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Ðåçþìå. Â äàíié ñòàòòi ðîçãëÿäà¹òüñÿ ïðîáëåìà íàáëèæåíîãî ðîçâ'ÿçó-
âàííÿ æîðñòêî íåêîðåêòíèõ çàäà÷ çi çáóðåíèìè âõiäíèìè äàíèìè. Äî
ðåãóëþâàííÿ òàêèõ çàäà÷ áóëî çàñòîñîâàíî iòåðîâàíèé ìåòîä Òiõîíîâà
ç ïðàâèëîì çóïèíêè çãiäíî ïðèíöèïó ðiâíîâàãè. Äëÿ çàïðîïîíîâàíîãî
ïiäõîäó áóëà çíàéäåíà ïîðÿäêîâà îöiíêà ïîõèáêè íà êëàñi çàäà÷, ùî äîñ-
ëiäæóþòüñÿ.
Abstract. Considered in this paper are the problem of approximate solving
severely ill-posed problems with perturbed input data. In oder to regularize
these problems the iterated Tikhonov method with balancing principle as stop
rule was applied. For this suggesting approach an order of accuracy on the
class of problems under investigation was found.

1. Introduction
In this paper we consider the problem of approximate solving severely ill-

posed problems represented in the form of operator equation of the �rst kind
Ax = y, (1)

where A : X → Y is linear compact injective operator between Hilbert spaces X
and Y . Let us denote inner products in these spaces by (·, ·) and corresponding
norms by ‖ · ‖. The symbol ‖ · ‖ stands also for standart operator norm.
It will become clear from the context which exactly space or norm is under
consideration. Suppose also that an available perturbation yδ ∈ Y : ‖y − yδ‖ ≤
δ, δ > 0, is known instead of the right-hand side y and a perturbed operator
Ah : ‖A − Ah‖ ≤ h, h > 0, is known instead of A, where Ah : X → Y is also
linear compact injective one.

Usually, equation (1) is referred to as a severely ill-posed problem if its
solution x0 = A−1y has a �nite "smoothness" in some sense, but A is an
in�nitely smoothing operator.

A distinguishing characteristic of such kind of problems is the fact that x0

belongs to some subspace V continuously embedded in X, the singular values
of the canonical embedding operator JV from V into X tend to zero with
polynomical rate, while the singular values {σl}∞l=1 of the operator A tend to
zero exponentially.

Following [2], [7] suppose that x0 belongs to the set
MK

p,ρ(A) := {x : x = (ln ... ln︸ ︷︷ ︸
K-times

(A∗A)−1)−pv, ‖v‖ ≤ ρ}, (2)

†Key words. Severely ill-posed problem, balancing principle, iterated Tikhonov method.
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when some unknown 0 < p ≤ p1, K = 1, 2, ..., and known ρ > 0, where the
operator function (ln ... ln︸ ︷︷ ︸

K-times
(A∗A)−1)−p well de�ned by the spectral decomposi-

tion
A∗A =

∞∑

l=1

σ2
l (Ψl, ·)Ψl

of the operator A∗A, i.e.

(ln ... ln︸ ︷︷ ︸
K-times

(A∗A)−1)−pv =
∞∑

l=1

(ln ... ln︸ ︷︷ ︸
K-times

(σ−2
l ))−p(Ψl, v)Ψl.

Further, without loss of generality we assume that

‖A‖ ≤ MK , MK = m
1/2
K ,mk =

{
e−1, k = 1,

e
− 1

mk−1 , k = 2, ...,K
,

i.e.
σl ≤ mK , l = 1, 2, ... .

Example 1. To illustrate severely ill-posed problems let us consider a problem
from satellite gravity gradiometry. With the surfaces of the Earth and the
satellite orbit assumed to be sphericals with radius r1 < r2, correspondently,
Ωri =

{
u ∈ R3, |u| = ri

}
, i = 1, 2, then one of the problems arising in this

theory ( see, e.g.,[4], [11]) could be formulated as an equation (1) with the
operator

Ax(u) :=
1

4πr1

∫

Ωr1

d2

dr2
2

(
r2
2 − r2

1

|u− v|3
)

x(v)dΩr1(v), u ∈ Ωr2 . (3)

