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The method for investigating the dynamics of concrete systems of small dimension and 

obtaining strict results is demonstrated on the example of  M. Henon’s system. The program 
realized as the C# – application and with usage of technology Open Maple is used here. The 
program allows to discover strange attractors for dynamical systems and to prove the hyperbolic 
dynamics on them, using outcomes of evaluations on the computer.  However we get the strict a 
posteriori results here based on theorems of the article while the numerical evaluations are used 
only for checking the validity of assumptions of these statements.  

A structural stability of the model leads to a possibility of mathematically justified 
numerical analysis. It is the based concept of two traditional university courses: “Mathematical 
modeling and system analysis” and “Methods of calculations”. This article is an introduction to 
a solution of this problem proposed by the author. It became clear that for this purpose it suffices 
to consider the dynamics with an explicit account of unavoidable random fluctuations. More 
precisely, for a given classical system we construct its perturbation by a Markov process called a 
dynamic quantum model (DQM). The structurally stable realizations of DQM are dense 
everywhere, that allows one to investigate DQM by numerical evaluations. On the other hand, as 
the fluctuations tend to zero, the results obtained for DQM become statements about initial 
classical dynamics. 

Keywords. Dynamical, systems, quantum, structural, theory, algorithm, attractor. 

Introduction. Stability of a mathematical model with respect to small variation of the 

parameters is a necessary condition of its correctness. If an arbitrarily small perturbation may lead 

to a qualitatively different picture of dynamics, then such a model is not applicable to the real 

process investigated experimentally. Strictly speaking, errors are included in the model by 

definition. Neither numerical analysis nor computing experiment is applicable to unstable models 

as there are inevitably sampling and rounding off errors.  

The qualitative invariance of a mathematical model under small perturbations is usually 

called structural stability. This formally means equivalence, in some exact sense, between the 

model and its small enough perturbation. For the smooth dynamical systems (set by differential or 

difference equations) this equivalence is usually a homeomorphism between the phase portraits of 

these systems. Such theory of structural stability going back to  H. Poincare,  has been developed 

by  A.A. Andronov and L.S. Pontrjagin in the case of small dimension of the phase space (1 or 2) 

[1].  However, the optimism generated by the successes of this theory disappeared after S. Smale's 

works [2]. It was shown in [3] that when the phase space has larger dimension, then there exist 

smooth dynamic systems which neighborhoods do not contain any structurally stable system.  For 

the theory of smooth dynamical systems (its old name is the qualitative theory of the differential 

equations) this result has the same value as Liouville’s theorem on insolvability of the differential 

equations in quadratures as for the theory of their integration.  Namely, it shows that the problem 

of full topological classification of smooth dynamical systems is hopeless. This meant that there 

was no strict mathematical basis for modeling and the numerical analysis of systems in general 

position.  This is a contradiction in a science since the physicists believe that the dynamics should 

be arranged simply and universally.   

This article is an introduction to a solution of this problem proposed by the author. As a 

matter of fact, it became clear that for this purpose it suffices to consider the dynamics with an 
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explicit account of unavoidable random fluctuations. But really only such dynamics is given to us 

in experiment and evaluations. More precisely, for a given classical system we construct its 

perturbation by a Markov process called a dynamic quantum model (DQM) [4].  For Hamiltonian 

systems, there is a simple connection between these Markov processes and the quasisolutions of 

the corresponding Schrodinger equation, while construction of DQM is a method of solution of 

spectral problems of quantum mechanics [5].   

However, as a matter of fact, DQM is not connected with Hamiltonian systems in any 

way. It is defined for an arbitrary ordinary differential or a difference equation on any smooth 

Riemannian manifold. Non-Hamiltonian quantum dynamics obtained this way appears to be 

easier than the classical one, and allows returning in essence to a simple picture of H. Poincare’s 

dynamics. The structurally stable realizations of DQM are dense everywhere (Theorem 4) and 

opened (Theorem 5) on the set of DQM realizations.  This dynamics has a clear structural theory. 

Unlike the classical systems, the attractor of DQM is defined uniquely, without alternatives 

(Theorem 1) and Lyapunov's exponents exist for every DQM (Theorem 3). As a Markov cascade, 

DQM can be with any accuracy approximated by a Markov chain, and on a compact set by a 

finite Markov chain (Theorem 2). This allows one to present DQM dynamics clearly and to build 

effective algorithms for investigating concrete systems. On the other hand, as the fluctuations tend 

to zero, i.e. in the semiclassical limit, the results obtained for DQM in general position become 

statements about initial classical dynamics. Thus, the structural stability of DQM leads to a 

possibility of mathematically justified numerical analysis.  

This DQM method for investigating the dynamics of concrete systems and obtaining strict 

results is demonstrated on the example of M. Henon’s system [6]. We choose the values of 

parameters at which this system is hyperbolical on the attractor; we will determine the support of 

this “strange attractor” within given error and the dynamics on it within topological equivalence. 

The program realized as the C # – application with usage of Open Maple technology is used here. 

Let us notice, however, that we get here the strict a posteriori results based on corollaries of 

Theorem 5 (Corollary 1 and 2) while the numerical evaluations are used only for checking the 

validity of assumptions of these statements.  

The DQM method, as a matter of fact, is universal for investigation of systems of small 

dimension. The purpose of this article is only an illustration of DQM method. A detailed account 

of the results obtained by this method is supposed in subsequent publications.   

Definition of the dynamical quantum model (DQM). 

Let  р(х) be an n – dimensional smooth vector field on an n – dimensional smooth 

Riemann manifold  M, where  х(х1, х2, … , хn)
nR  are local Euclidean coordinates on M,  рi(х) 

 )( nRС ( i = 1, …, n).  On every phase curve x(t)  M of the dynamical system (DS),  

generated by this vector field,  

)(хp
dt

dx
i

i             (i = 1, …, n),                                                (1) 

consider the integral of the “shorten action”  s(t)  = 
)(

)(
tх

dxxp   =  
t

dp
0

2
)(  ,    where 





n

i

ipp
1

22
)()(  . The value  s(t)  on each curve х(t),  different from a stationary point, is 

diffeomorphically expressed through  t  and is called “optical time “.  Let ρ be a metrics such that   

s(t)  = 
)(tх

d : dttpd
2
)( . 

We will now give a heuristic derivation of definition of dynamical quantum model (DQM) 

of DS(1) (Definition 1). The distance d, covered by a point on a trajectory in time  Δt  is equal  to 
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




t

dpd
0

)(   ttp c  )( ,  where )( 0tppc   is the average value )0( 0 tt  . (Single 

trajectory traversal  is assumed in time  Δt;   turning  points  is a special case). Further, we assume 

that the fluctuations generate a “white noise”  ξ (t) defined on the configuration space with 

dispersion Dξ(t) = 2 t, where the diffusion factor  2   is a constant on the considered time 

interval. A certain time Δt should pass while the point will displace on such distance  d  from a 

starting position which will exceed the root-mean-square mistake caused  ξ (t)  in time  Δt,  i.e. 

tpc    will exceed t2 . At such minimal  Δt  tpc   = t ,  whence  2  tpc 
2

  and, 

hence,   

c

c

c
p

tpd
p

t
2

2

2

,


              (2) 

Here, under the assumption,  Δt is that minimal time interval, after which there is an 

opportunity to make new measurement, which difference from former will exceed an error. Thus 

only through time Δt we can get new significantly different measurement.  Owing to (2)  

)()(
0

222 tsdptp

t

c  


 . Thus,   1) the time interval between the nearest significant 

measurements is constant everywhere on the scale of optical time and is equal to 2 . (In other 

words the distance between them under the metrics  ρ  is equal to 2 ).  

2) In this time “ white noise ”  ξ (t)  generates an ineradicable casual error which root-

mean-square deviation is equal to the distance d  on a trajectory between the nearest significant 

measurements.  

So, the dynamic quantum model at first shifts each point on phase curve of the given 

dynamic system in optical time  2  (or on  ρ – distance  2 ). And then it displaces this point 

casually on the distance,  which is not less than the length of a trajectory from initial up to a new 

point. The following strict definition generalizes this description. Definition of quantum model is 

given for any dynamical system (1) on any compact Riemann manifold M.  

Let G be a shift map on phase trajectories of dynamical system (1) in a given time Δt. We 

shall consider continuous function  q(y, z) ≥ 0   (y, zM),  and   

q(y, z) > 0    Gyz   ≤ d(y),     1),( 
M

dzzyq ,    Gydzzyzq
M

 ),( ,                  (3) 

where   d(y) > 0  is continuous function on M. Here  q(y, z)  is a density of  “the local 

casual dissipation caused by white noise”,  numbers  d(y)  are assumed small enough.  Certainly 

the function q(y, z) can be assumed as continuous at any given accuracy by its approximation on 

M by smooth function. Then 

Definition 1. The Markov process with transitive function     

Р(у, А)  =  
A

dzzyq ),(  ( MA ) 

we will call the Dynamical quantum model (DQM) of the given dynamical system (1). 

For given initial distribution we will obtain the Markov process Р with this initial 

distribution and transitive function Р(у, А).  If  μt  is a distribution at time t  and  Δt  is a time 

period between two nearest significant measurements, then  DQM  get new distribution  P(μt)  =  

μt+Δt   at time  t  +  Δt. 

Definition 2. Let  Δi  be cell of some splitting of phase space for the given dynamic system 

on cells in diameter ε. Let μ0 be an initial state (initial distribution).   Then the Markov chain with 

initial values  рi = μ0( Δi )  and with probabilities  pij  of transition from  Δi  in  Δj   
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pij  = 0

0
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1



dyP
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j

i







 we will call a ε – discretization  of  DQM with transitive function  

P  and the initial state μ0.    

