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This article is focused on the studying of the local-field effect in a nanoparticle’s ensemble. We pro-

posed a simple model of an open spherical semiconductor nanoparticle in exciton regime, which boundary 

is approximated by delta-potential. This approach allows us to examine the homogeneous and core-shell 

nanoparticles taking into account the influence of the environment. Using the reduced polarizability of a 

nanoparticle we developed the self-consisting method of calculation of the dielectric constant for the NP’s 

ensemble in a polymer matrix and analyzed the influence of the local-field effect on the optical response. 
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1. INTRODUCTION 
 

In recent time the focus has moved from the synthe-

sis of a homogenous nanoparticles (NPs) to the area 

preparation of complex systems based on the core-shell 

structures of the complex compositions [1, 2] and the 

molecular complexness (block-copolymers, dendrimers, 

etc.) [3, 4]. Such systems can be used in sensor units [5], 

biology and medicine [6-8]. Also, the systems of several 

NPs (or quantum dots) are applying for constructing of 

the qubits [9] and the new functional elements [10] de-

signed to solving the problems of modern microelectron-

ic. The preparation of the NP’s ensemble with the exact-

ly optical response has made it possible to manufacture 

artificial metamaterials [11]. 

For the development of these researches together 

with the experiment it is necessary to develop the usa-

ble theoretical investigations. In the way of constructing 

the theoretical model of NP it is necessary to consider 

the interaction of a quantum system with the environ-

ment. As the result it leads to a nonuniform broadening 

of the energy levels of the electron states related with a 

finite lifetime. 

As well known, the external electric fields leads to a 

uniform broadening. Moreover, the local-field effect ap-

pears as a result of the dipole-dipole interaction be-

tween the NPs. The local-fields effect in the atomic sys-

tems and in the immersion medium with high refractive 

index has been investigated in detail (see, e.g., the re-

view [12]). Let us note also that such an effect in an 

ensemble of NPs has been studied within the framework 

of the Maxwell-Garnett formalism [13]. In recent time 

the local-field in the presence of the metallic nanoparti-

cles are study intensively. With such systems is related 

the Raman scattering affiliations [14] and the fluores-

cence resonant energy transfer [15]. However, these 

approaches operate with the macroscopic dielectric con-

stant of NPs which is not correct for the semiconductor 

NP less than 5 nm.  

In view of this reasons we present a model of an 

open spherical nanoparticle, which allows us to calcu-

late the quasi-stationary spectrum of NP in the exciton 

regime (the broadening in this case is associated with 

the probability of the electron tunneling to the environ-

ment). The tunneling probability determines by the 

properties of the NP’s surface (shell). Based on the polar-

izability features we propose a method of self-consistent 

calculation of the dielectric constant for NP’s ensemble 

embedded in a polymer matrix taking into account the 

local-field effect. 

 

2. MODEL 
 

2.1 Energy Structure of an Open Nanoparticle 
 

Now we examine the problem of the boundary in an 

open spherical NP. Such a system is the core of direct-

gap semiconductor without (or with) a shell buried in a 

polymer matrix (see Fig. 1a). The shell can be composed 

of a semiconductor, ligand, etc.  
 

 
 

 a 
 

 
 

 b 
 

Fig. 1 – Schematic representation of a nanoparticle (a), the 

boundary energy barrier (b): versiera (red line), plotted on the 

basis of an inscribed ellipse (dashed line)  
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Usually, the boundary (or shell) is approximated by 

a rectangular barrier [16], but it is not correct for the 

thin layer (~ 1 monolayer). Therefore, we propose po-

tential in the form of versiera (Fig. 1b) 
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where a and b are the height and width of potential 

barrier, respectively. It can be shown that in the limit-

ing case b → 0 the versiera function tends to Dirac del-

ta-function: 
 

 0( ) ( )U r r r   . (2.2) 
 

Here, Θ ~ a·b/ is the coefficient penetrability of delta-

potential. First, this approach reduces the number of 

equations, which are necessary to describe the core-

shell NP, and, secondly, the parameter Θ can serve as 

the phenomenological parameter, in the case when the 

properties of interface are not exactly known. 

The standard boundary conditions at r  0 and     

asymptotic behavior of the Bessel and Neumann func-

tions lead to following expression for radial part of the 

wave function in spherical coordinates: 
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The continuity conditions of the wave functions, the 

discontinuity of the first derivatives at the NP’s bound-

ary and the normalization condition give the transcen-

dental equation:  
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Here, l is orbital quantum number, m1 and m2 are the 

effective masses of the electron (or hole) in the NP and 

in the environment. Solution of equation (2.4) describes 

the quasi-stationary electron (hole) states. 