In satellite gradiometry the exact solution of equation (1) with operator (3)
is usually considered to be an element of the spherical Sobolev space

Hs := {f ∈ L2(Ωr1) : ‖f‖2
s =

∞∑

l=0

2l+1∑

k=1

(
l +

1
2

)2s
|〈Y (1)

l,k , f〉|2 < ∞ }

for some positive index s, where

Y
(1)
l,k (ω) =

1
r1

Ym,j(
ω

r1
), ω ∈ Ωr1 ,

〈Y (1)
l,k , x〉 =

∫

Ωr1

Y
(1)
l,k (v)x(v)dΩr1(v)

and {Ym,j ,m = 0, 1, ..., j = 1, 2, ..., 2m + 1} is a set of spherical harmonics L2-
orthonormalized with respect to the unit sphere in R3.
As for the singular values σl of the operator (3) the following relation (see,
e.g., [12])

ln σ−2
l ³ l +

1
2
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is valid, then there are some constants c2 > c1 > 0 such that for any f ∈ Hs

two-sided estimate
c1‖f‖s ≤ ‖ lns(A∗A)−1f‖ ≤ c2‖f‖s

is valid. It, in particular, means that any element of Hs belongs to the set (2)
with K = 1 and p = s.
Example 2. Let us consider a two-dimensional model of the scattering by
a perfectly re�ecting periodic structure. According to Bao [3], Hettlich and
Kirsch [5], we can formulate the problem as follows. Let f ∈ C2(R) be 2π-
periodic function with f(x) > 0 for all x ∈ R. We set

Ωf = {(x, y) : y > f(x), x ∈ R}.
Then by

∂Ωf = {(x, y) : y = f(x), x ∈ R}
we denote a periodic interface which should be determined from scattering data.
For this end, we introduce an incident �eld uI(x, y; k) given by

uI(x, y; k) = exp{ik(x sin θ − y cos θ)}, (4)
which is a time-harmonic electromagnetic plane wave. Here i =

√−1 and the
constant k ∈ R is the refraction index of the material occupying Ωf , and is
given by k = ωc−1

0
√

εµ, where ω is the angular frequency, c0 is the speed of
light, µ > 0 is the magnetic permeability and ε is the dielectric coe�cient.
Moreover, in (4), θ is regarded as the angle of incidence.

We assume that
0 < |θ| < π

2
and

0 < k <
1
2π

.

Then the resulting scattering �eld uS(x, y; k) satis�es the Helmholtz equation
with the perfect re�ection boundary condition

∆uS + k2uS = 0 in Ωf , (5)
uS + uI = 0 on ∂Ωf , (6)

uS satis�es so-called outgoing wave condition:
uS =

∑

n∈Z
unei(αnx+βny), if y > ‖f‖C[0;2π]. (7)

In this example the function uS under consideration is regarded as complex-
valued. Here, we set

αn = n + k sin θ, βn =
√

k2 − (n + k sin θ)2, 0 ≤ arg βn < π. (8)
Moreover, we impose the (k sin θ)-quasi-periodicity condition over uS

uS(x + 2π, y; k) = exp(2πik sin θ)uS(x, y; k) (9)
for all (x, y) ∈ R2 (see, e.g., [3]).

Now we can state our inverse problem.
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Determine y = f(x), x ∈ R, from measurement uS(x, y; k),
x ∈ (0; 2π), where uS satis�es (5)-(7) and (9).

By the (k sin θ)-quasi-periodicity, setting
u = u(x, y; k) = uI(x, y; k) + uS(x, y; k).

We can rewrite (5)-(7) and (9) in terms of the total �eld u:
∆u + k2u = 0 in Ωf , (10)

u = 0 on ∂Ωf , (11)
u(x + 2π, y; k) = exp(2πik sin θ)u(x, y; k), (12)

u− uI satis�es the outgoing wave condition. (13)
Since k is �xed such that (8) is true, we simply write u(x, y) in place of

u(x, y; k). Then our inverse problem is equivalent to determine y = f(x), x ∈
R, from measurement

u(x, 0), x ∈ (0; 2π),
where u satis�es (10)-(13).

