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The bulk nanostructural Bi2Te3-based material was prepared by microwave assisted solvothermal 

method and hot isostatic pressure. Optimal synthesis conditions of the Bi2Te3 nanopowder were found. It 

was established that hot isostatic pressing of the nanopowders at the temperature of 400 С and the pres-

sures of 2, 4, 6 and 8 GPa allowed us to prepare the homogeneous and dense Bi2Te3-based material with 

the mean grain size of  50 nm. It is found that an electrical resistivity increases as the mean grain size of 

the material under study decreases. 
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1. INTRODUCTION 
 

Thermoelectric materials are of interest for applica-

tions in electrical power generation devices and solid-

state cooling due to many attractive properties (long 

life, no emissions of toxic gases, no moving parts, low 

maintenance, etc) [1]. At present, bismuth telluride, 

Bi2Te3, based compounds are known to be the most ex-

cellent thermoelectric materials for around room tem-

perature applications [2]. The semiconductor bismuth 

telluride materials are acceptable for some specialized 

applications, but they are far less so for commercial 

refrigeration on a large scale. A number of investiga-

tions have focused on optimizing the composition, tun-

ing doping with other heavy metals, optimizing device 

design, etc in order to improve thermoelectric proper-

ties of the Bi2Te3-based materials [3-5]. However, the 

thermoelectric efficiency of these materials has not im-

proved obviously and thermoelectric figure of merit 

(ZT) has been approximately 1 for many years. Figure 

of merit is defined as (S2 / k)T, where Z is the figure-

of-merit, T is the absolute temperature, S is the See-

beck coefficient,  is the electrical conductivity, and k is 

the total thermal conductivity with contributions from 

the lattice and the charge carriers [6]. 

According to theoretical and experimental investi-

gations, the thermoelectric nanomaterials, such as 

quantum wells, superlattices, quantum wires, 

nanograined thin films, bulk nanostructural materials 

including nanocomposites can demonstrate much high-

er thermoelectric coefficients than their traditional 

alternatives [7-10]. 

The bulk nanostructural materials are now consid-

ered to be ones of perspective thermoelectric materials. 

It is assumed that high enough electrical conductivity, 

but low enough lattice thermal conductivity can be for 

the same time reached for these materials. The grain 

size is one of important characteristics optimizing both 

electrical conductivity and thermal conductivity of 

thermoelectric nanomaterials [11].  

A specific technology should be developed to fabri-

cate thermoelectric nanostructural materials with ad-

vanced properties and reproducible phase composition, 

crystal structure and grain arrangement. 

One of technological approaches can be based on two 

principal stages as follows: 

 The synthesis of a starting nanosized powder with 

desired structure, phase and element compositions, size 

and shapes of particles, etc. 

 The consolidation of a synthesized nanopowder by 

using a pressuring and a high temperature treatment 

in order to preserve a nanostructure and fabricate a 

bulk dense material with the high enough mechanical 

strength and thermoelectric parameters.  

In present work such a kind of technology based on 

the microwave-solvothermal synthesis and the hot 

isostatic pressure was applied to prepare the bulk 

nanostructural Bi2Te3-based material. 

 

2. EXPERIMENTAL PROCEDURE 
 

The nanosized bismuth telluride powders have been 

prepared via the microwave-solvothermal synthesis in 

closed reactor ERTEC (Model 02-02). As is known, 

compared with the conventional methods, the micro-

wave-assisted heating technique has the advantages of 

very short time of synthesis, simplicity and energy effi-

ciency, small particle size of the products, narrow par-

ticle size distribution and high purity [12]. 

The analytical grade Bi2O3, TeO2 and ethylene gly-

col were used as starting components. A 110 ml teflon-

lined stainless-steel autoclave was used and the tem-

perature was regulated by a digital-type temperature-

controlled oven. Microwave assisted reactions were 

conducted in a 300 W microwave oven with a 2450 kHz 

working frequency.  