Thus, starting from the differential equation (1), we come to the difference equation with a 

time period at least 2  on a scale of optical time. At first sight step-type behavior of time in 

DQM can surprise:  in traditional model of quantum mechanics only spatial variables errors are 

taken into account. But, apparently from the derivation of DQM definition, step-type behavior of 

process of time measurement is an inevitable consequence from presence of casual errors at 

coordinates and impulses. Really, a clock or some other device finally is necessary for 

measurement of time. But as these measure indications and speeds of their changes are 

determined inexactly, then also time is known with only some error [7].  

DQM attractors. 

Attractor is the key concept of the theory of dynamical systems. It is a “space of the 

established modes” on its physical sense. The point of phase space contained in attractor if it 

belongs to the support of “a stationary state of system”, i.e. belongs to a support of measure, 

which does not vary in due course. 

Let phase space M is compact;  Р  is a set  DQM  on M.   

Definition 3.  We will call a probability measure μ on M a stationary (equilibrium) state of   

DQM  if   Рμ = μ.  We will call the union of supports of all DQM stationary states a DQM 

attractor.  

Theorem 1. (The Perron – Frobenius theorem for DQM).  Let Λ  М be an invariant set of 

DQM  Р, which does not contain nonempty proper invariant subsets (i.e. it is minimal with 

respect to Р). Then  1) there is a unique stationary set  μ,  whose support is  Λ.  The state  μ  is 

ergodic.  

2) For any DQM state (probability measure)  ν  on  Λ,  




n

k

n

n
P

1

lim   =  μ.    

3) If    is a  probability stationary measure of some ε – discretization  of the given DQM,  

then 
0

lim


   =  μ.   

Proof. Let Λ  M be the invariant closed set of DQM which is not containing proper 

invariant closed subsets.  Let    is a stationary measure of some discretization  of given DQM 

on Λ with cells in diameter ε (i.e. a probability invariant measure of the Markov chain given by 

definition 3). A set of probability measures  M = M(Λ)  is a convex metric compact set on a 

compact subset Λ of a phase space in weak topology [7]. Therefore from any sequence of 

measures 
k

  it is possible to select subsequence
n

 , converging to some measure   from M:  

n
lim

n
 =   M in sense of weak topology on M.  As Р

n
 – 

n
  

0n
 0 (in sense of weak 

topology) then, owing to definition of discretization  2, Р  =  , i.e.   is a stable DQM state. 

As, on the assumption, Λ does not contain nonempty proper invariant of DQM subsets (i.e. it is 

metrically transitive), then for any Р – invariant measure   on Λ the ergodic theorem of 

Neumann is fulfilled: for any continuous function  f on Λ   

L2 –  





n

k

k

n
fdPf

n 1

)(
1

lim   .                                      (4) 

As the left part of this equality does not depend on a choice of sequence of measures 
k

 ,  

then any weakly converging sequence 
n

  will converge to the same measure  . Hence 
0

lim


  = 

  , it proves 3).  As (4) is fulfilled for any stable state on Λ, then from (4) follows as well 

uniqueness of invariant measure  , that establishes 1). At last, as for any other probability 
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measure ν on Λ 




n

k

k

n
P

n 1

1
lim   exists owing to (4) and it is an invariant measure, then it is equal to  

  according to 2), as it is required. 

Obviously, there is only a finite number of components of DQM attractor Λk on M, i.e. the 

invariant subsets of an attractor, which are not containing proper invariant of nonempty subsets. 

Any stable state on M is a convex combination of the stationary conditions μk on Λk. The 

following statement specifies the theorem 1, gives constructive estimations for convergence of 

DQM ε – discretization s to DQM.     

Theorem 2. For all small enough ε, the DQM distribution μt at time t and the distribution 

of its ε – discretization  μt 
ε at the same time differ from each other only by a value of order  

 :  )()(  tt   < A 
0

   )0(  t , where φ is an arbitrary continuous function on 

M, 
0

 is its С0 – norm, A is a constant. In particular, if   is a stable DQM state,   is a stable 

state of its ε – discretization , then )()(    < A 
0

.  

Proof. By definition, a distribution of any ε – discretization  P
~

 of  DQM Р on the 

compact manifold M will be concentrated in ε – neighborhood of DQM attractor after a finite 

number of steps. Therefore it is enough to obtain this theorem on a component Λ  M of DQM 

attractor, i.e. on the invariant closed set, which is not containing proper invariant closed subsets. It 

is possible to suppose without loss of generality that Р (Λ)  Λ, otherwise considering Рk instead 

of Р for such natural k that   Р(Λ)  Λ1 , Р(Λ1)  Λ2 , … , Р(Λk-1)  Λ . 

By DQM definition, for any initial measure μ0 on Λ distribution P(μ0) has a density 

function   

p(y)  = 

y

zdzyq )(),( 0

 and, thus, a density function exists for iteration Pn (μ0) at all n > 0. Let Δ 

is a domain inside Λ, separated from boundary Λ on distance  . Let's show, that at some natural 

N density function PN (μ0) for any probability measure μ0 on Λ in each point z Δ is not less, than 

r at some r > 0.  Really, as Λ does not contain proper invariant with respect to DQM dynamics 

closed subsets, then any point from Λ will appear in the image of  each point  y Λ after some 

number of ny iterations of  DQM. Thus, if the density function  μ0  is positive in a point y, then 

density function )( 0
yn

P  will be positive in all interior points Λ. But ny < N for some natural N at 

all z Λ. Really, for each point y Λ there is an open set of the points passing in y as a result of 

one iteration of DQM. Union of these sets covers a compact set Λ. Hence it is possible to discover 

a final subcovering, and then N = 1max i
i

n at chosen yi.    As function  q(y, z)  0 is defined on 

compact set M  M by DQM definition, then q(y, z) is limited and continuous in this compact. 

Therefore for all probability measures μ0 on Λ density functions p(z) = 
y

zdzyq )(),( 0  are regular 

limited and equicontinuous. Hence the set of these functions is a precompact set in the set of 

continuous functions on M according to the Arzela – Ascoli theorem. And it is a compact set in 

view of compactness of set of measures μ0 on Λ in weak topology. So, if densities of distributions 

PN (μ0) are close enough to zero on Δ, then some of such densities will be equal to zero on Δ, that 

contradicts positivity of the densities of distributions  PN (μ0) in all interior points Λ. Thus, density 

function PN (μ0)  r on Δ at some r > 0 for any probability measure μ0 on Λ. Then it is obvious that 

density function  PN (μ0)  wr  on Δ  for any measure  μ0  on  Λ  with  μ0 (Λ) = w <1: 

μ0(Λ) = w < 1   PN(μ0)(y)  wr   (y  Δ)                                (5). 

There is a unique probability invariant measure ν: P (ν) = ν on Λ under the theorem 1, 

whence PN (ν) = ν. Then ν has on Λ a nonnegative density as shown above and this density ̂ (y)  

r at all y  Δ in view of (5).  
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Let  с = max{̂ (y)}  (y  Δ),    f(y) = 
c

yr )(̂
.   Function )(ˆ yf  = )(yf   is  f(y), limited 

on Δ, i.e. redefined by zero at y  Λ \ Δ. Function )(
~

yf =  \)(yf  is  f(y), limited on  Λ \ Δ,  i.e. 

redefined by zero at y  Δ. Let g (y) be a density function  for the measure PN (μ0) given by an  

initial probability μ0 on Λ; let  φ1(y) = g(y) – )(ˆ yf . Then  φ1 (y)  0  at all  y  Λ  owing to (5)    

and  g(y) = )(ˆ yf + φ1(y) =  f(y) – )(
~

yf  + φ1(y). Supposing q = 


dyyf )(ˆ , we will get that 




dyy)(1  = 


 dyyfdyyg )(ˆ)(  = 1 – q.  Further in this proof for arbitrary distribution  μ with a 

density function  χ (y) we will designate density function of  Pμ  through  Pχ (y).  

In such denominations  PNφ1(y) = PNg(y) – PN )(ˆ yf . But in view of (5)  PNφ1(y)  (1 – q) 

∙ r  on Δ. Then  φ2(y)  =  PNφ1(y) – (1 – q) ∙ )(ˆ yf  0  at all  y  Λ  and  φ2(y)  =  (PNg(y) – 

PN )(ˆ yf ) – (1 – q) ∙ )(ˆ yf = PNg(y) – (PN f(y) – PN )(
~

yf ) – (1 – q) ∙ (f(y) – )(
~

yf ) = PNg(y) – (1 + 

(1 – q)) f(y) + (PN )(
~

yf  + (1 – q) ∙ )(
~

yf ) , whence   

PNg(y) = (1 + (1 – q) ) f(y) – (PN )(
~

yf  + (1 – q) ∙ )(
~

yf ) + φ2(y). 

As 



dyyf )(ˆ

 = q,   and  



dyyPN )(1

  =  



 dyyPN )(1

1

  =  …  = 



dyy)(1

 = 1 – q  

in accordance with DQM definition (3), then  




dyy)(2  = 


dyyPN )(1 – (1 – q)  ∙ 


dyyf )(ˆ  =  1 – q  – (1 – q) ∙ q = (1 – q)2. 