For �xed positive constants M0, M, k and a0, a such that
0 < M ≤ a0 ≤ a and 0 < k < 1, we set

F = {f ∈ C3+k(R) : ‖f‖C3+k[0;2π] ≤ M0, f is 2π-periodic,

djf

dxj
(0) =

djf

dxj
(2π), j = 0, 1, 2, 3,

f(0) = f(2π) = −a0, −a ≤ f(x) ≤ −M,

0 ≤ x ≤ 2π}
as an admissible set of unknown surfaces.

Denote

‖f‖C3+k[0;2π] =
3∑

j=0

∥∥∥∥
djf

dxj

∥∥∥∥
C[0;2π]

+ sup
0<x,x′≤2π,x6=x′

|(d3f
dx3 )(x)− (d3f

dx3 )(x′)|
|x− x′|k .

Let us set
Ωf = {(x, y) : y > f(x), x ∈ R} for f ∈ F .

For fj ∈ F , j = 1, 2, let us consider
∆uj + k2uj = 0 in Ωfj ,

uj = 0 on ∂Ωfj ,

uj is (k sin θ)-quasi-periodicity, i.e.
uj(x + 2π, y) = exp(2πik sin θ)uj(x, y).

We further assume that uj − uI satis�es the outgoing wave condition.
Theorem (2.1) [5] shows that in stated above conditions there exists a con-

stant C = C(k, θ,F) > 0 such that

‖f1 − f2‖C[0;2π] ≤
C

| ln | ln 1
‖(u1−u2)(·,0)‖H1(0;2π)

||



76 GANNA MYLEIKO, SERGEI SOLODKY

provided that for all f1, f2 ∈ F . Hence, solution of equation (5) belongs to the
set (2) with K = 2 and p = 1.

As far as the history of studing severely ill-posed problems, we should no-
tice, that these studies could be traced back to work [8], where the estimate
of accuracy for the Tikhonov regularization were found for equations (1) with
operators of both �nite and in�nite smoothness. Moreover, some regularization
methods for severely ill-posed problems were considered in [6], where, in par-
ticular, a general class regularization methods (according to Bakushinskiy; see,
e.g., [1]) were suggested for solving (1) in the case of perturbed operators and
the right-hand sides; for choosing a regularization parameter was employed a
modi�cation from [10]. Further, severely ill-posed problems were considered, in
particular, in works [7], [2], [12], [13]. In [12] the approch for solving ill-posed
problems (1) with solutions from (2) for K = 1 was proposed. It suggests
a combination of usual Tikhonov's regularization with Morozov's discrepancy
principle. The indicated combination allows to achieve the order-optimal ac-
curacy (in the logarithmic scale) O(ln−1 1

δ ) of recovering solution from the set
M1

p,ρ(A) for any p > p0 > 0. In [13] for solving the same problem Tikhonov's
method was employed again; however, for the stop rule was considered the bal-
ancing principle. This approach also allows to attain the order-optimal accuracy
O(ln−1 1

δ ) of recovering solutions from pointed set for all 0 < p ≤ 1. Notice,
that studies initiated in [12] were extended in [14] to the more wide class of
ill-posed problems (1) with solutions (2) for any K = 1, 2, ... and p > p0 > 0.
Herewith the order-optimal accuracy of recovering solutions O((ln ... ln︸ ︷︷ ︸

K-times

1
δ )−p)

was obtained.
Unlike the works described above, in the present paper for regularization of

severely ill-posed problems (1) with solutions (2) for K ≥ 1, and perturbed
operators and the right-hand sides iterated Tikhonov's method will be applied,
and a regularization parameter will be chosen in accordance with the balancing
principle. Subsequently we will demonstrate that the suggested approach for
solving (1)-(2), which consists in combination of iterative Tikhonov's method
and balancing principle, provides accuracy O((ln ... ln︸ ︷︷ ︸

K-times

1
h+δ )−p).

