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In present search, we have studied the effect of the both non commutativity of three dimensional space
and phase on the Schrodinger equation with companied Harmonic oscillator potential and it’s inverse,
know by isotopic Harmonic oscillator plus inverse quadratic (h.p.1.) potential, we shown that the Hermitian
NC Hamiltonian formed anisotropic operator and described many physics phenomena’s, we have also de-
rived the exact degenerated spectrum for studied potential in the first order of two infinitesimal parame-

ters © and 6 associated for noncommutative space and phase, respectively.

Keywords: The isotropic harmonic oscillator plus inverse quadratic potential and non-commutative space-

phase, Boopp’s shift method, Schrodinger equation.

1. INTRODUCTION

Among the different forms of physical central po-
tentials which appear in the operator of Hamiltonian,
those received great attention the recent years in com-
mutative and noncommutative spaces-phases at two
and three dimensional spaces [1-34]. In the last seven-
teen years, there has been an increasing interest in
noncommutative geometry both in mathematics and in
physics, represent a hop to obtain new and profound
interpretations at Planck's scales; it goes back to H.
Snyder, who first men suggested a noncommutative
structure at small length scales [17]. The new concepts
of space-time, know by noncommutative spaces and
phases, introduced for solved many physics problems,
as a major good examples, the divergence problem of
quantum field theory and unified of gravitation with
standard model. the noncommutativity is introduced by
many ways, the simple approach, it consider the posi-
tion and momentum operators obeys to the Heisenberg
commutation relation, that is similarly to quantize
space-time coordinates, when the commutator

[xi,xj] # 0, the formalism of star product, Boopp's shift

method and the Seiberg-Witten map are plays a fun-
damental roles in this new theory. The physics idea of a
noncommutative space and phase satisfied by a new
mathematical product which replaces the old ordinary
product known by star product, if it is applying to the
fundamental commutators between coordinates and
impulsions gives (¢ =h =1) [16-34]:

[xi,xj]* =i6;and [ﬁi,ﬁj]* = Lélj (€))

The parameters 67 and 6; are an antisymmetric
real matrixes, it’s important to notice that, the above two
fundamentals commutators are satisfied as particulars’
cases from the general star product between two arbi-
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trary functions f(x) and g(x) in the first order of two

infinitesimal parameters # and 511 as follow [16-34]:

5(F(x)* e (x)) =L 0™ (03 (+) (00 x)) - o
-2 0" (a1 () ete ()

The provirus relation valid only in the first order of

the antisymmetric parameters (6“Y and éw) matrix-

es, §; and éij are equals %sijké’k and %gijkék, respec-

tively and both (x4 andv) are variants from one to di-

mensions of the space 3. In present work, a Boopp's
shift method will be used, instead of solving the (NC-
3D) spaces and phases Schrédinger equation by using
directly star product procedure:

(%% |=i6;and | p,,p;|=i0y 3)

The star product replaced by usual product together
with a Boopp's shift [23-32]:
.. 6..
X.=x. _lp. i) =p. —lx.
1Tl o9 T 19 7 4)
[xi,x]] = O,[pi,p]] =0and [xi,p]] =15

In addition to the wusually uncertainty rela-
tions Ax’'Ap’ >k, as an immediately consequence to
provirus new two commutators for noncommutative

space and phase are the generalized incertitude rela-
tions to the special coordinates and special operators of

oi| and Ap'Ap! Z%Eij. The

impulsions axiaxi > L
2

rest of present search is organized as follows. In next
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section, we briefly review the Schrédinger equation
with companied Harmonic potential and it’s inverse in
ordinary three dimensional space. The Section 3, re-
served to derive the deformed Hamiltonians of the
Schrodinger equation with companied Harmonic poten-
tial and its inverse and by applying both Boopp's shift
method and stationary perturbation theory, we find the
exact quantum spectrum of the lowest excitations in
(NC-3D) space and phase for studied potential. Finally,
the important found results and the conclusions are
discussed in the four and last section.