It is similar further  PNφ2(y)  =  P2Ng(y)  –  (1 – q) ∙ PN )(ˆ yf .  As well as above, owing to 

(5),   PNφ2(y)  (1 – q)2 ∙ r  on  Δ .  Then  φ3(y) = PNφ2(y) – (1 – q)2 ∙ )(ˆ yf  0  at all y  Λ  and     

φ3(y) = P2Ng1(y) – P2N )(ˆ yf – (1 – q) ∙ PN )(ˆ yf – (1 – q)2 ∙ )(ˆ yf = P2Ng(y) – (P2N f(y) – P2N )(
~

yf ) 

– (1 – q) ∙ (PN f(y) – PN )(
~

yf ) – (1 – q)2 ∙ (f(y) – )(
~

yf ) = P2Ng(y) – (1 + (1 – q) + (1 – q)2) f(y) + 

(P2N )(
~

yf + (1 – q) ∙ PN )(
~

yf + (1 – q)2 ∙ )(
~

yf ),  whence P2Ng(y)  =  (1 + (1 – q) + (1 – q)2) f(y) – 

(P2N )(
~

yf + (1 – q) ∙ PN )(
~

yf + (1 – q)2 ∙ )(
~

yf ) + φ3(y). As well as above,  


dyy)(3   =  




dyy)(2  – (1 – q)2 ∙ 


dyyf )(ˆ   =  (1 – q)2 – (1 – q)2 ∙ q  =  (1 – q)3.  Generally on an induction  

P(k-1)Nφk(y)  (1 – q)k ∙ r  on  Δ,  whence owing to (5)  φk+1(y)  = PNφk(y) – (1 – q)k ∙ )(ˆ yf  0  at 

all  y  Λ  and then PkNg(y)  =  (1 + (1 – q)  +  (1 – q)2  + … +  (1 – q)k) f(y)  –  (PkN )(
~

yf + (1 – 

q) ∙ P(k-1)N )(
~

yf  + 

(1 – q)2 ∙ P(k-2)N )(
~

yf  + … + (1 – q)k )(
~

yf ) + φk+1(y)                                     (6). 

 

As well as above,   


 dyyk )(1  = 


dyyk )(  – (1 – q)k ∙ 


dyyf )(ˆ  = (1 – q)k – (1 – q)k ∙  

q = (1 – q)k+1,  i.e.  φk(y)



k

0 .  Besides,  (1 + (1 – q) + (1 – q)2 + … (1 – q)k) f(y) ≤ (1 + (1 – q) + 

(1 – q)2 + … (1 – q)k  + … ) f(y)  = 
)1(1

1

q
 f(y) = f(y) / q = ( )(ˆ yf  + )(

~
yf ) / q.  As 



dyyf )(ˆ  = 

q,  then  )(ˆ yf / q  =  )(~ y  is a unique invariant probability measure ν on Λ, limited on Δ. And 




(PkN )(
~

yf  +  (1 – q) ∙ P(k-1)N )(
~

yf   +  (1 – q)2  ∙ P(k-2)N )(
~

yf  + … +  (1 – q)k )(
~

yf ) dy  = 
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


(PkN )(
~

yf ) dy + (1 – q) ∙ 


(P(k-1)N )(
~

yf ) dy + (1 – q)2 ∙ 


(P(k-2)N )(
~

yf dy  + … + (1 – q)k  




( )(
~

yf ) dy  = (1 + (1 – q) + (1 – q)2 + … (1 – q)k) ∙ 


( )(
~

yf ) dy ≤ (1 + (1 – q) + (1 – q)2 + …   + 

(1 – q)k  + … ) ∙ 


( )(
~

yf ) dy  = 
)1(1

1

q
∙ 



( )(
~

yf ) dy  =  
q

1



( )(
~

yf ) dy .  But volume Λ \ Δ  

V(Λ \ Δ) ≤ A  , and as f (y) = 0 on boundary Λ, at enough small ε  )(
~

yf  ≤  B  , B  is a 

constant defined by function q(y, z) from DQM definition (1). Therefore  


( )(
~

yf ) dy  ≤ A   ∙ 

B   =  Dε . On the other hand, at small enough ε  с  =  max{̂ (y)}  (y  Δ)  is reached inside Δ; 

and r is the minimum of density function  PN (μ0) on  Δ  is reached near to boundary Δ. Thus   

b   ≤ r ≤ B  ,  where  b, B are DQM constants.  Therefore  

q  =  


dyyf )(ˆ   =  


dyy
c

r
)(~   

c

b

2
                                          (7), 

as  


dyy)(~   
2

1
 at enough small ε . Thus  

q

1



( )(
~

yf ) dy  ≤  Dε / 
c

b

2
  =  

b

cD2
  =  

C  .  

Thereby,  Png1(y)  converges to  )(~ y   at  n    and then at  ε  0  converges to  

)(~ y , that establishes again 2) from the theorem 1.  

In addition ε – discretization  brings in described above process a discretization  error, i.e. 

modification of order ε in distribution. Under the influence of DQM this modification is 

transformed to modification of order ε in density functions. Namely, for any probability 

distribution μ of DQM with a density function χ (y) and for its ε – discretization s ̂  with values 

χi on a cell Δi in diameter ε  an error   d  =    
M i

iidyy  )(  ≤  



i

i

i

dyy ))((   ≤ 

 


i

iyy
ii

)()(min)(max 
 

≤ bε 
i

i )(  =  bε, where b is DQM constant, defined by 

function q (y, z) from DQM definition. Thus, an estimation of an error of discretization  for N 

steps is equal Nbε = Bε. By definition of DQM discretization  P
~

, dynamics of this Markov chain 

can be presented as at first DQM P operation, and then an average on cells Δi: P
~

  =  P   + d   

and  )()
~

(   PP   ≤ 
0

 bε  for arbitrary continuous function φ on M, 
0

 – its  С0 – norm, 

whence  ))
~

(   NN PP   ≤ 
0

 Bε. On the second step  NP 2~
̂  =  PN(PN

  + d) + d1 , on the 

next step 
NP 3~

̂ = PN(PN(PN
 + d) + d1) + d2 . Generally kNP

~
  = PN( … + (PN(PN(PN

  + d) 

+ d1) + d2 ) + … + dk-2 ) + dk-1 .  According to process (6)  ))(( 2

  NNN PdPP   ≤ (1 – q) ∙ 

0
 Bε, on the second step                                                      

( PN(PN(PN
  + d) + d1)) – )3


NP  ≤ ((1 – q)2 + (1 – q)) ∙ 

0
 Bε. 

Generally on continuous function φ the difference between 
kNP

~
  and  PkN

  is 

estimated from above by value  (1 + (1 – q) + (1 – q)2 + … + (1 – q)k  + … )Вε  =  Вε/q.   As q  

c

b

2
  by (7),  then the upper bound is equal  Вε/

c

b

2
  = 

b

Bc2
  = Е  ,  as it is required.  

There is a unique probability invariant measure μ on a component  Λ of DQM attractor, P 

(μ) = μ under the theorem 1. Hence PN (μ) = μ. On proved μ has a nonnegative density function on 
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Λ and positive on Δ. On trajectory space of DQM, as on casual process, the invariant measure  , 

induced there by a measure μ, is defined according to Kolmogorov's theorem [9]. Further the 

product  DG(yn)  …  DG(y1)  DG(y0), where  y0, y1, …, yn is a DQM trajectory ω at time tn and 

DG(yk) is a differential of initial smooth DS in a point  yk  Λ, we will call the DQM differential 

Dn(ω) for DQM trajectory ω at time tn.  

Theorem 3. Let Λ be an invariant set of DQM of dimension m not containing proper 

invariant nonempty subsets. Then we have for DQM with small enough d(y) that    

1) For almost all with respect to measure   DQM trajectories ω and for every 

nonzero vector u  Rm the limits exist    

uD
n

n
n

)(ln
1

lim 


  =   λr,  

where λr = λr(u),  r ≤ m.  

2) For every point  y and for  every such trajectory  ω, the filtrations of subspaces are 

uniquely defined: 

forward  L+
1 (y)  L+

2 (y)  …  L+
s (y) = Rm  and backward  L-

s (y)  …  L-
2 (y)  L-

1 (y) 

= Rm,      

connected with the numbers λr in such a way that  λ1 < λ2 < … < λs  and  

uD
n

n
n

)(ln
1

lim 


  =  λr  u  L+
r(y) и u  L+

r – 1(y), uD
n

n
n

)(ln
1

lim 


  =  λr  u  L-
r(y) 

и  u  L-
r + 1(y). 

These filtrations are invariant with respect to DQM differential. Namely, if  уn  and  уn + 1  

are consecutive points of a trajectory ω at the moments tn and tn + 1, then the differential Dn (ω) 

translates the filtrations in a point уn into a filtration in a point уn + 1.  

By analogy to the theory of smooth dynamic systems, we will name the numbers λr as 

Lyapunov's characteristic exponents for a component Λ of DQM attractor.  

Proof.  We will consider DQM on Λ, as casual process Х (t, ω), where t is discrete time,  t 

= tk, k = 0, 1, 2, …, ω – DQM trajectory. Namely, let η = (η1, …, ηk, …), where ηk  M. Then 

trajectory of DQM ω = ω (t, у0) with an initial point у0 is sequence Х (t0, ω) = у0, Х (t1, ω) = у1 = 

Gу0 + η1, Х (t2, ω) = у2 = Gу1 + η2, …, Х (tk, ω) = уk = Guk-1 + ηk, …. (Here all d (y) are assumed 

so small that addition Guk-1 + ηk , where )( kk yd , is fulfilled on a local map of manifold M in 

Rn). Thus, DQM trajectory ω is given univalently by sequence of vectors  η = (η1, …, ηk, …) and 

an initial point у0: ω = ω (у0; η).  