We recall that iterated Tikhonov's method consists in a choosing a natural m,
initial approximation xh,δ

0,α, and consistently computation of elements xh,δ
i,α , i =

1, 2, ..., m, by the rule

xh,δ
i,α = α(A∗hAh + αI)−1xh,δ

i−1,α + α(A∗hAh + αI)−1A∗hyδ, (14)

where m ≥ p1 and as the approximate solution we take xh,δ
m,α. If xh,δ

0,α = 0 then
the element xh,δ

m,α can be rewritten in the form of

xh,δ
m,α =

m∑

i=1

αi−1(A∗hAh + αI)−iA∗hyδ. (15)
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Obviously, any numerical realization of the Tikhonov method requires us to
curry out all computations with a �nite-dimensional approximation Ah,n in-
stead of Ah. Thus we assume �nite-dimensional approximation Ah,n with
rank(Ah,n) = n to be chosen such that

‖Ah −Ah,n‖ ≤ ε, where ε =
{

δρ−1 , 0 < h ≤ δ,
h , h > δ

. (16)

Further, along with (15) we will also consider auxiliary elements:

xm,α =
m∑

i=1

αi−1(A∗A + αI)−iA∗hy, (17)

xh
m,α,n =

m∑

i=1

αi−1(A∗h,nAh,n + αI)−iA∗h,ny, (18)

xh,δ
m,α,n =

m∑

i=1

αi−1(A∗h,nAh,n + αI)−iA∗h,nyδ. (19)

Recall that generating function of the iterated Tikhonov method has the form
(see [15, p.21])

gm,α(λ) :=
m∑

i=1

αi−1(α + λ)−i =
1
λ

(1− αm

(α + λ)m
), λ 6= 0,

and satis�es inequality (see [15, p.22])

sup
0<λ<∞

√
λgm,α(λ) ≤

√
m

α
.

2. Auxiliary statements
We shall later need the following auxiliary results and facts.
Thus, for any linear operators A,B ∈ L(X, Y ) and natural m the decompo-

sition (see [15, p. 92])

Am −Bm =
m−1∑

j=0

Aj(A−B)Bm−j−1 (20)

holds true.

Lemma 1. (see [15, p. 34]) If g is bounded, Borel measurable function with
respect to the [0;MK ],
A ∈ L(X, Y ), ‖A‖ ≤ MK then

A∗g(AA∗) = g(A∗A)A∗,

Ag(A∗A) = g(AA∗)A.
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In addition, it is well-known that for any bounded linear operator B

B(αI + B∗B)−1 = (αI + BB∗)−1B,

‖(αI + B∗B)−1‖ ≤ α−1, ‖(αI + B∗B)−1B∗‖ ≤ 1
2
√

α
, (21)

‖B(αI + B∗B)−1B∗‖ ≤ 1
hold.

Before proceeding further we establish a nomber of auxiliary assortations
which will be need later for analysis of approximating properties of suggesting
approch.
Lemma 2. Let

‖A‖ ≤ MK , MK = m
1/2
K , mk =

{
e−1, k = 1,

e
− 1

mk−1 , k = 2, ..., K
.

Then the following estimate

‖x0 − xm,α‖ ≤ ρ(ln ... ln︸ ︷︷ ︸
K-times

1
α

)−p

holds true, where xm,α determined by (17).
Proof. First, we note that

‖x0 − xm,α‖ = ‖[(ln ... ln︸ ︷︷ ︸
K-times

(A∗A)−1)−pv−

m∑

i=1

αi−1(A∗A + αI)−iA∗A(ln ... ln︸ ︷︷ ︸
K-times

(A∗A)−1)−pv]‖ ≤

≤ ρ‖[I −
m∑

i=1

αi−1(A∗A + αI)−iA∗A](ln ... ln︸ ︷︷ ︸
K-times

(A∗A)−1)−p‖ ≤

≤ ρ sup
0<λ≤mK

|[I −
m∑

i=1

αi−1 λ

(λ + α)i
](ln ... ln︸ ︷︷ ︸

K-times

1
λ

)−p| ≤

≤ ρ sup
0<λ≤mK

|( α

α + λ
)m(ln ... ln︸ ︷︷ ︸

K-times

1
λ

)−p|.

To estimate the expression standing under sign of supremum we consider two
events:
1) λ ≤ α. As function (ln ... ln︸ ︷︷ ︸

K-times

1
λ)−p monotonously decreases for λ, then

(
α

α + λ
)m(ln ... ln︸ ︷︷ ︸

K-times

1
λ

)−p < (ln ... ln︸ ︷︷ ︸
K-times

1
α

)−p.