2. THE HARMONIC OSCILLATOR POTENTIAL
AND ITS INVERSE IN ORDINARY THREE
DIMENSIONAL SPACES

To begin, let’s give a brief review of time independ-
ent Schrodinger equation for a fermionic particle like
electron of rest mass m, and it’s energy E with com-

panied Harmonic potential and it’s inverse

(V(r) =ar? +%J, which consider a good example in a
r

central potential, the fermionic particle with spin
(1/2) interacted with proton and in other hand inter-
acted with external field produced by Harmonic oscilla-
tor and its inverse [6]:

eati b)) o

Where A is the

Laplacian operator and

(a :%Ma)Q,b ) are both constants. In spherical coor-

dinates, the complete wave function ‘P(;) separated as

follows:
¥(r)= R, ()Y (6,9) ©6)
Where the radial function an(’") satisfied the fol-
lowing differential equation, in 3D space respectively [6]:

2d l(+12)
dr® rdr r?

|:d2+2d +2M(E_ar2_:)2]:|‘l’(r)=0 @)

Using the following abbreviations [6]:
v(v+1)=1(l+1)+2Mb
1> =2Ma 8)
& =2ME

Then, a radial function satisfied the following differen-
tial equation [6]:

d 1d
[drzﬂm‘rz“””sz”(’):O ©

Winches accept the solution:
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R,(r)=C, exp[—%.rzjrk’l 1F[—n,k +%,rzj (10)

Where the function 1F[—n,k +é,rzj is given by [6, 35]:

* EJ(rz) (11)

And C,;, is the normalization constant, determined

from the condition:

ﬂR’i}y)T dr=1 (12)

Which satisfied by applying the useful integral [6, 35]:

“+00

j r[L((Z)) (rz)}2 exp(—r)dr = 7F(k -’:7 +1) (13)
5 !

To obtain the normalization constant, as follows [6]:

1 k+l !
Cnl = \E,U ( ZJ o 1
r (k +n+ f]
2
The complete orthonormalization eignenfunctions

and the energy eigenvalues respectively in three di-
mensional spaces [6]:

¥(r,¢)=C, exp(—§r2)rk‘l 1F[—n,k+%,r2jY(9,¢)
(15)
o

E, = 5 (4n+2+((2[+1)2+8Ma2)2J

nl

Where the factor % equal the values: m?+2Mb .

3. NONCOMMUTATIVE PHASE-SPACE HAMIL-
TONIAN FOR COMPANIED HARMONIC
POTENTIAL AND ITS INVERSE

Here, we brief present, the Schrodinger equation in
NC quantum mechanics, we apply the important 4
steps as [24-33]:

Ordinary Hamiltonian: & ( pi,xi) -
NC Hamiltonian: H (p,,%;)

Ordinary complex wave function : ¥ (;) -

NC complex wave function:‘i’(;) (16)

Ordinary energy:E —
NC energy:E

nc—ih

Ordinary produch:. —»

New star producr acting on phace and space: *

Then, the Schrodinger equitation in both (NC-3D)
phase and space:
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Fl(ﬁi,oei)*\if(?)zE \P(?) a7

nc—ih

Now, we apply the Boopp’s shift method on the
equation (18) to obtain, the reduced Schrodinger equa-
tion:

H (D% )y (F) = Eer (T) (18)
Where the two &, and p; operators in (NC-3D) phase

and space are given by:

. 0 s 2
xizxi—gpj and pi:pj—zxj (19)

Which allow us to obtaining, in (NC-3D) space and
phase, the important 6-operators:x=x;,5=%,,

2=x,,p,=p, b,=Dp, and p, = p; respectively as:

. o 0. ) 0 0:
p,=p +&y+@z and p, =p +@x+@y
ym P Ty 2 G 2

As a direct result of the above equations, the two
operators #? and p? in (NC-3D) spaces and phases can
be written as follows