Coulomb interaction between the electron and hole 

can be calculated as the matrix element 
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where ε is the material’s dielectric constant, ( , )e hnl r r  

is the two-particle wave function. As a result, the ener-

gy spectrum of exciton with the band gap for bulk ma-

terials Eg has the form: 
 

 ex e h
c gnl n lE E E V E     . (2.6) 

 

2.2 Polarizability 
 

Using the results presented above the optical re-

sponse of the structure under consideration can be in-

vestigated. Early, in the case of the dipole transition in 

direct-gap semiconductor the static polarizability of the 

quantum dot’s ground state have been calculated by 

means of the Lorentz formula 
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Here,   m1m2/(m1 + m2) is the reduced mass of exci-

ton, n´n  n´ –  and Fn´n is the oscillator strength 

determined by the dipole matrix element: 
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We have demonstrated that the static polarizability of 

the quantum dot depends on the radius as L() ~ r0
4 

[17]. This feature was observed in the experimental 

studies [18, 19] and it is a consequence of the quantum 

size effects. 

However, (2.7) does not include a uniform broaden-

ing of the energy level in the external electric field. 

Therefore, we use the expression for the dynamical 

polarizability of the two-level quantum system in the 

rotating-wave approximation. It may be written 

through the transition oscillator strength 
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where R  |d12|E0/ħ is the Rabi frequency, F12 is the 

transition oscillator strength,  2  ( + Γ)/2 represents 

the broadening of the excited stationary state associat-

ed with the spontaneous emission and the probability 

of an electron tunneling from the NP to the environ-

ment. Rabi frequency determines the uniform broaden-

ing of the quasy-stationary state and plays significant 

role in the polarizability at R ≥ /ħ.  

For comparison we have plotted the dynamic polar-

izability values in two approaches (2.7) and (2.9) as 

shown in Fig. 2. Calculations were performed for the 

colloidal CdS NP in a gelatin with following physical 

parameters: a band gap of the bulk material 

Eg(CdS)  2.42 eV, the effective masses are me/m0  0.2, 

mh/m0  0.7, me(gel)/m0  1 (m0 is a mass of the free 

electron) [20]. 

 

2.3 Dielectric Constant  
 

The values of the NP’s polarizability allow us to de-

scribe the optical response of the heterogeneous medi-

um such as the NP’s ensemble embedded in a polymer 

matrix. As mentioned above, it is necessary to take into 

account the local-field effect.  

As it known, the correction of the local field for a 

homogeneous isotropic medium is 4P /3, where P  is 

the macroscopic polarization of the medium [21]. Ac-

cordingly, we obtain  
 

 4 / 3locE E P   (2.10) 

 

This expression is the starting point for constructing 

the theoretical models of the dielectric constant of a 

heterogeneous medium. For example, using the expres-

sions P   χE loc and   1 + 4χ (χ – susceptibility of 

the system) the Clausius-Mosotti formula describing 

the dielectric constant of atomic particles compared to 

vacuum can be obtained in the following form: 
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Fig. 2 – Real (left) and imaginary (right) parts of the dynamic polarizability versus frequency of the external elec-

tric field in the Lorentz formalism (solid line) and the probability amplitude method (dashed line) for NP 

d0  2.6 nm 
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where N and  are the concentration and polarizability 

of a particle, respectively. 

In contrast to the atomic gas, the problem of NPs in 

a polymer matrix consists in the fact that particles are 

suspended not in a vacuum but in a dielectric. This 

problem can be reduced to an equivalent vacuum condi-

tion by introducing a relative dielectric constant 

ε′  ε/εm (εm – dielectric constant of the matrix), which 

shows how the dielectric constant of the dispersed 

phase ε′  ε1 + iε2 reduces the external electric field 

insight a heterogeneous medium in vacuum, in as-

sumption that the dielectric constant of a medium is ε′. 

Usually, for such a system the Maxwell-Garnett 

formalism is used: 
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Here i is the dielectric constant of a dispersed compo-

nent,  i is the volume fraction of i-th phase. The expi-

ration (2.12) is usual assumption of the effective medi-

um theory [13]. Note that this expression leads from 

the Mie’s formula for the polarizability of spherical 

metal particles with radius r0: 
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This formula describes the non-interacting random-

ly arranged particles with the uniform polarization. As 

we can see, (2.13) does not include the influence of 

quantum size effect on the polarizability. To resolve 

this problem, we have used the Clausius-Mosotti for-

mula for ensemble of NPs in a dielectric matrix: 
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After reducing of (2.14) we get the expression for 

calculation of the dielectric constant in the system “en-

semble of NPs/polymer matrix” taking into account the 

size distribution f(r): 
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where  (, r)  (, r)/r0
3 is the reduced polarizability 

and    V·N is the volume fraction. Let us note that 

the condition of applicability of the dipole-dipole ap-

proximation for the system under consideration is 

  ≤ 0.4. 

The relation (2.15) is the final step in iterative pro-

cedure of the self-consistent calculation of the dielectric 

constant for the heterogeneous medium in the frame of 

described method, which is refinement of the effective 

media method (Fig. 3). The initial step of iteration is 

the bulk dielectric constant εb(CdS)  5.5. The iterative 

procedure is terminated when the variation of the die-

lectric constant remained to 10 – 5. 
 

