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The search for solutions of Schrédinger equation (SE) with physically motivated potential models has
led to the discovery of new physical and chemical phenomena. For example, the pseudoharmonic oscillator
potential (PHOP) has a very interesting history: it is often used to compute bound-state normalizations
and energy levels of some diatomic molecules. This research has been divided into two parts. Firstly, we
have converted the mechanical properties related to the force constant, the equilibrium bond length, the
orthonormalized wave function and the energy eigenvalues to the corresponding atomic properties, which
include the dissociation energy and equilibrium intermolecular separation for the purpose of applying to
the homonuclear diatomic molecules, such as Oz, N2 and Hz, and heteronuclear diatomic molecules, such as
CH and ScH, under 2D-PHOP. Secondly, we have investigated some aspects of the modified 2D-PHOP (2D-
MPHOP) in noncommutative 2D real space-phase (NC: 2D-RSP) through the generalized Bopp’s shift
method in the framework of parameters due to (space-phase) noncommutativity (6,0 ) by means of the so-

lution of the 2D-deformed SE (2D-DSE). We have reconstructed the global Hamiltonian operator for 2D-
MPHOP, involving three fundamental parts: the first one is the ordinary Hamiltonian operator, in commu-

tative quantum mechanics (CQM); the second part is the spin-orbit operator H, . (r, 0,0 ) , while the third

one is the modified Zeeman operator H, (r, Ve E) and corresponding energy eigenvalues by applying the

perturbation method. Furthermore, we have shown that the global quantum group (GQG) of (NC: 2D-RSP)
symmetries has been broken automatically and replaced by subgroup (NC: 2D-RS) under 2D-MPHOP mol-
ecules interactions. We find the energy levels of the studied homonuclear and heteronuclear diatomic mol-

ecules in CQM as special case, when we use the simultaneously two limits (9,5) — (0,0) .
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1. INTRODUCTION

Schrodinger equation (SE) is one of the most powerful
tools to describe the physical and chemical phenomena
in nonrelativistic quantum mechanics and its exten-
sion. In recent years, there have been several studies of
the bound states of molecules, using SE, within a com-
pound harmonic oscillator potential and its inverse
potential, which is known by the pseudoharmonic oscil-
lator potential (PHOP). The PHOP is one of the im-
portant central model potentials, and it has been a sub-
ject of interest in many fields of chemical and physical
fields, molecular physics, it has been used to describe
the roto-vibrational states of homonuclear (Oz, N2 and
H2) and heteronuclear (CH and ScH) diatomic mole-
cules. Furthermore, this potential may be used for the
energy spectrum of linear and non-linear systems. As
known, it first appeared in Gol’dman et al. paper in
1960 [1-4]. Recently, some authors have focused on
extension of SE to the new space-time, which gives
more detail about the systems under study. And in
view of what has been mentioned, we would like to
study the results of the interactions of these potentials
in a large space and phase of quantum mechanics,
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known by the noncommutative quantum mechanics
(NCQM) or extended quantum mechanics (EQM),
which known firstly by Heisenberg and was developed
by Snyder at 1947. Motivated by these, over the past
few years, theoretical physicists have shown a great
deal of interest in solving the fundamental equations
for various potentials in NCQM to obtain profound in-
terpretations at microscopic scale [5-9] and in particu-
larly, our previous works in the case of (NC: 2D-RSP)
[10, 11], in (NC: 3D-RSP) [12, 13] and in relativistic
EQM [14, 15]. The concepts of noncommutativity of
space and phase developed using notions of the Moyal-
Weyl product (*- product), which modifies the ordinary
product of two arbitrary functions (fg)(x,p) to the form

( f* g)(x, p) at first order of two infinitesimal antisym-

metric parameters (6,6 ) as (throughout this paper, the
atomic units i.e. c=% =1 are employed) [5-8]:

(f*8)(x.p)=(fg)(x.p)~

1 LV A% x —H b p (1)
—5(0 o.foig+0 6ﬂfavg)(x,p)
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Here 2(9*“’,5 )Eg“‘” (Qa,éa) denotes two antisym-

metric constant tensors. Eq. (1) presents the noncom-
mutativity effects of space and phase, which allow us to
obtain the following non null commutators for NC coor-

dinate and momentum (ﬁy,f)ﬂ) in GQG of (NC: 2D-
RSP) symmetries as follows [9-12]:

¢8| =| %, (0). 4, (t)}zlﬁﬂvz
) T 9 )
Az, %, =A%, (t)%,(t) > ‘2

On the other hand, although the 2D-MPHOP for
previous diatomic molecules has attracted wide atten-
tion, this is not the case for the 2D and 3D MPHOP for
one-electron atoms. The 2D and 3D MPHOP for one-
electron atoms have been studied in our references [16-
18]. The principal goal of this work is on focusing
around to the extend our works from NC: 2D-RSP and
NC: 3D-RSP models for one electron atoms to NC: 2D-
RSP model for some diatomic molecules, which we have
mentioned previously based on the Ref. [2] to find out
what will happen with nonrelativistic spectrum if ef-
fects of 2D noncommutativity of space and phase are
considered for 2D-MPHOP. However, the solutions of
deformed radial Schrodinger equation for any angular
momentum quantum number /, with 2D-MPHOP, for
diatomic molecules O2, N2, Ho, CH, and ScH have not
yet been reported. The content of the present study is
regulated as follows. After this introduction, in the se-
cond section we briefly review the SE with 2D-PHOP
and we convert the mechanical properties to corre-
sponding atomic properties. Next, we shall briefly ex-
plain the fundamental concepts of the generalized
Bopp's shift method, and then we derive the 2D-
MPHOP and deformed spin-orbital Hamiltonian opera-

tor H.

so—ph
der 2D-NPHOP. In the next step, we apply the stand-
ard perturbation theory to find the corresponding spec-
trum energy E, . (n,.Jj.1,s) for n™ excited states and

(r, 6’,5) for previous diatomic molecules un-

then we end this section deducing the magnetic spec-

trum E,_, (n,,r,, D, ,m) produced automatically by the

external magnetic field. In section 4, we summarise the
global spectrum for diatomic molecules Oz, N2, Hz, CH,
and ScH under 2D-MPHOP and derive the correspond-
ing deformed Hamiltonian operator

H (r, 0,0, y, c;) in EQM. Finally, in section 5, we

nc—ph

give a brief conclusion to finalize the paper.
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2. REVIEW OF THE SPECTRUM OF 2D-PHOP
IN ORDINARY QUANTUM MECHANICS

Let us present a brief review of the ordinary energy
eigenvalues E, , and the normalized wave functions
r

¥, 1 (r.0) =R, (r)exp(+imp) for 2D-PHOP. Firstly,
the radial part Rn,z (r) for 2D Schrédinger equation
(2D-SE) satisfies the following equation [2]:
danrl(r) 1 anrl(r)
+= +
dr? r dr

Zy(Enrl—V(r)—

3)

LSO

2ur? r

where u= LU , (n,=0,1,....) and [=0,n,—1 are
my +my

the reduced mass of diatomic molecules, the principal

quantum and orbital angular momentum quantum num-

bers, respectively, while the 2D-PHOP is given by [2-3]:

2 2
V(r):;kroz[r—r;’] zDe[r—reJ :Ar2+r£;+c . (4)

To

. . 1
We make two simultaneous translations gkro2 - D,

and 7, —r,, which are the dissociation energy (% is the
force constant) and equilibrium intermolecular separa-
tion (7, is the equilibrium bond length). Thus we ob-
tain A=D,/ rez , B=D,r, and c¢=-2D,. According to
[2], the complete orthonormalized wave function
‘~Pnrlm (r,¢) for 2D-PHOP is determined from the follow-

ing equation:

Y, (r.g)=C, " exp(—irQ)LZl (2/1;"2) x ()
r r r 5
x (217‘2 ) exp(+img)
o) 17
where C, ;= M and L (2/17"2) are the
r l"(nr+,ul+1)

associated Laguerre functions. Therefore, the energy
eigenvalues E, ; of this potential in 2D-space are

d o JE B 1 BB
=y o) [ ML, ) [P on 0

where the two factors 4 and g are determined from

the two projection expressions:

D %
A= f%z MT; and g =\>+pkr, /4. (7)

Thus, we have transformed the mechanical properties
(k,1,), which appear in [2], to the atomic properties
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(D,.r,) in addition to the orthonormalized wave func-
tion W, , (r.¢) and the energy eigenvalues E, , for

previous diatomic molecules under 2D-PHOP.

3. THEORETICAL FRAMEWORK

3.1 Theoretical Description of the Generalized
Bopp’s Shift Method in 2D Spaces-phases
In order to obtain 2D-DSE in EQM, we replace or-
dinary Hamiltonian operator H ( p#,xv) , ordinary

complex function Yo (r, ¢) , ordinary energy Enrl and

ordinary product

H

nc—ph

by NC Hamiltonian

(P,»%,), complex function ‘P(;), energy E, .,

operator

and the Moyal-Weyl product (*-product), respectively.
Let us write the 2D-DSE for diatomic molecules under
2D-MPHOP as follows [9-12]:

A A A 0,
H,. (Party) EH[pa =p,+-Lxyid, =x, —Zﬂpﬂ] for (NC: 2D-RSP)

To find the analytical solutions of the Eq. (8) we
must apply the generalized Bopp’s shift method instead
of solving the 2D-DSE for 2D-MPHOP directly with
Moyal-Weyl product; we treated by applying directly
the usual commutators on quantum mechanics, in ad-

dition to the commutators [fca,fcﬂ] and [i)a,ﬁﬂ] due to

(space-phase) noncommutativity [15-16]:
[£,.%,]=i0,,and [ p,, by | =i0u (. f=1,2) (10)

It is well known that the two operators x,and p 5 are
given by the following Darboux transformations [14-17]:
¢ —x, lw dp, = +% =1,2)(11)
£, =%, ==, Pgand P, =P, +— xy(a, f=1,2)
The two ordinary variables (xa, pﬂ) play the same role

as in CQM and obey the usual commutation relations

EN AR EAGEAGIE LW
EEAREACEACIE.
ENARIACEACIEY

In recent work, we are interested in the first variety
that appears in Eq. (9.1). As direct consequences of the
generalized Bopp’s method (modified by a shift), the
2D-DSE for studied diatomic molecules under 2D-
MPHOP reduces the 2D-SE with two translations in
space and momentum:

and
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The NC Hamiltonian operator I:Incfph (ﬁﬂ,i‘,) acts
by the Moyal-Weyl product on the corresponding com-

plex wave function \f‘(;) of the new system to give us

the energy eigenvalues E . of the new system ener-
gy in EQM. In the EQM, the Hamiltonian operator
H (p;,%;) for diatomic molecules under 2D-MPHOP

nc—ph
can be resumed in three physical varieties, the first one

is H, ,(p,%) in (NC:2D-RSP), the second is
H,_,.(p,%,) in (NC: 2D-RS) symmetries, while the

third one is ﬁm,_ph (ﬁ#,xv) (NC: 2D-RP), respectively
[13-15]:

Ob i3 9.1)
X%, = xaj for (NC: 2D-RP) 9.2)

0.5
=x, - ?pﬂ for (NC: 2D-RS) (9.3)
Hyepn (ﬁxt’JEV)*@(f) - E”H’hﬁ (f) (12)

The Hamiltonian operator H

ne—ph (i)ﬂ, X, ) that appears

above can be determined from the following relation:

(f)ﬂ,y&v):ﬁ—zﬁLAfz +§;+c.