1 1 L6
—_— =t —
roor o 4r° 21)
p2:p2+L§

Where L® and L0 are given by, respectively:

LO=LO,+LO,;+L 0O,
- _ ~ (22)
LO=L, 612+ L 023 +L, 03

Where® = g , based, on the eq. (21), to obtain, after

a straightforward calculation, the three important
terms, which will be use to determine the (NC-3D)
spaces and phases for (h.p.1.) potential:

at? =ar? —alL®

b b b 2
r r

A

~

ﬁz 3 p2 . Lo
2m, 2m, 2m,

The operator of companied Harmonic potential and its

A9
inverse V| ; (f“) and NC kinetic term Zp in (NC-3D)
m,

spaces and phases are determined from the projection
equations:
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Vipi (7)= ai® + %

r

= (29)
P A e
2my, 2m, 2m,

The two terms of eq. (25) allows us to obtaining, the
global potential operator H, ;(7) for companied Har-

monic potential and its inverse in both (NC-3D) phase
and space as:

th_i (f) =ar?+ % + {6[11 - aj LO+ 2L9 J (25)
r

r my

It’s clearly, the two first terms are given the ordi-
nary companied Harmonic potential and its inverse in
3D spaces, while the rest terms are proportional’s with
two infinitesimals parameters (® and ) and then

gives the terms of perturbations H, in NC-3D real

hpi
space and phase as:

Hh‘p‘i(r)—Z[[i—aJ+ 0 J§f (26)

r 2m,

We have replaced O and L6 by 20ST and 20 ST, ,

respectively, with S = é, it’s possible also to replace
e 1(—=2 <2 =2 . .

(SL) by 5(J -L -8 ) , which allow us to write, the

perturbative terms” Hy ;. . (r) as follows:

Hh_p'i(r)z[(a(ll—a\}+ 0 J(32_22_§2j 27)

r 2my,

e 1(=2 o2 o2 .
We have replaced (SL) byg(J -L -S j, as it's

known, this operator traduce the coupling between spin
and orbital momentum. After, a straightforward calcu-
lation, one can show that, the radial function R, (r)

satisfied, the differential equation:

@ 1d m ...
dr? rdr r?
b
ENC—ar2+r—2— R,(r)=0 (28

X —
o s-ale t |7 -1°-5)
rt 2m,,

=2 o2 o2
In Quantum mechanics, the (J , L , S and s,)

formed basis, then the

—2 —2

=2
(J -L —S) will be gives two eigenvalues

complete operator

[

L(j,l,s) = 5 and L'(j,l,s) = —H?l , corresponding

j= l+% (spin up) and j = l—% (spin down), respective-
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ly. Then, one can form a diagonal matrix of order
(3x3), with non null elements (H(h‘pi))n, (H(h_p_i))22
and (H(h_pi))33 =0 for companied Harmonic potential

and its inverse in NC-3D phase and space as:

ip 1 .
1f]:l+§ = spin up

A b 1+1 b
(H(h.p.i))zz :2+ar2+22[®[4a]+j (29)

ifj=l—% = spin down

A 9 b
(H(h,p,i) )33 = _72m0 +ar +r—2

The energies E_ i) Enappsy and Eg ;) of a
particle fermionic with spin up , spin down and non
polarised are determined, respectively, for companied
Harmonic potential and its inverse in (NC-3D) phase
and space as:

E E,+E

nuth.pi) = uh.p.i)
E itpiy = EutEqppi) (30)
En(h.pi.) = Enl

E piy and Ey, ;) are the modifications to the en-

ergy levels, associate with spin up and spin down, re-

spectively, at first order of :(® and 5) obtained by
applying the perturbation theory, as follows:

l 6
E piy = 2 [®Ts(h.p.i.) + % Tp(h.p.i.)]