The ethylene glycol was used as both the solvent 

and the reducing agent in the reaction. A few routes of 

synthesis were applied to determine the optimal reac-

tion conditions. After synthesis, the reaction product as 

a black precipitate was washed with alcohol and then 

centrifuged and dried.  

The nanopowders after synthesis were hot isostati-

cally pressed (HIP) at temperature of 400 С during 5 

min by using a toroidal press. The powder for compac-
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tion was placed in a graphite matrix with hexagonal 

BN powder as a media to spread the isostatic pressure 

to the object under pressing. The HIP-pressure of 2, 4, 

6 and 8 GPa were applied. 

X-ray diffraction (XRD) analysis both the nanopow-

der and the sintered material was performed for phase 

and crystal structure determination using a Rigaku 

Ultima IV diffractometer with CuKα - radiation (a step 

width of 0.03 and a counting time of 1.6 s/step). 

The particles size and morphology of the powders 

were observed using a model JEM – 2100 transmission 

electron microscope (TEM, for an accelerating voltage 

of 200 kV). 

Electrical resistivity measurements were made by 

four-probed method at 1 mA dc current using the sin-

tered samples with Au and In-Ga electrodes. 

 

3. RESULTS AND DISCUSSION 
 

In order to optimize the phase composition of the 

bismuth telluride powders, a few routes of the micro-

wave-solvothermal synthesis, which differ the content 

of the starting reagents and the parameters of synthe-

sis (the temperature, pressure and duration of reac-

tion), were applied (Table 1). According to Table 1, the 

phase composition of the powders is drastically de-

pendent on the synthesis conditions. Only one of syn-

thesis routes allowed us to prepare a single-phase pow-

der of the Bi2Te3 composition. The optimal synthesis 

conditions are as follows: the temperature is 250 C, 

the pressure is 15 atm., the duration of synthesis is 

50 min and the ratio of Bi2O3 and TeO2 is 1 : 1.  

The XRD pattern for the single-phase Bi2Te3 pow-

der taken at room temperature is shown in Figure 1. 

The diffraction peaks can be exactly indexed with the 

standard diffraction planes of hexagonal Bi2Te3. This 

powder synthesized at the optimal conditions was used for 

further examination. 

TEM images in Figures 2 and 3 show typical mor-

phology of microwave-solvothermally synthesized pow-

der. It is seen that the powder mainly consists of irreg-

ularly shaped nanoparticles of 20-50 nm in size (Fig. 2).

 
 

Fig. 1 – XRD pattern of the Bi2Te3 nanopowder 
 

Besides, larger (~ 100 nm) hexagonal nanoplates are in 

the powder under study (Figure 3). The formation of 

the hexagonal Bi2Te3 nanoplates is due to their aniso-

tropic structure. It is known [13] that the Bi2Te3 crystal 

consists of 15 layers stacked along the c-axis and pre-

sents a combination of three hexagonal layer stacks of 

the composition in which each set consists of five atoms 

(Te1–Bi–Te2–Bi–Te1). The bonding within the Te1–Bi–

Te2–Bi–Te1 layer is assumed to be covalent, while the 

bonding between the Te1–Te1 layers is formed by van 

der Waals forces.  

It is known that the growth of grains can occur dur-

ing the long-time and high-temperature sintering of ma-

terial consisting of a starting nanosized powder [14]. 

This phenomenon can destroy nanostructural state of 

material. In order to retain the nanostructure due to 

nanosized powder, the hot isostatic pressure method was 

applied to sinter the bulk nanostructural Bi2Te3-based 

samples. Both the high temperature and the high pres-

sure simultaneously act on the material in this method. 

Therefore, the sintering duration is significantly reduced 

and growth of grains can be assumed to be negligible. 

 

Table 1 – Parameters and results of microwave-solvothermal synthesis of the powders 
 

 
 

 

Reagents  Parameters of synthesis  Phases  

Ethylene glycol – 60 ml  

m (Bi2O3) - 4.6 g  

m (TeO2) – 2.3 g  

Temperature – 280 C  

Pressure – 25 atm.  

Duration of reaction – 100 min.  