On space Ω of the DQM trajectories Х(t, ω) on Λ DQM induces the dynamic process T: 

Tω0 = ω1, Tω1 = ω2, …, Tωk-1 = ωk, …., where ω0 = ω(у0; η0), у0 = Х(t0, ω), η0 = (η1, η2, …, ηm, 

…), and ω1 = ω(у1; η1), у1 = Gу0 + η1 = Х (t1, ω), η1 = (η2, η3, …, ηm, …). Thus T is a trajectory of 

trajectories. If ω2 = (у2; η2), then у2 = Gу1 + η2 = Х (t2, ω), η2 = (η3, η4, …, ηm, …). Generally for 

ωk = (уk; ηk) we will obtain  уk = Guk-1 + ηk = Х (tk, ω), ηk = (ηk+1, ηk+2, …, ηm, …).  

According to Kolmogorov's theorem [9] on a trajectory space Ω the probability invariant 

measure  , induced there by a stable state μ on Λ, is defined.  T is an endomorphism of  Ω, 

keeping measure   and ergodic on construction owing to ergodicity of DQM on Λ.  Let's 

suppose a(n, ω) = Dn (ω) for ω = ω (y; η) (here y = у0). Then a(n + k, ω) = a(k, Tn ω)  a(n, ω). 

This equality means that square matrixes a(n, ω) of an order m are a multiplicative cocycle on a 

trajectory space Ω with respect to its endomorphism T.  

As maps G (y) are diffeomorphisms, then )(yDG  0 at all y Λ. Thus ln )(yDG  is a 

continuous function on a compact set Λ and 
y

dyDG )(ln  <  . But for any characteristic 

function  χС  of an open subset  С  Λ  


 dC   =  ({ω = (у; η)y  C})  =  μ ({y  y  C}) = 
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= 
M

C d  by measure   definition. Therefore for any sectionally continuous function g on M    




dg  = 
M

dg  . As on each trajectory ω = ω(y; η) a(0, ω) = D0 (y), then  


 da ),0(ln  = 


y

dyDG )(ln  <  .  This inequality means that for a cocycle a(n, ω) the multiplicative ergodic 

theorem [10] is fulfilled.  

This theorem states that almost all DQM trajectories ω  Ω with respect to measure   are 

correct on Lyapunov.  It means, in particular, that  

1) for such ω there are limits    

una
nn

),(ln
1

lim 


  =    λr(ω),  

where r = 1, 2, … s = s (ω), s (ω) ≤ m. 

2) On each such trajectory ω filtrations of subspaces are univalently defined: forward 

L+
1 (ω)  L+

2 (ω)  …  L+
s (ω) = Rm and backward L-

s (ω)  …  L-
2 (ω)  L-

1 (ω) = Rm,      

connected with numbers λ1 (ω) < λ2 (ω) <… < λs (ω) (s = s (ω)) such that 

una
nn

),(ln
1

lim 


  =  λr(ω)          u  L+
r(ω)     и    u  L+

r – 1(ω), 

una
nn

),(ln
1

lim 


  =  λr(ω)          u  L-
r(ω)     и     u  L-

r + 1(ω).  

These filtrations are invariant with respect to endomorphism T.  Namely, if T (ωn) = ωn + 1   

then cocycle a(n, ω) translates filtration ωn in a filtration ωn + 1.  As T is ergodic on Ω, then  λr(ω) 

does not depend from ω, i.e. λr (ω)  λr almost everywhere with respect to measure  ; similarly 

almost everywhere s (ω)  s. In view of correspondences a(n, ω) = Dn (ω), ω(y; η)  y, from here 

the theorem statement directly follows, as it is required.   

Thus DQM attractor is defined uniquely, without alternatives. It can be investigated  

algorithmically as DQM, the Markov cascade, and it can be approximated by a Markov chain. 

Thus, received discrete dynamics has the clear structural theory and good algorithms of research 

of concrete systems, and at 0  passes in DQM.  

Structural stability in DQM. 

Let η = η (t, y)  M is a smooth vector field on phase manifold M, where y  M, t is a 

discrete time: t = tk, k = 0, 1, 2, …, )(),( ydуt nC
 . On sense η is a small casual deviation, 

called by white noise, in a point y at time t. Then at the set field η(t, y) a trajectory ω of DQM, as 

casual process Х(t, ω): Х(t0, ω) = у0, Х(t1, ω) = у1 = Gу0 + η(t1, у0), …, Х(tk, ω) = уk = Guk-1 + 

η(tk, uk-1), … is uniquely given by an initial point у0  M.  (All d (y) are assumed small enough 

that addition Guk-1 + η(tk, uk-1) is fulfilled on a local map of manifold M in Rn).           

Definition 4. Let η(t, y)  M is a given smooth field on R   М,  )(),( ydуt nC
 . Then 

the sequence of maps G1(y) = G(y) + η (t1, y),…, Gk(y) = G(y) + η(tk, y), … we will call a DQM 

realization.  

All maps Gk (y) are diffeomorphisms on M at enough small d(y). DQM is a smooth 

stratification over base of the M, which stratum is the set of sequences of vectors η(y) = (η(t1, 

y),…, η(tk, y), …) at all admissible smooth fields of vectors η(t, y).  Then DQM realizations are 

cuts of such smooth stratification. It is possible to set DQM realization on subset S of manifold 

M, invariant with respect to this realization, and thus considering it, as a base of sub stratification.  

It is natural to consider generalization DQM, constructed not on map of shift G, but on some 

realization.    

Let Gk (y) (k = 0, 1, 2, …) is some DQM realization; qk(y, z) ≥ 0 (y, z  M) is such smooth 

functions regular limited in C1, that at any k      
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qk(y, z) > 0    )(yGz k  ≤ d(y),     1),( 
M

k dzzyq ,    )(),( yGdzzyqz k

M

k  ,                (8) 

where d (y)> 0 is a continuous function on M. Then  

Definition 1 `. Dynamic quantum model for given realization Gk(y) (k = 0, 1, 2, …) we 

will call nonautonomous Markov process with a transition function     

Рk(у, А)  =  
A

k dzzyq ),(  ( MA ). 

For DQM in sense of definition 1` at the set smooth vector field η(t, y) on phase manifold 

M its trajectory ω, as casual process Х(t, ω), is the sequence Х(t0, ω) = у0, Х(t1, ω) = у1 = G1у0 + 

η1, Х(t2, ω) = у2 = G2у1 + η2, …, Х(tk, ω) = уk = Gkuk-1 + ηk, …, where all ηk  M. The statement 

and the proof of the theorem 3 literally are transferred on such DQM. Further in all statements 

DQM  is understood in sense of definition 1, but at proofs will be used also DQM in sense of 

definition 1` and it will be always specially mentioned. Following definition we will introduce by 

analogy to the theory of smooth dynamic systems.  

Definition 5. DQM realization Gk (y) (k = 0, 1, 2, …) with set of initial points on compact 

set K  M, invariant with respect to this realization, we will call hyperbolic DQM realization on 

K, if in any point y  K and at any time tk there is an expansion of tangential stratification TK in 

the sum of Whitney sub stratifications  Ek
s (y) and Ek

u (y): TK = Ek
s (y)  Ek

u (y), satisfying to 

such conditions:  

1) Tangential map DGk keeps sub stratifications:  

DGk(E
s
k)  Es

 k+1, DGk(E
u

k)  Eu
 k+1; 

2) DGk contracts Es
k; more precisely, there will be such constants c > 0 and λ (0 <λ 

<1) that at any v  Es
k and any natural n,   

;)(... vcvDGDG n

knk   

3)  DGk stretches Eu
k, i.e. for any v  Eu

k and natural n with the same c and λ 

v
c

vDGDG
nknk


1
)(...  . 

Theorem 4. The hyperbolic realizations are everywhere dense on the set of DQM 

realizations. More precisely, for any DQM realization Gk (y) (k = 0, 1, 2, …) with the set of initial 

points on a subset S  M invariant with respect to this realization, and for small enough ε > 0 

there exists a hyperbolic realization )(yGk  of this DQM on compact set K  M such that    1) μ 

(S/K  K/S) < ε for the probability invariant measure μ of this DQM; 2) on S  K  we have  

1
)()(

Ckk yGyG  < ε (k = 0, 1, 2, …).   

Proof. It is enough to prove this statement assuming that S = Λ is a component of attractor 

of DQM (generally at the discovered compact set K for Λ taking K  S for given S). We will 

consider DQM Х(t, ω) for the dynamic system, generated by realization Gk (y) (k = 0, 1, 2, …) on 

Λ, in which d(y) = ε/3 for all y  M at small enough ε > 0. On a connective component Λ of 

DQM attractor the unique stable state μ is defined, owing to the theorem 1. By Kolmogorov's 

theorem [9], the invariant measure   is defined on trajectory space of DQM, induced there by a 

measure μ. Then for the almost all DQM trajectories Х(t, ω) with respect to the measure   

statements of the theorem 3 are fulfilled. We will show that it is possible to find such smooth 

realization )(yGk


 of this DQM, in which the measure of all trajectories in a general position is 

equal to 1, i.e. the theorem 3 is fulfilled for a full measure of initial points from Λ.  

Really, we will consider smooth DQM realizations Х(t, ω), consisting of such trajectories 

ω = ω(y; η), η = (η1, …, ηk, …), that ηk does not depend on yΛ at all k = 0, 1, 2, …. Such 

realizations, as sets of trajectories, are not intersected at different η. And their union contains all 

trajectories ω = ω(y; η), coincides with all stratification, i.e. this is partition of DQM. As the 

measure of all trajectories in general position is equal to 1, so the measure of atypical trajectories 
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is distinct from zero only on a zero measure of such smooth realizations. For any smooth 

realization  )(yGk


 of this DQM, in which the measure of trajectories in general position is equal 

to 1, is also  
1C

kk GG


  ≤ ε/3 by construction.   