I+1 7]
Eyhpiy=— ICE ((QTs(h.p.m + % Totrpiy D

In above two equations Ty, ;) and T4 ., are given by:

(31

oo 2
Ty =A I {exp(—grz)r_k’l 1F[—n,k+%,r2ﬂ (%—ar]rzdr
0

? 2 (33)
Topiy =4 j [exp(—grzjr_k’l 1F(—n,k +1,r? )} ridr
0

Where A =|C,|"

, the first part in eq. (33) can be

equal the sum of two terms Tsl(h.pi) and Tsfh_p'i) as:

+o0 2
Tppi) = Ab _[ exp (—,ur2 ) ;fz'“"s'.{l F[—n,k + %,rz H dr
’ (34)

+o0 2
+ 1
T pi) = —Aa _([ exp(—yrz)rj% 1.{1 F(—n,k + E,rz ﬂ dr

It’s convent to introduce a new variablev= ur?,
then eq. (35) take the equivalent form:
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+o0 2
. 1,
Tsl(h‘pi) - 22‘:‘4 E[ vh2 exp(—v){lF(—n,k +2,#j:| dv
(35)

400

2
1 U
Tihpiy = —22% !; v eXp(—v){lF(—n,k+2,yﬂ dv

Applying the following special integration [35]:

+00

I vt exp(fv)[lF(fn,;/,v)}2 dv =

0

_ n!r(a)
Ty 1) (y+n-1) (36)

1+n(7—a—1)(7/—a)

1%y i
+n(n—l)(;/—a—2)(;/—0:—1)(;/—(1)(;/—0:+1)
1222}/(;/+1)

Then, we can prove that first integral in equation
(34) can be deduced from:

+00

| exp(—v)v'kZ[IF(—n,k+;,va dv =

0 H
(37
K{1+n(k+1—(k—U—1ﬂk+1—(k—1»+”}
k+1
IT(k-1
Where K = I n 3(k ) e the eq. (37)
(k+f](k+fj...(k+n—fj
2 2 2
gives Tsl(h.p.L) as:
7 Ab K(3n+4) 38)

shpd) T o T 4R 12

And the second integral in equation (34) can be also
deduced from:

oo 2
o ool onf1+ 2.2 o
! . 2)m (39)
n
N J(l - 2k+1j

n!T(k+1)

o2 o]

to get Ts%h.p.i) as follows:

9 Aad 3n
Ts(h.p.i) = _W 1- oh+1 (40)

Where oJ = , which allow us

The obtained factor: T, ;) winches represent the roll
of NC-3D space

T

= 41
sth.p.i) 2,le71 4k +9 2,le+1 ( )

Ab K(3n+4) AaJd (2k+13-n
2k +1
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Now, if we replace 1F(—n,k+%’rZJ by LE:)%J (rz) ,

the second part of the equation (31), T, ,;), can be

written as:
i 2\ .2k (k%] 2 ’
Towpiy =4 I[ eXP(—/”" )'", L, (V ) dr. (42)

We set 2 =x and then we have:

-t

2
+00 k+l

Tyhpiy =4 j exp(—ux)x * l:Ln 2 (x)} dx (43)
0
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Now, we apply the integral form [6, 35]:

A+B+1)

I)xf“ exp(—x)[L‘é (x)}2 dx = I( B (44)

Which allow us to writing (NC-3D) phase contribution

Tp(h'p'i‘) as:

F(k + 3 + n]
T N2 ) (45)

hpi) —
pthpi) n!

The modification to the energy levels, associate with
spin up and spin down, at first order of ® and 6 for
companied Harmonic potential and its inverse in both
(NC-3D) phase and space are given by:

1A b K(3n+4) aJ
Eu(h.p.i.) = o -

A(l+1)

2 4k+2 2u*+

b K(3n+4)

2k +1

" k+§+n
2k+13—nn+ Iz 2

4m, n!