2) λ ≥ α. We consider the function

f(λ) =
1

λm
(ln ... ln︸ ︷︷ ︸
K-times

1
λ

)−p, λ ∈ (0;mK ].
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It is easy to show that

f ′(λ) = λ−m−1(ln ... ln︸ ︷︷ ︸
K-times

1
λ

)−p−1( ln ... ln︸ ︷︷ ︸
(K−1)-times

1
λ

)−1...(ln
1
λ

)−1×

×[p−mln ... ln︸ ︷︷ ︸
K-times

1
λ

ln ... ln︸ ︷︷ ︸
(K−1)-times

1
λ
· ... · ln 1

λ
].

As f ′(λ) < 0 for p < m consequently f(λ) monotonously decreases for p <
m, m > 0. Thus,

f(λ) ≤ f(α) for λ ≥ α and(
α

α + λ

)m

(ln ... ln︸ ︷︷ ︸
1
λ

K-times
)−p =

(
α

α + λ

)m

· λm · 1
λm

(ln ... ln︸ ︷︷ ︸
1
λ

K-times
)−p ≤

≤ λm

(α + λ)m
(ln ... ln︸ ︷︷ ︸
K-times

1
α

)−p ≤ (ln ... ln︸ ︷︷ ︸
K-times

1
α

)−p.

Herewith, in general case we have

‖x0 − xm,α‖ ≤ ρ(ln ... ln︸ ︷︷ ︸
K-times

1
α

)−p,

hence, the proof is completed. ¤
Lemma 3. Let

‖A‖ ≤ MK , MK = m
1/2
K , mk =

{
e−1, k = 1,

e
− 1

mk−1 , k = 2, ..., K
.

Then the estimate

‖xm,α − xh
m,α,n‖ ≤

ρ(m +
√

m)(h + ε)√
α

holds true, where xm,α and xh
m,α,n determened by (17), (18) correspondently.

Proof. Clearly, that
‖x0‖ = ‖(ln ... ln︸ ︷︷ ︸

K-times
(A∗A)−1)−pv‖ ≤

≤ ρ sup
0<λ≤mK

|(ln ... ln︸ ︷︷ ︸
K-times

1
λ

)−p| ≤ ρ.

‖A−Ah,n‖ ≤ ‖A−Ah‖+ ‖Ah −Ah,n‖ ≤ h + ε.

Further, we estimate the norm
‖xm,α − xh

m,α,n‖ = ‖gm,α(A∗A)A∗y − gm,α(A∗h,nAh,n)A∗h,ny‖ =

= ‖gm,α(A∗A)A∗Ax0 − gm,α(A∗h,nAh,n)A∗h,nAx0‖ ≤
≤ ρ‖gm,α(A∗A)A∗A− gm,α(A∗h,nAh,n)A∗h,nA‖.

We consider the expression standing under norm's sign:
gm,α(A∗A)A∗A− gm,α(A∗h,nAh,n)A∗h,nA =

= gm,α(A∗A)A∗A− gm,α(A∗h,nAh,n)A∗h,nAh,n+
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+gm,α(A∗h,nAh,n)A∗h,nAh,n − gm,α(A∗h,nAh,n)A∗h,nA = I1 + I2,

where
I1 := gm,α(A∗A)A∗A− gm,α(A∗h,nAh,n)A∗h,nAh,n,

I2 := gm,α(A∗h,nAh,n)A∗h,nAh,n − gm,α(A∗h,nAh,n)A∗h,nA.

Now we estimate each of summands I1, I2.
Thus,

I1 = (I − αm(αI + A∗A)−m − (I − αm(αI + A∗h,nAh,n)−m) =

= αm[(αI + A∗h,nAh,n)−m − (αI + A∗A)−m].
We apply the formula (20) to expression standing in braces:

I1 = αm
m−1∑

j=0

(αI + A∗h,nAh,n)−j · [(αI + A∗h,nAh,n)−1 − (αI + A∗A)−1]×

×(αI + A∗A)−m+j+1 = αm
m−1∑

j=0

(αI + A∗h,nAh,n)−j−1(A∗A−A∗h,nAh,n)×

×(αI + A∗A)−m+j = αm
m−1∑

j=0

(αI + A∗h,nAh,n)−j−1(A∗ −A∗h,n)A×

×(αI + A∗A)−m+j + αm
m−1∑

j=0

(αI + A∗h,nAh,n)−j−1A∗h,n(A−Ah,n)×

×(αI + A∗A)−m+j .

