayemo T1i 30ypeHHS TMEBHHUM MAapKOBCHKUM IIPOLIECOM, SIKUH Ha3MBA€EMO JTUHAMIYHOIO
kBaHTOBOIO Mojemwmo (JIKM) miei cucremu. Taka mozmens € cCrTiiikoro, mo 3ade3medye
MOXUIMBICTh 11 YMCENBHOTO JOCHIUKEHHSA. A 3 HaOMWKEHHAM (IyKTyalid 10 HyJIs AUHaMiKa
JKM npsiMmye 10 AMHAMIKA 337]aHOT KIIACUYIHOI CHCTEMHU.

KualouoBi cioBa. nuHamMiyHM, crcTeMa, KBaHTOBA, CTPYKTYPHHM, TEOpis, aJrOpUTM,
aTpaxkTop.

Beiinoaut A. U.

XepCcoHCKMI rocy/IapCTBEHHbIH YHUBEPCUTET, XePCOH, Y KpanHa

YHACJEHHBIA AHAJIU3 JUHAMUYECKOM CUCTEMBI M EE
CTPYKTYPHAS YCTOMUYUBOCTH

B cratbe mpoaeMOHCTpHpPOBAH METOJI HMCCIIECIOBAHUS IUHAMUKH KOHKPETHBIX CHCTEM
MaJioil pa3MEpHOCTH U IOJYYEHUs MATEMaTHYECKU CTPOTMX PE3YJIbTATOB HA MPUMEPE CUCTEMBbI
M. Xennona. CoOTBETCTBYIOIIAsl TMporpaMma peain3oBaHa, kak C# mpuioxeHue ¢
ucnoiib3oBanrueM Texaonoruu Open Maple. OHa MO3BOJSET HAXOAUTH ATTPAKTOP TUHAMUYCCKOM
CHCTEMBI MaJIOil pa3MEpPHOCTH U JI0Ka3bIBaTh €ro THIEPOOIHMYHOCTD, UCIONB3YS BBIUMCICHUS Ha
koMmmbioTepe. OpHako, TakuM oOOpa3oM TMOJY4YEHbl TOYHBIE aNOCTEPUOPHBIE PpPE3yJbTaThI,
OCHOBaHHBIE Ha TeopeMax dTOM cTarbu. KOMIbIOTEpHBIE BBIYHMCICHHS] HCIOIb30BAHBI IS
IIPOBEPKU YCIOBUN ITUX YTBEPKIACHUM.

B03MOXXHOCTh MONY4eHHsS] MaTEeMaTHUYeCKd OOOCHOBAaHHBIX pPE3YyJIbTaTOB UHCICHHBIX
HCCIIEIOBAaHHUM CBs3aHAa CO CTPYKTYPHOW yCTOMYMBOCTBIO HUCHOIb3yeMol Mojenu. CTpyKTypHas
YCTOMYMBOCTh SIBJSIETCS 0a30BBIM TMOHSITHEM JBYX TPAIUIIMOHHBIX YHHUBEPCUTETCKUX KYPCOB:
“MaTtemMaTH4YeCcKOe MOJICTIMPOBAHUE U CUCTEMHBIN aHaim3” U “MeTo/Ibl BBIUMCICHUN . ABTOPOM
MPEAJIOKEH TOJAXO0J, KOTOPBIA MO3BOJISET I KaKJAOW 3aJaHHOM JWHAMHUYECKOW CHCTEMBI
MOCTPOUTh YCTOMUYMBYIO MOJAENb. [[s1 3TOr0 JOCTATOYHBIM OKAa3bIBACTCS paccMaTpHUBATh ATy
CUCTEMY BMECTE€ CO CIydyaWHbIMH (QIYKTyallUsIMU, HEYCTPaHHUMBIMHU [UJIsl JIOOOW peanbHOU
cuctembl. TouyHee roBoOps, I [AaHHOM KJIACCUYECKOW CHCTEMBI CTPOMM €€ BO3MYILECHUE
MapKOBCKMM TMPOIIECCOM, Ha3bIBa€MBIM JHWHAMUYecKoil KkBaHTOBOWH wmojnenbto (JKM) »stoii
cucreMbl. Takasg MoJenb YCTOWYMBA, 4YTO OOECHEYMBAET BO3MOKHOCTb €€ UHCIEHHOIO
UCCIeoBaHus. A TpHu cTpeMieHUH (GIyKTyaruil k Hymato nuHamuka JJKM cxonuTest K JUHAMHKE
JTAHHOW KJIaCCUYECKOW CUCTEMBI.

KioueBbie cioBa. JlMHaMu4eckuid, cUCTE€Ma, KBAHTOBAs, CTPYKTYPHBIA, Teopus,
AITOPHUTM, aTTPAKTOP.
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