(46)

E, . =-
dtbpd) 2 (Z,uk_l 4k +2

The first two terms in above two equations are pro-
portional’s ® while the rest parts are proportional’s to

0 then clearly determine the physics contributions of
(NC-3D) space and (NC-3D) phase, respectively. We
conclude, from Egs. (15), (46) and (31) that, the total
energy of electron with spin up and down E

nu(h.p.i.) *
E and E

nd(h.p.i) nhpi) ~corresponding (H(h.p.i.))u’

(H(h'p'i_))22 and (H(hp‘i'))33 respectively for companied

Harmonic potential and its inverse in (NC-3D) phase
and space as:

1
3

E iy = ;’(4“2 +((2ee1)+ 8Ma2) ]+
b K(3n+4) aJ (2k+13-n
© -1 Ty kil +
2u k+2 24" 2k +1 (47.1)

— F(k+§+nj
o 2 )

!
4m, n!

A
2

And,

1
By = ;{4n +24 ((21 +1) +8Ma, )2]

of b K(3n+4) aJ (2k+13—nj N
247 ak+2 2 2k (47.2)

(I1+1)A
2 _ F[k+§+nj
o\ 2 )

4m n!

And,

— Tk+=+
aJ (2k+13-n)), @ ( 2 n]
2" 2k+1 4m, n!

1
By = ;’[471 424 ((2l+1)2 + 8Ma2)2} (47.3)

Regarding to the eq. (47), the eigenvalues of ener-
gies are real and then the NC Hamiltonian is Hermiti-
an, for companied Harmonic potential and its inverse
in (NC-3D) phase and space as:

Hye thpiy = Hupiy t Horpiy (49)

Where Hy, ;) and H_, 4 . are determined from, the

following relation, respectively:

H (hpi) — (_

5 1
+ar?+ — 1|0
2m,, "o

Hg ;) Represent an electron interacted exactly

with companied Harmonic potential and its inverse in
commutative 3D space while the matrix H_, ; ;) de-

notes to the spin-orbital interaction. Furthermore, if we
apply the 4-following steps:

{[@[b—aj+ o BL %[a(b—aj+ e jﬁi
rt 2m, )] © rt 2m, (51)

©=aB , 0=¢B and B-=Bk
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Table 1
The total energy in 3D space NC space-spin orbit NC phase-spin orbit
E_. . =6IT, . 01 .
e (h:pAL) shpd) Enp—(hpi) = Tp(hp.L) fOI‘ spin up
for spin up 2m,
E . . o(1+1 .
Y dn+2+ _"sg(hlp 1>1 for spin down p—sod = —7;” ) T, piy for spin down
E, =— ) 1 ==0(+1) T, 0
2 ((ZZ +1)” +8Ma, )2
Table 2
NC space-magnetic NC phase- magnetic The spectrum energy in (NC-3D) phase
and space
E,+E +E

E =20mT

np s((th.p.i.) np—m

= —29st(hp i)

ns—sou np-—sou +

for spin down
+Ens—m + Enp—m

Enl + Ens—sod + Enp—sod +

for spin down
+E,, ., + Enp_

Here o and ¢ are infinitesimal real proportional
constants, the magnetic moment 251/2 and (—§§)

denote to the ordinary Hamiltonian of Zeeman Effect,
we obtains the modified new Hamiltonian for compa-
nied Harmonic potential and its inverse in (NC-3D)
phase and space as:

b £ V= oo
H, pi)= [a (74 - aj + ZmOJ(BJ - SB) (52)

The above operator represents two fundamentals
interactions: the first one between spin and external
uniform magnetic field (ordinary Zeeman Effect) while
the other is a new coupling between the momentum of
electron and external uniform magnetic field. Finally,
we resumed obtained energy results for for companied
Harmonic potential and its inverse in NC-3D phase

H, 4.,;)and space is tables 1 and 2.

Where —-I<m<+l, denote to quantum number of
operator L, correspond the magnetic effect and for the

effect spin-orbital interaction we have seen two possi-
ble values j=1+1/2, thus every state in usually 3D of
energy for (h.p.i) potential will be in (NC-3D) phase
and space: 2(2/+1) sub-states, this is similarly to my

work [27].
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