Now we will rebuild DQM Х(t, ω). At first at each point y we will bound the random 

deviation, given by continuous function q(y, z) ≥ 0 in definition of DQM, to deviation radius  

d(y)/ 4/e   (instead of d(y) for DQM Х (t, ω)). And then we will make linear expansion 

(homothety) with factor of expansion 4/e . Then we get a DQM ),(
~

tX , which by construction 

coincides pointwisely with Х(t, ω) and has the same trajectories and realizations, but all 

Lyapunov's characteristic exponents on the component Λ increase by ε/4. If some characteristic 

exponent of  Х(t, ω) is zero, then all characteristic exponents of ),(
~

tX  will be nonzero for  

small enough ε as a result of such reorganization. Thus smooth realization )(
~

yGk  of DQM  Х(t, 

ω) will be transformed into a smooth realization )(yGk


 of ),(

~
tX ,  coinciding pointwisely with 

)(
~

yGk , but its Lyapunov's characteristic exponents are nonzero for almost all y Λ. And 

1

~

C
kk GG


 ≤ ε/3 for small enough ε on construction.   

We will suppose Es 
0 (y) = L+

r (y) for realization )(
~

yGk  with nonzero Lyapunov's 

characteristic exponents for any  y on a trajectory in general position. Subspace L+
r (y), defined in 

theorem 3, is such, that λr- has the greatest (i.e. the least modulo) negative characteristic exponent. 

We will suppose further that    Es 
1 (y)  =  D )(

~
0 yG (E s

 0 (y)), …, Es
 k+1 (y)  =   D )(

~
yGk (Es

k (y)), …. 

We will similarly suppose Eu
0 (y) = L-

r + 1 (y), where λr+1 is the least positive characteristic 

exponent, and further   Eu 
1 (y) = D )(

~
0 yG (Eu

 0 (y)), …, Eu
 k+1 (y) = D )(

~
yGk (Eu

k (y)), …. Thus the 

sum of Whitney substratifications  Es
k (y) and Eu

k (y) of tangential stratification TK  are given in 

any point y of a typical trajectory:   TK = Es
k (y)  Eu

k (y).   This expansion is invariant with 

respect to differential of DQM ),(
~

tX by construction. Besides, uD
n

n
n

)(ln
1

lim 


≤ λr for u  L+
r 

(y) by theorem 3. Hence uD
n

n )(ln
1

  < λr/2 on compact u  = 1  in  L+
r = Es 

0  ,  if  n > N for 

large enough  N  (here λr < 0). Then for n > N  uDn )(  < αn, where  α = 
2/re


 < 1, u  = 1. So 

u

uDn )(
 < αn  at all  u  Es 

0. Let's  сs = сs (ω) = 
uD

u

n

n

Nn )(
max






;   then uDn )(  ≤ csα

n u  for all  

u  Es 
0 (y),  i.e. Es

 0(y)  sets contracting foliation. Similarly, taking  β = 
2/1re


 > 1, such N that for 

n > N uDn )( > βn u  and  сu = c(ω) = 
uDn

n

Nn )(
min






, we will obtain, that uDn )(   cu β

n u  

for all u  Eu 
0 (y), i.e. Eu

 0(y)  sets stretching foliation. At last, having chosen   λ = min{α; 1/ β},  c  

=  c(ω)  = max{сs, сu}, on the given trajectory ω with an index point y we will obtain, that  

vcvDGDG n

knk  )(...    (v  E0
s(y) ),         v

c
vDGDG

nknk


1
)(...    (v  E0

u(y) )  

at all n and k according to definition 5.  

It is obvious that DQM trajectories ω for which c = c(ω) < C are closed, i.e. make compact 

set КС. Union of compact sets КС on all C > 0 coincides with the set of points of all typical 

trajectories of DQM Х(t, ω) on construction. We will choose C so large that μ(S/K  K/S) < ε for 

a given ε > 0 and K = KС . Then inequalities  

vCvDGDG n

knk  )(...    (v  E0
s(y) ),         v

C
vDGDG

nknk


1
)(...    (v  E0

u(y) ) , 
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are fulfilled for all y  K, as it is required. 

For DQM realization it is possible to convert time: to study the sequence (…, G-k(x), …, 

G-1(x), G0 (x))  at G-k (x) = Gk (x)  is equivalently to study realization  (G0 (x), G1 (x), …, Gk (x), 

…).  Naturally therefore to generalize concept of realization on arbitrary two-sided sequences  

Gk(x) (k = 0, 1, 2, …): (…, G-k (x), …, G-1 (x), G0 (x), G1 (x), …, Gk (x), …).      

Definition 6. DQM realization Gk (x) (k = 0, 1, 2, …) with the set of initial points on 

compact set K  M, invariant with respect to this realization, we will call structurally stable if any 

realization )(
~

xGk  of this DQM (k = 0, 1, 2, …, x  K), close enough to Gk(x) in C1 – topology, 

is topologically equivalent  Gk,  i.e. there are such homeomorphisms  Нk that kG
~

  Нk = Нk + 1  Gk  

(k = 0, 1, 2, …).   

In applications, as a rule, compact set K is a DQM attractor and by that is the closure of 

some invariant area of DQM in M.  

Theorem 5. Any hyperbolic DQM realization Gk(x) (k = 0, 1, 2, …) with the set of initial 

points on invariant compact set K  M of this realization, is structurally stable.  

Proof. By definition, it is required for any k = 0, 1, 2, … to find such homeomorphism  

Нk (x) = x + hk (x), that the following diagram is commutative.   

 

Here )(
~

xGk  = Gk (x) + fk (x) (x  K) where all functions  fk (x)  C1 also are small enough 

in C1 – topology. Let  DGkx be the differential of Gk (x) at a point x;  Rkx is a nonlinear part of 

Gk(x) in a point x: Gk (x + hk (x)) = Gk (x) + DGkx (hk (x)) + Rkx (hk (x)). From the diagram we 

obtain  kG
~

  Нk = Нk + 1  Gk  (k = 0, 1, 2, …), whence  

Gk(x + hk(x))  +  fk(x + hk(x))  =  Gk(x)  +  hk+1(Gk(x));  

Gk(x) + DGkx (hk(x))  + Rkx(hk(x))  +  fk(x + hk(x))  =  Gk(x) + hk+1(Gk(x)); 

hk+1(Gk(x)) – DGkx (hk(x))  =  Rkx(hk(x))  +  fk(x + hk(x)).                        (9) 

It is the system of nonlinear functional equations with respect to sequence of functions 

hk(x) (k = 0, 1, 2, …). We will get the corresponding homologous equations, i.e. we linearize 

(9):   

hk+1(Gk(x)) – DGkx (hk(x))  =   fk(x).                                              (10) 

Let's suppose Lk = hk+1 (Gk (x)) – DGkx(hk (x)) (k = 0, 1, 2, …). Then L = (…, L-1, L0, L1, 

…)  is a linear operator on Banach space  B  of sequences of regularly limited continuous vector – 

functions   h  = (…, h-1 (x), h0 (x), h1 (x), …) with norm    h
B

  =  ))(max(sup xhk
Kk

     (k = 0, 

1, 2, …). We will prove convertibility of operator L:  then a solution of the system of 

homologous equations   L(h) =  f   looks like  h = L-1 (f),   where  f  = (…, f-1 (x), f0 (x), f1 (x), …).   

Let's assume for simplicity and without loss of generality that the Riemannian metric on  M   is 

the Lyapunov's one with respect to hyperbolic realization  Gk (x). Then any  h  B  for small 

enough  h
B

 can be so spread out on contracting and stretching foliations  hk (x)  = hks(x) + 

hku(x),  that for some μ (0 <μ <1)  )(( xhDG kskx )(xhks ,   )(
1

)(( xhxhDG kukukx


 ,  where 

  is a С0 – norm. Thus also (10) breaks up on two subsystems:  

K K kG
~

 

K K 
Gk 

 Hk Hk + 1    

, 
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Ls(hs)  =  fs :                    hk+1s(Gk(x)) – DGkx(hks(x))  =  fks(x)          (11s) 

Lu(hu) =  fu :                    hk+1u(Gk(x)) – DGkx (hku(x))  =  fku(x).          (11u) 

Let's consider operators S(h) on B: hk (x) → hk+1 (Gk (x)) and DG(h): hk (x) → DGkx (hk (x). 

Here   S
B

 =  S -1

B
 = 1,  and  DG

B
 ≤  μ .  Then the system of the homologous 

equations (11s) on contracting foliation can be noted in the form  Ls (hs) = (S – DG)(hs) = =  fs, 

whence  S(E – S-1 ∙ DG)(hs)  =  fs.   As S -1 ∙ DG
B

 ≤ S -1

B
 ∙ DG

B
  ≤  μ  < 1, then 

operator  E – S-1 ∙ DG  is reversible and 

(E  –  S -1 ∙ DG) -1  =  E  +  S -1 ∙ DG  +  (S -1 ∙ DG)2  +  (S -1 ∙ DG)3  +  …  ,  

(E  –  S -1 ∙ DG) -1

B
  ≤ 

1

1
 . Thus operator  Ls  is reversible also:  Ls

-1 = (E – S-1 ∙ 

DG)-1 ∙ S-1  and  Ls
-1

B
  ≤ 

1

1
 .  On stretching foliation  Lu(hu) = (S – DG) (hu) =  fu.  Here 

operator  DG  is reversible and   DG -1

B
 ≤  μ. Consequently operator    Lu  =  S – DG  =  (S ∙ 

DG-1 – E) ∙ DG  also is reversible, as  S ∙ DG-1

B
  ≤  S

B
∙ DG-1

B
  ≤  μ  < 1. Therefore    

(E  –  S ∙ DG -1) -1  =  E  +  S ∙ DG -1  +  (S ∙ DG -1)2  +  (S ∙ DG -1)3  +  … , 

  (E  –  S ∙ DG -1) -1

B
  ≤  

1

1
  and  Lu

-1

B
  =  DG -1 ∙ (S ∙ DG -1 –  E) -1

B
  ≤ 





1
. Thus, operator L is reversible and  L-1

B
  ≤  

1

1
 .  