2u

H

nc—ph

(13)

According to our previous references [16, 17], we can
determine the two operators 7#* and p? in EQM from
the following equation:

72 :rz—LZH+O(92) and p? =p2+LZ§+O(52) (14)

. -\ - 2 _ .2, .2
w1th(9,9)=(012,912), Lx:Ly:O, re=x"+y°,
pl= pr + py2 and L, =xp,—yp,. After straightfor-
ward calculations, one can obtain the important term

(}—2 ), which will be used to determine the NC Hamilto-
7

nian operator H, ., (ﬁﬂ,aev) in GQG of NC: 2D-RSP

symmetries as follows:

1 1 Lo )
e R +0(6%). (15)

Substituting equations (14) and (15) into Eq. (13), one

04013-3
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gets the 2D-NC H,, . (p,.%,) in GQG of NC: 2D-RSP

symmetries as follows:

Hnefph (ﬁﬂ"’e\/) = th (pﬂ’xv)-’_Hpert-ph (r’e’é) ’ (16)
where H,, (p#,xv) and H . (r, 9,5) are given by:

2

B
th(pﬂ,xv):g—ﬂ+Ar2+r—2+c, an
= B Lzé L =2
Hpert-ﬁh(r’g’e):(F_AJLZHJr 2u +O(92’9 )(18)

It is clear that the operator H (py,xv) is just the

Hamiltonian operator for diatomic molecules in ordi-
nary quantum mechanics while the generated part

H

pert-ph (r, 0,0 ) appears as results of deformation of non-

commutativity space phase. In recent work, we can dis-
regard the second term in Hpm,ph (r, 49,5) because we

are interested in the corrections of first order 6 and @ .

3.2 2D Spin-orbit Hamiltonian Operators for
Diatomic Molecules under 2D-MEPHP

In this subsection, we want to derive the physical
(r,H,é) due to

space-phase noncommutativity. To achieve this goal,

form of the induced Hamiltonian H .

we replace both L,0 and Lzé by useful physical forms
«0SL and afSL , respectively [16-18]:

D

e

danrl (l") 1 an l(l") r2 . rez

r r e r

. D
7 +2;{Encph+ r:
We have seen previously that the induced spin-orbit

terms H

coph (r, 0,0 ) are very infinitesimal compared to

the principal Hamiltonian operator H ok ( p,x) in ordi-

nary quantum mechanics for diatomic molecules under
2D-PHOP. This allows applying standard perturbation
theory to determine the nonrelativistic energy correc-
tions E,, (n,.J.1,s) of diatomic molecules at first order

of two infinitesimal parameters 6 and 0 due to non-
commutativity space phase.

+00 2
Esafph (nr,j,l,s) = N(n)k(j, l,s) ({ P exp(—ZErQ)[LZZr (2/1r2)} {9( < —DSJ

r

(222)" "

with N (n,,l) equal to the values Hm

+o0 2
B (n,.iils) = N(nl)k(i.Ls) (j) £ exp(—zzt)[Lﬁl (22;:)} {H(D:; —;J

—2De—a{D e

J. NANO- ELECTRON. PHYS. 11, 04013 (2019)

HSO-ph (r’ 0, §) = Hpert-ph (I", o, 5) =
0 19
_a{pe:f_%ﬂ}ﬁg (19)
r r. 2u

N
Here a is the atomic fine structure constant, S de-
notes the spin of diatomic molecules O2, N2, H2, CH and
H,, . (r.0.0)

ScH, thus, the spin-orbit interactions H_
appear automatically. Now, physically, we can rewrite

the quantum spin-orbit coupling LS as follows:

- o> - S 252 2
J=L+S=2LS=J -L -S . (20)

N

Here J is the total momentum of the studied diatomic

molecule. Substitution of this equation into (19) yields:
H +9}(32_z2_§2).(21>

pert-kp

(r,@,g):

4 2
2 ,

_a|Dy’ D,
2u

In quantum mechanics, the eigenvalues k(j, l,s) of

the spin-orbit  coupling LS are equal to

%[j(j+1)—l(l+1)—s(s+1)] and the eigenvalues of the
total operator J are:

l+s

1-8|+1,...0,...|l +s]-1,

N-values

j:‘l*S, )

which are obtained in the interval ‘l —S‘S js‘l+s‘.