Bi2Te3, Bi, BiTe  

Ethylene glycol – 60 ml  

m (Bi2O3) - 4.6 g 

m (TeO2) – 3 g  

Temperature – 280 C 

Pressure – 37 atm.  

Duration  of reaction – 45 min.  

Bi2Te3, Bi, Te  

Ethylene glycol – 60 ml  

m (Bi2O3) – 2.3 g  

m (TeO2) –  1.5 g  

Temperature – 250 C  

Pressure – 30 atm.  

Duration  of reaction – 35 min.  

Bi2Te3, Bi, Bi4Te3  

Ethylene glycol – 60 ml  

m (Bi2O3) – 2.3 g  

m (TeO2) – 2.3 g  

Temperature – 250 C  

Pressure – 15 atm.  

Duration of reaction – 50 min.  

Bi2Te3  

Ethylene glycol – 60 ml  

m (Bi2O3) – 2.3 g  

m (TeO2) – 2.45 g 

Temperature – 250 C 

Pressure – 20 atm. 

Duration of reaction – 35 min.  

Bi2Te3, Bi4Te3 
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Fig. 2 – TEM image of the Bi2Te3 nanopowder 
 

 
 

Fig. 3 – TEM image of the hexagonal Bi2Te3 nanoplate 
 

In addition to the temperature, the HIP-pressure is 

one of the important parameters influencing the char-

acteristics of the sample microstructure formed during 

the sintering.  

Figure 4 shows the SEM images of the surfaces of 

the bulk Bi2Te3-based material sintered at the HIP-

pressures of 2, 4, 6 and 8 GPa and at the same temper-

ature (at 400 С) and the same sintering duration (for 5 

min). The materials sintered by the HIP-method have 

dense, homogeneous and porousless, nanocrystalline 

structures. Spherical formations with diameters of 150-

350 nm are observed for the sample with the HIP-

pressure of 2 GPa (Figure 4A). Since the particles size 

of the microwave-solvothermally synthesized powder 

was less than 50 nm (Figure 2), the large spherical 

structures should be considered as agglomerates con-

sisting of a lot of nanoparticles. Smaller spherical par-

ticles can be also seen for this sample. So, the grain 

structure of the bulk polycrystal material is not yet 

formed at 2 GPa. The large spherical agglomerates 

typical for the HIP-pressure of 2 GPa are practically 

absent for other HIP-pressures (Figure 4 B, C and D). 

Only smaller grains mainly with sizes less than 100 nm 

are now observed on the SEM images. The grains have 

a crystal faceting that can be taken as evidence of in-

tense sintering of the nanopowder.  

In order to characterize the HIP-pressure effect on 

the microstructure characteristics in detail, histogram 

of the grain size distributions were plotted (Figure 5). 

Diameters of more than 200 grains were measured on 

the SEM images (Figure 4) to obtain reliable size dis-

tribution. The grain size distributions are discretized 

by dividing them into the 20 nm – width segments. 
 

 
 

 
 

 
 

 
 

Fig. 4 – SEM images of the bulk nanostructural Bi2Te3-based 

material sintered at the various HIP-pressures: 2 (A), 4 (B), 6 

(C) and 8 GPa (D)  
 

The study of the microstructure and elemental 

composition of the transverse sections of samples with 

composite coatings showed that were obtained uniform  

The visible boundary of the coating-substrate inter-

face has no defects. Figure 1 shows that in the contact 

area of coating and substrate is mixed structure con-

sisting of islands covering the substrate a very differ-

ent shapes and sizes. Part of the powder material pene-

trated deeply and firmly connected to the substrate 

material (see. Fig. 1). At impact a large powder parti-

cles, it corrects and deforms the surface layer of the 

substrate. There are "splashes" of the substrate mate-

rial, which are located in surface (see. Table 2). Area of 

the coating thacaused by the shock effect of plasma-

detonation wave. 
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Fig. 1 – SEM image of cross section of the nanocomposite Ti/H 

coating layer and substrate (a), TEM image of the coating-
substrate interface (b), diffraction TEM photographs of a tran-

sition layer of intermetallic TiAl 

 