We will solve now by a method of contracting maps the nonlinear functional equation (1) 

on B. We will suppose F (h) = (…, R-1x (h-1 (x)) + f-1 (x + h-1 (x)), R0x (h0 (x)) + f0 (x + h0 (x)), R1x 

(h1 (x)) + f1 (x + h1 (x)), R2x (h2 (x)) + f2 (x + h2 (x)), …)  B. We will give the iterative equation  

by the formula  hi = L-1 (F (hi-1)). Let`s initial iteration h0  0. Then the first iteration   h1 = L-1(F 

(h0)), whence L (h1) = F (h0) = (…, f-1 (x), f0 (x), f1 (x), …) =  f. Thus, h1 is a solution of system of 

the homologous equations (10):  h1 = L-1 (f).  Generally hi-1 = (…, h-1i-1 (x), h0i-1 (x), h1i-1 (x), …)  B 

for iteration  i – 1  , hi =  

L-1 (F (hi-1)) = (…, R-1x (h-1 i-1 (x)) +  f-1 (x + h-1 i-1 (x)), R0x (h0 i-1 (x)) + f0 (x + h0 i-1 (x)), 

R1x(h1i-1(x)) + f1 (x + h1 i-1 (x)), …)  B  for iteration i. Here  

h1
B

  ≤ L-1( f )
B

 ≤ L-1

B
∙  f 

B
 ≤ 

1

1
 ∙  f 

B
,   hi + 1  – hi

B
 ≤ 

B
ii FLFL )()( 1

11



   = 
B

ii FFL )( 1

1



   ≤ 
B

L 1
  

Bii FF 1  ≤ 
1

1
 ∙ 

Bii FF 1 . 

The component  k  of vector  Fi – Fi-1  B  is equal to [Rkx (hk i (x)) + fk (x + hk i (x))] – [Rkx 

(hk i-1 (x)) + fk (x + hk i-1 (x))] = [Rkx (hk i (x)) – Rkx (hk i-1 (x))] + [fk (x + hk i (x) – fk (x + hk i-1 (x))].  

By definition,  
2

2
)()()(( xhxGxhR kkkkx  , where 

2
 is a norm in C2,  is a norm in 

C0. 

All Gk(x) differ from G(x) only on value of an order  ε = 
Ky

yd


)(max , therefore obviously  

2
)(xGk < 2

2
)(xG  at enough small  ε and any  k = 0, 1, 2, ….  

Therefore   

))(())(( 1 xhRxhR ikkxkikx   ≤ 2
2

)(xG  ( )(xhki  + )(1 xh ik 
)  )()( 1 xhxh ikki    ; 

))(())(( 1 xhRxhR ikkxkikx    ≤  4
2

)(xG   max{ )(xhki , )(1 xh ik 
} )()( 1 xhxh ikki             (12) 

Let's establish parameters at which this iterative process will be contracting. Let α ≤ 

min{

2
)(32

1

xG


, 

32

1 
}; O is union of all full-spheres of radius α with the centers in points of 
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compact set  K (K  O ).  Then the small enough continuous vector – function  hk (x) on O 

can be decompose  hk (x) = hks (x) + hku (x) for small enough  α  such that conditions 

)(( xhDG kskx  )(xhks , )(
1

)(( xhxhDG kukukx


  will be continued  from compact set K to a 

neighborhood  O  K by a continuity,  perhaps increasing μ by value of order α (i.e. worsening an 

estimate). From this also inequality  
B

L 1
 < 

1

1
 will be continued from the sequences of 

continuous vector – functions  h  on  K  to sequences of vector – functions on O as proved above, 

perhaps with worsening the estimate by an order α. Obviously the inequality  
B

L 1
 < 

1

2
  will 

be fulfilled for small α for h on O.   

We get for the first iteration  h1, i.e. for a solution of system of the homologous equations  

h1B =L-1 ( f )B ≤ 
B

L 1
  

B
f  ≤ 

1

2
  

2

1 
  

2


 =

2


 ,
    

supposing  
1kf  < 

2

1 
  

2


  for all k = 0, 1, 2, …, where 

1
 – norm in С1. 

Let's prove by induction that from hiB ≤ α at i = 1, 2, …, m follows that hm+1B ≤ α 

and hi + 1  – hi
B

 ≤ 
2

1
hi  – hi -1

B
  (1 ≤ i ≤ m). Really, from )(xhki  α,  )(1 xh ik

α for all 

x and k by (12) follows that 

))(())(( 1 xhRxhR ikkxkikx    ≤  4
2

)(xG    α   )()( 1 xhxh ikki    ≤  

≤  4
2

)(xG   

2
)(32

1

xG


)()( 1 xhxh ikki    ≤  

8

1 
)()( 1 xhxh ikki  . 

On the other hand, at all k  fk(x + hk i(x) – fk(x + hk i -1(x))  ≤ 
1kf  )()( 1 xhxh ikki   ≤    

128

1 
 )()( 1 xhxh ikki  . Therefore [Rkx (hki(x)) – Rkx (hk i -1(x))] + [ fk(x + hk i(x) – fk(x + hk i -

1(x))]  ≤ ))(())(( 1 xhRxhR ikkxkikx    + fk(x + hk i(x) – fk(x + hk i -1(x))  ≤ 

8

1 
)()( 1 xhxh ikki   + 

128

1 
 )()( 1 xhxh ikki   < 

4

1 
)()( 1 xhxh ikki   for a component  k of 

the   Fi – Fi-1  at  i = 1, 2, …, m . In other words,   Fi – Fi -1
B

 <  
4

1 
  hi  – hi -1

B
. 

Therefore   hi + 1  – hi
B

  =   
B

ii FLFL )()( 1

11



   =  
B

ii FFL )( 1

1



   ≤  
B

L 1   
Bii FF 1  < 

1

2


4

1 
  hi  – hi -1

B
 = 

2

1
hi  – hi -1

B
.  It means that the iterative process is contracting 

with a compression constant  < 
2

1
 for  i = 1, 2, …, m.   

Thus, h1 – h0
B

 > 
2

1
h2 – h1

B
 > … > 

m2

1
hm+1 – hm

B
.  Therefore  

hm+1
B

 = hm+1 – h0
B

 ≤ hm+1 – hm
B

 + hm – hm-1
B

 + … + h1 – h0
B

 < (1 + 
2

1
 + 

… + 
m2

1
) h1 – h0

B
 < 2 h1

B
 < 2 

2


 =  α,  that it is required.  So, all  hi  do not leave the 
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neighborhood  O  and  hi + 1  – hi
B

 ≤ 
2

1
hi  – hi -1

B
 (i = 1, 2, …) .  Hence, according to a 

principle of contracting maps, there exists lim hi = h  B,  which is a solution of (9).    

Continuous maps  Нk(x)  =  x + hk (x)  are homeomorphisms if they are injective.  But   Нk 

(x1) = x1 + hk (x1) = Нk (x2) = x2 + hk (x2)  x2 – x1 = hk (x1) – hk (x2)  12 xx   < 2 α, as     

hk
B

 < α. From equality kG
~

  Нk = Нk + 1  Gk follows that mkG 

~
 …  1

~
kG  kG

~
  Нk  =  Нk+m 

 Gk+m  …  Gk by the commutative diagram.  If  x2 – x1 has a nonzero component in stretching 

foliation at large enough m the distance between Gk+m  …  Gk (x2) and Gk+m  …  Gk (x1) will 

exceed  2α, so   Нk+m  Gk+m  …  Gk(x2)   Нk+m  Gk+m  …  Gk(x1).  But   Нk+m  Gk+m  …  

Gk(x2)  = mkG 

~
 …   1

~
kG  kG

~
   Нk(x2) = mkG 

~
 …   1

~
kG  kG

~
   Нk(x1) = Нk+m  Gk+m  …  

Gk(x1) .  If  x2 – x1  belongs contracting foliation the similar reasoning leads to a contradiction to 

the supposition, that Нm (x1) = Нm (x2). The theorem is proved.    

The important feature of this variant of the theorem about sets of  ε – trajectories is its 

constructability, presence of explicit estimations, which can be used at the numerical analysis of 

concrete systems. These formulas essentially become simpler in the most important for 

applications case, when the compact set K from a theorem condition is DQM attractor and by that 

is the closure of some invariant area of DQM in M.    

In this case let  O  is a neighborhood of  DQM attractor  K, μ is a coefficient of 

hyperbolicity  on  O: )(( xhDG kskx  )(xhks   and  )(
1

)(( xhxhDG kukukx


   for an any 

continuous vector – function  hk (x)  on O, where hk (x) = hks (x) + hku (x) is a decomposition of  hk 

(x) on stratifications. Then, as shown in the proof of theorem 5, operator  L on Banach space B of 

the sequences of regularly limited continuous vector – functions  hk (x)  on  O  is reversible and  

B
L 1   <  

1

1
.  Consequently a solution of the system of homologous equations (10) is   h1 =  

L-1 (f)  and h1
B

  ≤ L-1( f )
B

 ≤ L-1

B
∙  f 

B
 ≤ 

1

1
 ∙  f 

B
.   Here h1 is first 

iteration of the contracting maps given by the formula   hi  =  L-1 (F (hi-1)),  where   F (h)  =     

(…, R-1x (h-1 (x)) + f-1 (x + h-1 (x)), R0x (h0 (x)) + f0 (x + h0 (x)), R1x (h1 (x)) + f1 (x + h1 (x)), …)  B. 