After straightforward calculation, the radial functions
Rn,z('") satisfy the following differential equation in
EQM for diatomic molecules under 2D-MPHOP:
N - 2
4 Df +9} LS- : 2
2ur

e

(22

r r, 2u

]Rnrl ()
3.3 Bound State Solution for Spin-orbit
Operator for 2D-MPHOP

The principal goal of this subsection is to determine
the energy spectrum E (n,, J» l,s) corresponding to

so—ph
H

soph (r, 0,0 ) by applying standard perturbation theo-

ry at first order of @ and @ and through the structure

constants which specified the dimensionality of 2D-
MPHOP of diatomic molecules such as Oz, N2, Ho, CH
and ScH. Thus, we obtain the following results of modi-

fied energy:
5 _
Der, + 0} dr
2u

(23)

r T,

. In view of the transformation r? =¢, Eq. (23) becomes as follows:

r? D

(249)

04013-4
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If we
T, (n.r, De)(i:ﬁ) as:

sles

introduce the following three factors

+00 2
T,(n,.r,.D,)=Dr} | t(zﬂl_l)_1 exp(—2lt)[Lﬁl (2%)} dt,

0

2
T,(n,.1,,D,) = jt(%“)’l exp(—z/it)[L‘n’l (2/115)} dt (25
0
TZ(n’r’re’De)E_g%(nr’re’l)e)
T

on arranging Eq. (24), we obtain our nonrelativistic
energy corrections ESO_ph (nr, J.l, s) at first order of two

infinitesimal parameters 6 and 0 for the previous
diatomic molecules as:

E  n (n,.J.l,s)=N(n, ) k(j,1,8)k(j.l5)

0 (26)

2 7
{gllez (nr’re’De)+ﬂT3 (nr,re,De)}

L @A AT (0, — iy +2) T, + 1, +1)

nr!2F(2—,ul)l"(1+,ul)

(22 CA )T (n, = )T, + 11, +1)

T. D) =
S(HV’Q’ e) n,!zr(—y,)r(uyl)

Regarding Eq. (7), u 1is positive, thus we have
T(—y) =0, then, the two

T2(nr’re’De)E_2: B(TL,‘,?‘G,DQ):O ’
T

e

factors

ESO_ph (nr,j, l,s) = HN(n,,l)k(j, l,s)Dere2

(2&)_(2”1_1) I(n, -+ Z)F(nr + 4 +1)

J. NANO- ELECTRON. PHYS. 11, 04013 (2019)

To obtain the exact results of the three terms
T;(n,.r,,D,), (i :1?%), we apply the following special
integral of hypergeometric function [20]:

[t exp (~at) 12, (5t) £ (5t)dt =

0
_ 5'“F(n—a+ﬂ+1)l"(m+77+1)

27
m!n!F(l—a+ﬂ)F(1+77) @7
xy Fy (-m,a,a— B;—n+a,n+1;1)
The hypergeometric function

sFy(-m,a,a—p;—n+a,A+1;1) is a particular case of

the generalized hypergeometric series

qu(—m,a,a—ﬂ;—n+a,/1+1;1), when p=2 andg=3.

After straightforward calculations, we obtain the three
factors T (nr,re,De)(i = ﬁ) as follows:

x g By (1, 20 =1, 1y =1, —n, + 2 =1, 7 +1;1)

x . F, (—nr,2yl +L g +1-n, + 2 +1, 1y +1;1)

Further, the substitution of Eq. (28) into Eq. (26)
enables us to obtain the first quantum correction

E,, . (n,.J,1s) of energy levels of all bound states as:

Thus, the EQM of noncommutative two-dimensional
real space-phase is reduced to the sub-group symmetry
of noncommutative two-dimensional real space for dia-
tomic molecules under 2D-MPHOP. Allow us to obtain
the following important physical results:

H, (r, 0,0 ) Wi (1:0) = By (1, 1,1,8) ¥, 1, (7,6) (30)

3.4 Bound State Solution for Modified Zeeman
Effect for 2D-MPHOP

In this subsection, it is possible to obtain the second
automatically symmetry for diatomic molecules O2, No,
Hz, CH and ScH under 2D-MPHOP. This physical phe-
nomenon is induced of the influence of an external uni-
form magnetic fieldﬁx, if we make the following two
simultaneous transformations to ensure that previous
calculations are not reputed:

(9,5)—>(;5, E)N. (31)

Here y and o are just two infinitesimal real pro-

portional constants, and to simplify calculations with-
out compromising physical content we choose the mag-

nr!2F(2—,ul)l"(1+/JZ)

netic field N =Nk . Then we transform the spin-orbit

) _
coupling Z{Q[DJE _De]-ka} L, to this new physi-

r4 re2 2/“

cal phenomena as follows:
) _
alo|Dr Do), 01y
2 rt re2 2u

) _
r T, 2u

This allowed to derive the modified magnetic Hamilto-

(32)

nian operator HZ_]Dh (r, Z 0) for previous diatomic mol-

ecules under 2D-MPHOP in global (NC: 2D-RSP) sym-
metries as:

— D 2 D pu > o>
H,,.(r2 g):(l[ e _S}L;J[NJ—SNJ (33)

r T,

where (—gg) presents the ordinary Hamiltonian of

Zeeman effect for 2D-PHOP. To determine the exact
NC magnetic modifications of the modified energy

04013-5
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mations k(j,l,s)>m (with-I<m<+l)and 6 - y in

E, 4 (nr,re,De,m) corresponding to above operator for
the Eq. (28) to get the following results:

2D-MPHOP, we make the two simultaneous transfor-

@AY 4T (0, — 4+ 2)T (4 14 +1)
nPT(2— 1)) T (1+ 1))

Ez-ph (nr,re,De,m) =0N (n,, l)mDere2 x 3 Fy (=120 =1, =1 =1, + 244 =1, 1 + 1, 1) R (34)

We end this subsection by addressing the important
results:

Hz-ph (7‘, 9’ é) \Pnrlm (7‘, ¢) -

(35)
Ez-ph (nr’ re’ ‘De’ m) \Pny,lm (r’ ¢)
4. RESULTS AND DISCUSSION OF GLOBAL
SPECTRUM FOR 2D-MPHOP IN EQM

In the previous subsections, we have solved the 2D-
DSE for diatomic molecules, such as O2, N2, He, CH
and ScH, under the influence of 2D-MPHOP and ob-

8D,
2
HTe

. 1
E,. oh (nr,],l, s,m) = 5(nr+1)

2D, + N (n,,l)mD,r,?

tained the two important values of the energy eigen-

values E, ; (n,..Jj,l,s) and E, ; (n,,75,Dg,m) corre-

sponding to two induced operators H_, (r, 0,0 ) and
H

2ph (r, Z» g‘) , respectively. In what follows, we re-
sume the obtained results of the modified energy levels

E.. (n,.J.l,s,m) of studied molecules, the ordinary

values of energy (6). In addition to the two new origi-
nal results (29) and (34), the explicit bound state ener-
gies E, ;. (n,.Jj.l,s,m) for 2D-MPHOP take the form:

c -ph

(22) )0 (n, — gy 420, 4 1 41)
nrYZF(Z—/Jl)F(l +,ul)

Fy(—n,, 20 =1, =1 =, + 20 =1, 1 + ;1) {0k (j, 1,5 ) + N m}

Thus, the total energy E, (n,,j,l,s,m) for 2D-

MPHOP in EQM is the sum of the ordinary part of en-
ergy E,, and the two

Eso_ph(nr,j,l,s) and E

z-ph

corrections of energy

(nr,re,De,m). This is one of
the main motivations for the topic of this search work.
Because our obtained eigenvalues of energies
E. oh (nr, i.Ls, m) are real, this allows us to consider

the deformed

anfph(r,é’,é,;(, g) as a Hermitian operator, and

diagonal Hamiltonian

based on the previous obtained results (see two equa-
tions (19) and (33)), the Hamiltonian operator for 2D-
MPHOP for studied diatomic molecules takes the form

at first order in 6 and 6 as:

H,. . (r,H,é,;(, g) = th (r,@,é,)(, g‘)+

_ — (37)
Heofph (r’6’6)+Hz-ph (r! x> G)
where the three parts th (r, De,re) , Hso-ph (r, 0,5) and
H, . (r, Z cj") are given by:
1 o (o 2
th(r,De,re) —ﬂ(%a( E)-’_r%;;z)-i_
2
+Dep2 DI op
T, r
_ Dr> D, 0= (38)
Hso_ph(r,g,g)——a{ r4 —,.62+2IM}LS
— D 7'82 D g > oo
alon )-8

which is the principal Hamiltonian operator for diatom-

ic molecules Oz, N2, H2, CH and ScH under the influence
of 2D-MPHOP in the symmetries of EQM. It should be
pointed out that this treatment considers only first or-

der terms in either @ or 6. Finally, we end this section
by introducing the important result of this work as:

{th (r)+ H,» (r, 0,5) +H,,, (r, A E)} ¥, im (r.¢)=

| (39)
{EnJ + Eso-ph (nr’ TesJs l’s) + Ez-ph (nr’ re’De’ m)} \Pn,,lm (7', ¢)

It is important to notice that the appearance of the
- > o o
spin S and total momentum operator J = L+ S in re-

cent work for molecules Oz, N2, Ho, CH and ScH under
the influence of 2D-MPHOP in the non-relativistic 2D-
DSE indicates a validity of the obtained results at high
energy, where the relativistic Dirac equation is applied.
This gives a positive indication of the possibility to ap-
ply a recent study of various nanoparticles at na-
noscales. It is quite instructive to consider the case of

vanishing of the two parameters (9,5). All obtained

results for Hamiltonian and energies are reduced to
corresponding values in ordinary quantum mechanics.

5. CONCLUSIONS

In this paper, the values of energy levels

(nr,j,l,s,m) of diatomic molecules O2, N2, Ho,

E

nc -ph
CH and ScH have been examined analytically under
2D-MPHOP in the case of EQM via the generalized
Bopp’s method and standard perturbation theory. We
briefly summarize what has been achieved in this re-
search work and comment on the outlook on future
work that can follow this paper:

— We have reviewed the nonrelativistic 2D-PHOP for
molecules O2, N2, H2, CH and ScH and the general-
ized Bopp’s method.
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— Our approach allows us to re-derive Hamiltonian
operators H,, ., (r, 0,0, z, 0') (in addition to the

principal part, it contains two new perturbative
terms: the first part is spin-orbit interaction

H (r,@,é), while the second one is modified

so—ph

Zeeman effect H.

2-ph (r, X ;)) and the correspond-

ing energy eigenvalues E_, oh (n,, J.Ls, m)

— We hope to get some interesting new applications to
nonrelativistic 2D-PHOP in the study of different
fields of matter sciences like solid-state physics, the
history of molecular structures and other interactions.
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Poag'asok neoBumipsaoro pisaanna Illpeninrepa B cumeTpisix po3mupeHoi KBAHTOBOT
MeXaHiKku IJ1a Moagu(iKOBAHOrO IICEBIOrapMOHIYHOIO [IOTEHIIAJIY: 3ACTOCYBAHHA
0 JeAKUX JBOXATOMHUX MOJIEKYJI

Abdelmadjid Maireche

Laboratory of Physics and Material Chemistry, Physics Department, Sciences Faculty, University of M'sila,
Msila, Algeria