 
 

Fig. 3 – Flow diagram of the self-consistent calculation of the 

dielectric constant 
 

The numerical comparison (2.15) with 
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gives the local-field effect correction to the dielectric 

constant. In similar manner, we compared our result 

with the Maxwell-Garnett formalism in the form: 
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Here,     N·Σf(ri)V(ri) is the volume fraction with the 

concentration N and the size dispersion of the individ-

ual NPs. We have used the Lifshitz-Slezov (LS) distri-

bution [22] and the experimental distribution obtained 

from the TEM images of the NP’s ensemble [23]. In the 

cases of the gelatin matrix the static dielectric constant 

is εm  2.2. 
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3. RESULTS AND DISCUSSION 
 

The obtained dielectric constants are shown in fig. 4. 

Our numerical analysis shows the “small” difference 

between (2.15), (2.16) and (2.17) at low NP’s volume frac-

tion (less than 0.01). But, as soon the volume fraction 

grows the local-field effect leads to correction for the 

transition energy 1s-1s by 0.080 eV for    0.1 and 

0.150 eV for    0.2. 

In the case of the experimental NP’s size distribution 

the self-consistent method and the Maxwell-Garnett 

approach give the close values of the dielectric constant, 

namely, the difference is about 2-15 % versus the volume 

fraction (Fig. 4a). However, for the LS distribution the 

difference consists about 30 % (Fig. 4b). Such a differ-

ence is due to the fact that in contrast to the experi-

mental distribution the LS distribution supposes the 

existence of NPs with small sizes (see inset in Fig. 4a). 

Note that (2.17) formula leads to higher values of the 

dielectric constant because the quantum size effect has 

not taken into account. 

In order to verify our model of open NP we have cal-

culated the transition energy 1s-1s. The numerical data 

are presented in Fig. 5a. Also, in Fig. 5a we have shown 

the experimental data and the results of the semi-

empirical models for colloidal CdS NPs in a water [24]. 

As can be seen from figure, a comparison of the numeri-

cal and experimental findings shows a good agreement 

for NPs with sizes more than 2 nm. For the smaller par-

ticles (less than 2 nm) we have the overestimated values 

of the transfer energy due to the non-applicability of the 

effective mass method for the calculation of the energy 

spectrum of these systems. Thus, the presented model 

gives the true results for the ensemble of NPs with an 

average diameter more than 1.8 nm. 

The linear absorption spectra in the wavelength 

range corresponding to the interband transition 1s-1s 

[25] was calculated in order to demonstrate the role of 

the local-field effect in an optical response of a NP’s 

ensemble. In comparison, we have selected three cases 

of the dielectric constant: the value of the bulk material 

εb, the Maxwell-Garnett approach εMG and the self-

consistent method ε. Fig. 5b also shows the experi-

mental dependence of the absorption spectrum CdS 

NPs in a gelatin matrix [23]. Note that the broadening 

caused by fluctuations of the NP’s sizes and the dis-

tance between them has taken into account phenome-

nologically. 

 

 
 

 a 
 

 
 b 
 

Fig. 4 – Static dielectric constants of CdS NP’s ensemble ver-

sus volume fraction of the dispersed phase within framework: 

the self-consisting method excluding (square) / including (tri-

angle) the local field effect and the Maxwell Garnett formal-

ism (dot): with the experimental size distribution (a), LS size 

distribution (b). The inset (a) shows the experimental (blue 

line) and the LS (green line) size distributions 
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Fig. 5 – The energy of optical transition 1s-1s E1 versus CdS 

NP’s diameter d in a water (a), linear absorption for experi-

mental size distribution of CdS NPs with a mean radius 

1.30 nm (b): experimental absorption (solid line), εb  5.5 (dot-

ted line), εMG  3.1 (dashed line) and ε  2.6 (dash-dotted line) 
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4. CONCLUSIONS 
 

In this paper we have proposed a simple model of an 

open spherical semiconductor nanoparticle in exciton 

regime. The delta-potential at the boundary of a nano-

particle allows us to introduce the environment effects. 

Based on the quasi-stationary spectrum we have 

calculated the polarizability taking into account such 

factors as the spontaneous decay, the probability of 

electron tunneling to environment and the uniform 

broadening in the presence of an electric field. Using 

the Clausius-Mosotti formula and the reduced polar-

izability we have presented the self-consistent method 

for calculation of the dielectric constant of the NP’s 

ensemble embedded in a polymer matrix.  

On the example of CdS NP’s ensemble embedded in 

a gelatinous matrix the significant difference between 

the dielectric constant for nanoparticles and the bulk 

semiconductor material is demonstrated.  

It is also shown that the correction of the local-field 

effect of the energy of first excited state has a value 

about ~ 0.1 eV. This statement is confirmed by agree-

ment of our results with the experimental data and, the 

result of other numerical models. Thus, the developed 

approach, is a refinement of the effective media method 

and in contrast to Maxwell-Garnett approach can be 

applied for the ensembles of semiconductor NPs with 

an average size more than 2 nm.  
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