The convergence proof is spent on an induction: from hiB ≤ a at i = 1, 2, …, m, where a = 

2h1B we obtain, that hm+1B ≤ a and  hi + 1  – hi
B

 ≤ 
2

1
hi  – hi -1

B
  (1 ≤ i ≤ m).  Here 

hi + 1  – hi
B

 ≤ 
B

ii FLFL )()( 1

11



   ≤ 
B

L 1  
Bii FF 1   ≤  

1

1
 ∙ 

Bii FF 1 ,  and 

component  k  of vector   Fi – Fi-1  B  is equal to  

[Rkx (hk i (x)) – Rkx (hk i-1 (x))] + [fk (x + hk i (x) – fk (x + hk i-1 (x))]. 

As  

))(())(( 1 xhRxhR ikkxkikx    ≤  4
2

)(xG    max{ )(xhki , )(1 xh ik  } )()( 1 xhxh ikki               

by (12) and  fk(x + hk i(x) – fk(x + hk i -1(x))  ≤ 
1kf   )()( 1 xhxh ikki    then    

hi + 1  – hi
B

 ≤  
B

L 1   
Bii FF 1  ≤ 

1

1
   (4

2
)(xG   a  +  f 

B
)  hi  – hi -1

B
  

≤ 
1

1
   (8

2
)(xG   

1

1
 ∙  f 

B
  +   f 

B
)  hi  – hi -1

B
       

 hi + 1  – hi
B

  ≤  
1

1
 f 

B
(

1

1
8

2
)(xG  + 1) hi  – hi -1

B
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for  i = 1, 2, …, m.  Then  hi + 1  – hi
B

 ≤ 
2

1
hi  – hi -1

B
,  if   f 

B
 ≤ 

)14(4

)1(

2

2





G


.  

In this case, in view of   h0 = 0,  hm+1
B

 = hm+1 – h0
B

 ≤ hm+1 – hm
B

 +  …  + 

h1 – h0
B

 <  (1  + … + 
m2

1
) h1 – h0

B
 < 2 h1

B
 =  a,  as it is required. From this  

Corollary 1. Let )(
~

xGk  be a hyperbolic ε – realization of DQM realization Gk (x) on 

DQM attractor  K: )(
~

xGk  – Gk(x) 1С
≤ ε. Then )(

~
xGk  is topologically equivalent to Gk (x), i.e. 

there are the homeomorphisms  Нk  such that:  kG
~
 Нk = Нk + 1  Gk (k = 0, 1, 2, …),    

 ε   ≤  
)14(4

)1(

2

2





G


 .                                                       (13) 

The program for finding and analysis of DQM attractors. 
In this work the program is used, which 1) builds DQM discretization s and discovers their 

attractors; 2) checks the conditions, used at the proof of hyperbolicity of dynamics on a DQM 

attractor. This program is realized as C # – application with use of Open Maple technology and 

consists of 4 basic procedures (modules).  

1. Prestep. Procedure to each cell Δi from a define area  Ω = {Δi} of DQM discretization  

puts in correspondence the cells – images for one step of dynamics. In other words, this procedure 

sets on Ω a topological Markov chain.  

2. Findattr. Procedure finds in Ω coherent components of attractor of the topological 

Markov chain set in Prestep.   

3. Hyperproc. Procedure checks on discovered in Findattr components the assumptions 

used at the proof of hyperbolicity of dynamics on them.     

4. Animate. Procedure allows to localize area Ω for Prestep procedure and visualizes 

behavior of system, using animation technology in Maple.   

Let's describe the basic algorithm of this program used in procedure Findattr. Further the 

detailed flowchart of this procedure is cited (Figure 1).  

Let's the partition of area Ω on cells Δi  is already set by procedure Prestep. Let's Prestep 

procedure sets symbolical dynamics of the topological Markov chain H on Ω, which status are 

cells Δi. We will consider a quasiorder transitive relation:  
ji    on the space of status  Ω = 

{Δi},  if there is some trajectory of symbolical dynamics from Δi in Δj. The status Δi is reflexive, 

if  
ii   . Reflexive status are divided into equivalence classes:  

ijiji  ~ . 

Then  H(Ω) H2(Ω)  H3(Ω)   …   Hn(Ω) for area  Ω ={Δi}.  If  Hn(Ω) = Hn+1(Ω) 

then Hn(Ω) is an attractor of DQM discretization. The following algorithm is based on it.  

Procedure Findattr contains 5 parameters (arguments):   

1)  n is a number of the first considered cell. 

2, 3)  nx, ny are length and width of the rectangle Ω, where Ω is the procedure define area, 

expressed in quantities of cells.  

4) del. If the cell Δi is contained at an image of a cell Δj then at this image there are also 

cells at the right, at the left, below and above from a cell Δi with the quantity del (by DQM 

definition). 

5) M is a matrix received from procedure Prestep. Its each string i contains the data about 

an image of a cell Δi, it has eight columns. The first column in M contains the number of cell Δi in 

the matrix R, which is a resultant for Findattr. The eighth column contains a number of first still 

not considered cell from an image of a cell Δi. The others 6 columns contain coordinates of cells 

in image of a cell Δi, to which three tops of a cell Δi  get: lower left and two adjacent with it.   
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Results of Findattr are written in matrix R containing 2 columns. The first column contains 

number of an equivalence class of reflexive states for the given cell. The second one contains a 

number of this cell in the initial matrix M.  

Further we will use the detailed flowchart of Findattr procedure (Figure 1).  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1. 

The initial number n of a 

cell from the procedure 

parameter 

M[n,1] = 0 ? 

tn:=tn+1 

cn:=tn  ck:= 

ck+1 

 M[n,1]:=tn  M[n,8] := M[n,8] +1 

R[tn,1] := ck  R[tn,2] := ck 

 

 

dx:= M[n,4]- M[n,2]  x4:= M[n,4]+dx 

dy:= M[n,7]- M[n,3]  y4:= M[n,5]+dy 

xmax:= max{M[n,i], x4} + del (i = 2,4,6) 

xmin:= min{M[n,i], x4} – del (i = 2,4,6) 

ymax:= max{M[n,i], y4} + del (i = 3,5,7) 

ymin:= min{M[n,i], y4} – del (i = 3,5,7) 

dx:= xmax – xmin  dy:= ymax – ymin 

ncn:= M[n,8]     ciq:= dx  dy 

ncn ≤ ciq ? 

ry:= quotient {ncn/dx}  rx:=remainder {ncn/dx} 

ry:= ymin+ ry  rx:= xmin+ rx  n:=nx(ry-1)+ rx 

k:= M[n,1]  ck:= R[k,1] 

R[tn,1] = ck 

? 

n1:= R[cn,2] 

M[n1,8] := M[n1,8] +1 

ck:= R[tn,1] 

R[j,1] := ck 

where 

M[n,1] ≤ j≤ tn 

n1 := R[tn,2] 

M[n1,8] := M[n1,8] +1 

 

cn:=cn – 1 R[cn,1]=ck 

? 

n:= R[cn,2] The end of 

procedure 

работы 

yes 

no 

yes 

no 

yes no 

1 

5 

2 

3 

yes 

no 

4 

6 
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Here the variable cn sets a cell current number, the variable tn is a total number of already 

considered cells, the variable ck is a number of an equivalence class of reflexive states for a 

current cell.  

In the block flagged in digit 1, for each cell it is checked, whether it is written already in 

matrix R (in other words, whether it was handled already by Findattr procedure). If still is not, 

then class number ck increases on 1 and this value is written in matrix R for this cell. Then in the 

block flagged in digit 2 the set of images of the given cell cn is restored. There х4, у4 are 

coordinates of a cell, that get an image of the upper right top of a cell cn; xmax, xmin, ymax, ymin 

are the coordinates of tops of the rectangle containing all images of the cell cn; dx, dy are the 

length and the width of this rectangle.  Then ncn is a number of first still not considered cell from 

the image of the cell cn; ciq = dx  dy is a total number of cells in a rectangle of images.  

In the block flagged in digit 3 it is checked, whether there exists some cells from the 

image of a current cell cn, that still are not considered by Findattr procedure. If yes, then in the 

block flagged in digit 4 we find coordinates  rx, ry  of the first such cell; then its number n; and 

then we come back to the block 1.  

If while checking the block 1 it appears that the current cell cn already was considered by 

Findattr procedure, then in the block 5 we check, whether it has current, i.e. the greatest number 

of a class ck. If yes, then for this cell we select number of first still not considered cell from its 

image; and we come back with it in the block 2. But if it has appeared in block 5, that class 

number is less, than the current one ck, then besides we assign this greatest class number ck for all 

cells between this and last one in matrix R. Really, it means that all these cells are in one 

equivalence class of reflexive states. 

At last, if in the block 3 it is clarified that all images of the given cell cn are already 

considered, then in matrix R we pass to the previous cell. If in the block 6 it appears that it has 

current (that is the greatest) number of a class, then with number of this cell we come back to the 

beginning in the block 1. But if it has appeared that class number for the previous cell is less than 

the greatest one, then the procedure is completed. Really, on procedure constructions, for all 

previous cells all the images long are already considered. But then it means that all previous cells 

from R belong to maximum class of an equivalence of reflexive states; and this cell does not 

concern it any more.  

 

 

Example of DQM method: study of Henon system. 

We will consider here DQM method for investigation of dynamics of concrete systems on 

an example of two-dimensional system of M. Henon [6]: (x, y)  (1 + y – ax2, bx). Values of 

parameters  a = 1.7, b = 0.5  we will choose those, at which for system of R. Lozi [11]:  (x, y)   

(1 + y – ax , bx) presence of an attractor with hyperbolic dynamics has been strictly proved.    