3.1 TEM Observation of the System «Nanocom-

posite Coatings - Substrate» 
 

Local phase and structure analysis of the composite 

coatings based on Ti, O, C and H showed that lamellas 

in the coatings consisted of the mixture of titanium 

nanocrystalline grains with face-centered close-packed 

lattice and amorphous phases, and nanoamorphous 

oxide of titanium (see. Fig. 2). This is confirmed by re-

sults of diffraction analysis of the nanocomposite coat-

ings (see. Fig. 3). This structure could be caused by a 

high-temperature cycle in formation of composite coat-

ings [11, 12]. 

Therefore, it can be assumed that the values of 

hardness in fine lamellae of the nanocomposite coat-

ings are attributable to the absence of dislocations in-

side the crystalline grains and ratio of the volume con-

tents of nanocrystalline to amorphous phases of metal-

lic and non-metallic titanium compounds. 

Strength of intermediate and near-interface layers 

leads to increase of deformation resistance of nanocom-

posite coatings. The absence of dislocations inside the 

crystalline grains leads to increase in elasticity and, at 

the same time, in plasticity of nanocomposite coatings. 

It was detected for the first time ever [12], as far back 

as 20-25 years ago, that ceramic materials of titanium 

oxides acquire super plastic properties at room temper-

ature at the characteristic sizes of crystals equal to 

several nanometers. 

 

3.2 XRD Analysis of the Nanocomposite  

Coatings 
 

Carried out phase analysis showed that the main 

phase of the coating layer, which is located at a dis-

tance of about 1-2 mm from the free surface was Ti 

with a face-centered close-packed lattice (a  2.965 Å) 

(see. Fig. 3). The calculated interplanar distances re-

flections suggest the presence in the coatings and the 

following phases: TiO with a cubic lattice (a  4.197 Å), 

rutile TiO2 with tetragonal lattice (a  b  4.585 Å, 

c  2.972 Å), anatase TiO2 with tetragonal lattice 

(a  b  3.775 Å, c  9.492 Å), Ti2O3 with a hexagonal 

lattice (a  b  5.129 Å, c  13.815 Å). In the nanocom-

posite coatings formed from the hydrogenated powder, 

recorded the presence of δ-TiH phase with a cubic lat-

tice (a  4.415 Å) and TiH2 with tetragonal lattice 

(a  b  3.148 Å, c  4.140 Å). The studies did not report 

the presence of boron in the coatings. Apparently this 

is due to the fact that micron particles of amorphous 

boron overheat and evaporate in the environment of 

the combustion products. 
 

      
 

   
 

Fig. 2 – TEM image and diffraction photographs of material of 
nanocomposite coating of TiH powder: mixture of titanium 
nanocrystalline grains with face-centered close-packed lattice 

and amorphous phases (1), amorphous phases (C, Ti, Al, O) 
(2), nanoamorphous oxide of titanium (3) 
 

 
 

Fig. 3 – XRD analysis of the nanocomposite coatings: 1 – Ti/H, 
2 - Ti, 3 – Ti/B, 4 – Ti/B/H 

 

4. CONCLUSIONS 
 

Cumulative-detonation technology provides for-

mation of dense composite coatings based on Ti, O, C, 

H thickness of 100-400 microns. The porosity of coat-

ings was ~ 1-2 %, which correlates with the technologi-

cal requirements of indus-trial coatings. The apparent 

limit of adhesion of the coating to the substrate is free 

of defects. It was found a transition region coat-

ing / substrate consisting of a nanocrystalline TiAl. The 
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main phases of the composite coatings are Ti, TiO, ru-

tile, anatase, Ti2O3. In the composite coatings formed 

from the hydrogenated powder was recorded the pres-

ence of δ-TiH phase and TiH2.  

Based on the results of the study could be offered 

energy-saving technology for deposition of composite 

coatings based on Ti, O, C, H on substrates of alumi-

num alloy. 
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