Tlomyx poss'sskis pisasaaua Ipeminrepa (SE) 3 mogemamu (isMaHO MOTHBOBAHUX ITOTEHITIAIB IIPHU3BIB
10 BIZKPUTTSA HOBUX (PISMYHMX 1 XIMIYHMX ABUII. Halpuiiiaz, IOTEHIHA] IICeBAOTapMOHIYHOIO OCIIAJIATOPA
(PHOP) mae my:xe IikaBy iCTOpIiO: BiH 4aCTO BUKOPHUCTOBYEThCA I OOUMCIICHHS HOPMAJII3allil 3B'A3aHUX CTa-
HIB 1 €eHEePreTUYHNX PIBHIB JEeIKUX ABOXaTOMHMX MoJseKyJs. Ile mocmimkennsa Oyso posaiieHe Ha OB1 YACTHHMA.
Tlo-mrepire, My TIEPETBOPUIIN MEXAHIYHI BJIACTHUBOCTI, ITOB'A3aHI 3 MIOCTIMHOK CHJIOKN, JOBKUHOK PIBHOBAYKHOTO
3B'sI3Ky, OPTOHOPMOBAHOIO XBHJILOBOIO (DYHKITIEI0 TA BJIACHUMH 3HAYEHHSAMM €HEeprii, Ha BIOMIOBITHI aTOMHI
BJIACTHUBOCTI, K1 BKJTIOYAIOTH €HEPriio JMCOITialli, Ta pIBHOBAKHE MIKMOJIEKYJISPHE PO3IUICHHS 3 METOn 3a-
CTOCYBAHHS JIO0 TOMOSITIEPHUX JTBOXaTOMHHUX MOJIeKyJs, Takux sk Oz, N2 Ta Hs, 1 rereposmepHux IBOXaTOMHIX
mosterys, Takux Ak CH 1 ScH. ITo-gpyre, mu mocmimwau nmesiki acriekt momudikosaroro 2D-PHOP (2D-
MPHOP) B meromyratussiit 2D peasnshiit mpocroposiit dasi (NC: 2D-RSP) uepes ysarampHeHuit Meros 3cyBy
Borma B paMrax mapaMeTpiB, 06yMOBIIEHHX (IIpOCTOPOBO-(a30BOI0) HEKOMYTATHBHICTIO (0,0 ), 38 JOIOMOTOI0

poaB'saky 2D-medopmosanoro SE (2D-DSE). Mu pekoncrpyoBamu riobaibauii omepaTop amisgbrona miist 2D-
MPHOP 3z tproma dyHIaMeHTaIbHUMI YaCTUHAME: TIepPIa — 3BUIatHuil oneparop ['aMiIbTOHA, B KOMyTaTH-

BHi#l kBaHTOBIN Mexanimi (CQM); npyra yacTuna — cHiH-opOiTanbHUit onepatop H (r, 9,9) , & TPeTs — Mo-
IrQIKOBAHUHA 3€€MaHIBCHKUM OIIepaTop Herh (r, Z o-) 1 BIJIIOBiIHI BJIACHI 3HAYEHHS €HEPril 3a JOIIOMOTOI0

MeToay 30yperb. Kpim Toro, Mmu mokasasu, mio riiobasibHa KBantosa rpyma (GQG) cumerpiit (NC: 2D-RSP) 6y-
Jla aBTOMATUYHO po3dmra 1 3aminena miarpymono (NC: 2D-RS) mpu Bsaemomisx mosmexys 2D-MPHOP. Mu
3HAMIIINA €HePreTUYHI PIBHI JOC/IIKYBAHUX TOMOSIIIEPHUX 1 TeTePOsIIePHUX TBOXaTOMHUX Mosiekys y CQM s

0COOJIMBUY BUIIAJIOK, KOJIM OJTHOYACHO BUKOPHUCTOBYEMO JBA 00MEsKeHH ST (0,0) — (0,0) .

Kmiouosi cnosa: JIsoBumipHe piBHauHa Illpemiurepa, Ilcesmorapmoniunmuii morenmian, HexomyratusHa
mpocroposa ¢asa, modyrox Mosisa-Beiis.
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