1. Animate Procedure localizes area Ω of a phase space, in which the system attractor 

hypothetically contains. On the basis of outcomes of the numerical researches, visually presented 

further in a Figure 2, we choose a rectangle   Ω = {(x, y) -1 ≤ x ≤ 1.5; -0.1 ≤ y ≤ 0.1}.  



ISSN 1998-6939. Інформаційні технології в освіті. 2015. № 25 
 

57 

 

Figure 2. 
 

Outcomes of work of Animate procedure lead also to the supposition that on an attractor in 

Ω the system is hyperbolical: in Figure 3 for iteration  n = 1, 2, …, 500  its coordinate  x Ω  

answers.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3. 

In Figure 4 for iteration  n = 1, 2, …, 500  its coordinate  y Ω  answers.   

 

Figure 4. 
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2. Prestep Procedure makes rectangle splitting Ω on cells Δi, i.e. squares with the sides of 

length 0.01, parallel to coordinate axes. Then Δi Prestep puts each cell in correspondence to the 

collection of cells to which points from Δi can get for one step of dynamics of Henon system. It is 

simultaneously strictly established, that the area Ω is really invariant with respect to DQM 

discretization  given by the splitting of Ω. Thereby this procedure sets the topological Markov 

chain which space of status is the set of cells Δi  Ω.  

3. Findattr Procedure finds in Ω a DQM attractor for given in Prestep DQM discretization  

according to described above its algorithm. The attractor appears coherent that corresponds to the 

data obtained by Animate procedure (Figure 2).  

4. The basic outcomes of investigation are connected with following corollary from the 

theorem 5 (and from corollary 1 of it), which statement is oriented especially on use at study of 

concrete dynamic systems.  

Corollary 2. Let’s Δi be the cells of attractor of DQM ε – discretization of the system, 

given by a two-dimensional diffeomorphism  G,  xi Δi (1 ≤ i ≤ N).  Let’s the average 

eigenvalues  1(xi)  and   2(xi) of differential DG for m iterations G from a point xi (i.e. of 

differentials in points xi, G (xi), G
2 (xi), …, Gm -1(xi))  satisfy the conditions  1(xi) < μ, 2(xi) > 



1
  

for some μ (0 < μ <1)  in any point  xi Δi (1 ≤ i ≤ N)  and 

ε   ≤  
)14(4

)1(

2

2





Gm


 .                                                               (14) 

Then  

1) the initial system given by diffeomorphism G, is hyperbolical on the attractor; 

2) any DQM ε – realization of this system is also hyperbolical on DQM attractor and is 

topologically equivalent to initial system; 

3) the support of the attractor of initial system and its DQM attractor coincide with 

accuracy of order ε.  

Here by an attractor of initial system we mean intersection O  G (O)  G2 (O)  …  

Gn (O)  … for some neighborhood  O  of an attractor of the DQM ε – discretization  from 

collorary 2. The value 
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  and so on, and the domain Ω of a phase space contains a system 

attractor. In a corollary 2 we were limited to a two-dimensional case though its multidimensional 

generalization is also true.  

5. In our case, when G(x, y) sets the system of Henon, on a rectangle  Ω  =  

{(x, y)  –1 ≤ x ≤ 1.5;  –0.1 ≤ y ≤ 0.1} is fulfilled 

2
G = }2,1)2(,1{max 22 abax 


  6,1. 

Hyperproc Procedure establishes, that for m = 10 average eigenvalues  1(xi)  and  2(xi) 

of differential DG for m iterations  G  satisfy conditions  1 (xi) <0.4,  2 (xi)> 1.7  for all xi. Value 

1/1.7  0.59. Thus, μ ≥ 0.59;  however we choose value  μ = 0.7  with a large supply: the reason 

will clear up further. Then under the formula (14)  ε  0.0001. 

6. Now it is necessary to repeat sequence of operations since item 2 with that only 

difference, that rectangle splitting Ω on cells Δi contains squares with the sides of length not 0.01, 

but 0.0001. The main size of calculations is necessary just on this stage of research. Therefore all 

procedures of the program complex assume the possibility of definition of their operating time 
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and saving the subproducts received in this time. It is possible further to continue work with 

saving subproducts or to adjust the selected options, as a result of the analysis of these 

subproducts.   

Eventually, the purpose of all these evaluations is to check up that for DQM ε – 

discretization with this new smaller ε inequalities 1 (xi) < μ and 2 (xi) > 


1
 are still fulfilled with 

the same μ for all cells  Δi  from an attractor of ε – discretization . In this case for this ε – 

discretization all assumptions of a corollary are automatically satisfied 2. Otherwise all this cycle 

of calculations since item 2 is necessary to repeat, preliminary having specified parameters. On 

purpose to avoid it we have been selected the value of parameter μ = 0.7 with a store in item 5. In 

our case at the chosen parameters check has passed successfully.   

Thereby in this case all conclusions of a corollary 2 are true. We already obtained the 

structure of the topological Markov chain of DQM ε – discretization, as a result of evaluations. In 

view of the theorem 2, it gives us the detailed and strictly proved information on dynamics of 

Henon system on its attractor.  

The chosen values of parameters a = 1.7 and b = 0.5 are not unique. For example, similar 

outcomes turn out at a = 1.4 and b = 0.35. In following figures a view of attractor (Figure 5) and 

dynamics visualization on this attractor on axis OX (Figure 6) and axis OY (Figure 7) are shown.    

 
Figure 5. 

 

 
Figure 6. 
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Figure 7. 
 

Conclusions. The DQM method for investigating the dynamics of concrete systems and 

obtaining strict results is demonstrated on the example of M. Henon’s system. We choose the 

values of parameters at which this system is hyperbolical on the attractor; we determine the 

support of this “strange attractor” within given error and the dynamics on it within topological 

equivalence. The program realized as the C# – application with usage of Open Maple technology 

is used here. In this work the purpose is only the illustration of DQM method for study of 

concrete dynamic systems. The detailed statement of results is supposed in the subsequent 

publications.  
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Херсонський державний університет, Херсон, Україна  

ЧИСЕЛЬНИЙ АНАЛІЗ ДИНАМІЧНОЇ СИСТЕМИ ТА ЇЇ СТРУКТУРНА 

СТІЙКІСТЬ 

У статті продемонстровано метод дослідження динаміки конкретних систем малої 

вимірності та отримання математично точних результатів на прикладі системи М. Хеннона. 

Відповідна програма реалізована, як С# – додаток із застосуванням технології Open Maple.  
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Вона дозволяє знаходити атрактори динамічних систем малої вимірності та доводити 

гіперболічну поведінку на них, використовуючи обчислення на комп’ютері. Проте, таким 

чином отримуємо точні апостеріорні результати, що ґрунтуються на теоремах цієї статті. 

Комп’ютерні обчислення використовуються для перевірки виконання умов цих тверджень.  

Можливість отримання математично обґрунтованих результатів чисельних 

досліджень пов’язана з структурною стійкістю застосованої моделі. Структурна стійкість є 

базовою концепцією двох традиційних університетських курсів: “Математичне 

моделювання та системний аналіз” і “Методи обчислень”. Автором запропонований підхід, 

що дозволяє для кожної даної динамічної системи побудувати стійку модель. Для цього 

виявляється достатнім розглядати цю систему разом з випадковими флуктуаціями, 

неусувними для кожної реальної системи. Точніше кажучи, для даної класичної системи 

будуємо її збурення певним марковським процесом, який називаємо динамічною 

квантовою моделлю (ДКМ) цієї системи.  Така модель є стійкою, що забезпечує 

можливість її чисельного дослідження. А з наближенням флуктуацій до нуля динаміка 

ДКМ прямує до динаміки заданої класичної системи.  

Ключові слова. динамічний, система, квантова, структурний, теорія, алгоритм, 

атрактор.  

 

Вейцблит А. И. 

Херсонский государственный университет, Херсон, Украина 

ЧИСЛЕННЫЙ АНАЛИЗ ДИНАМИЧЕСКОЙ СИСТЕМЫ И ЕЁ 

СТРУКТУРНАЯ УСТОЙЧИВОСТЬ 

В статье продемонстрирован метод исследования динамики конкретных систем 

малой размерности и получения математически строгих результатов на примере системы 

М. Хеннона. Соответствующая программа реализована, как С# приложение с 

использованием технологии Open Maple.  Она позволяет находить аттрактор динамической 

системы малой размерности и доказывать его гиперболичность, используя вычисления на 

компьютере. Однако, таким образом получены точные апостериорные результаты, 

основанные на теоремах этой статьи. Компьютерные вычисления использованы для 

проверки условий этих утверждений.  

Возможность получения математически обоснованных результатов численных 

исследований связана со структурной устойчивостью используемой модели.  Структурная 

устойчивость является базовым понятием двух традиционных университетских курсов: 

“Математическое моделирование и системный анализ” и “Методы вычислений”. Автором 

предложен подход, который позволяет для каждой заданной динамической системы 

построить устойчивую модель. Для этого достаточным оказывается рассматривать эту 

систему вместе со случайными флуктуациями, неустранимыми для любой реальной 

системы. Точнее говоря, для данной классической системы строим её возмущение 

марковским процессом, называемым динамической квантовой моделью (ДКМ) этой 

системы. Такая модель устойчива, что обеспечивает возможность её численного 

исследования. А при стремлении флуктуаций к нулю динамика ДКМ сходится к динамике 

данной классической системы.  

Ключевые слова. Динамический, система, квантовая, структурный, теория, 

алгоритм, аттрактор.  