Whence by Lemma 1 and estimates (21) we obtain

‖I1‖ ≤
m−1∑

j=0

[‖(αI + A∗h,nAh,n)−1‖j−1‖(αI + AA∗)−m+jA‖+

+‖(αI + A∗h,nAh,n)−j−1A∗h,n‖ · ‖(αI + A∗A)−1‖m−j ]×

×αm‖A−Ah,n‖ =
m−1∑

j=0

[α−j−1‖(αI + A∗A)−m+j−1‖×

×‖(αI + A∗A)−1A‖+ ‖(αI + A∗h,nAh,n)−1‖j×
×‖(αI + A∗h,nAh,n)−1A∗h,n‖α−m+j ]αm‖A−Ah,n‖ ≤

≤
m−1∑

j=0

[α−j−1 · α−m+j+1 · 1
2
√

α
+ α−j 1

2
√

α
· α−m+j ]αm×

×‖A−Ah,n‖ =
m−1∑

j=0

1√
α
‖A−Ah,n‖ ≤ m√

α
(h + ε). (22)

Then, due to (21) we �nd
‖I2‖ = ‖gm,α(A∗h,nAh,n)A∗h,n(Ah,n −A)‖ ≤
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≤ sup
0<λ≤mK

|
√

λgm,α(λ)| · ‖Ah,n −A‖ ≤
√

m√
α

(h + ε). (23)

Summarizing relations (22) and (23) we �nally obtain

‖xm,α,n − xh
m,α,n‖ ≤ ρ

(
m√
α

(h + ε) +
√

m√
α

(h + ε)
)

=

ρ(m +
√

m)(h + ε)√
α

.

Thus, Lemma is proved. ¤
Theorem 1. Let

‖A‖ ≤ MK , MK = m
1/2
K , mk =

{
e−1, k = 1,

e
− 1

mk−1 , k = 2, ..., K

and x0 = A−1y ∈ MK
p,ρ(A).

Then the estimate

‖x0 − xh,δ
m,α,n‖ ≤ ρ((ln ... ln︸ ︷︷ ︸

K-times

1
α

)−p +
ρ(m +

√
m)(h + ε)√
α

+
δ
√

m√
α

(24)

holds true, where xh,δ
m,α,n is approximate solution determined by (19).

Proof. Using triangle's rule we obtain
‖x0 − xh,δ

m,α,n‖ ≤ ‖x0 − xm,α‖+ ‖xm,α − xh
m,α,n‖+ ‖xh

m,α,n − xh,δ
m,α,n‖.

We consider last summand:
‖xh

m,α,n − xh,δ
m,α,n‖ = ‖gm,α(A∗h,nAh,n)A∗h,ny−

−gm,α(A∗h,nAh,n)A∗h,nyδ‖ ≤ ‖gm,α(A∗h,nAh,n)A∗h,n‖×
×‖y − yδ‖ ≤ sup

0<λ≤mK

(
√

λgm,α(λ)).

Thus, by inequality (19) we �nd

‖xh
m,α,n − xh,δ

m,α,n‖ ≤
δ
√

m√
α

. (25)

And �nally summarizing Lemma 2, Lemma 3 and relation (25) we obtain the
assertion of Theorem. ¤

3. The balancing principle
The balancing principle consists in choosing a value of regularization param-

eter α such that to balance two functions which give accuracy estimation. In
our case, these functions are represented by (see (24))

Φ(α) := ρ(ln ... ln︸ ︷︷ ︸
K-times

1
α

)−p,

Ψ(α) :=
ρ(m +

√
m)(h + ε) + δ

√
m√

α
.
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Taking into account, that (see (16))

ε =

{
δρ−1 , 0 < h ≤ δ,

h, h > δ

we can represent function Ψ(α) as

Ψ(α) =
ρc1h + c2δ√

α
,

where

c1 =

{
m +

√
m , 0 < h ≤ δ,

2(m +
√

m) , h > δ
, c2 =

{
m + 2

√
m , 0 < h ≤ δ,√

m ,h > δ
.

Thus, we can rewrite (24) in the form
‖x0 − xh,δ

m,α,n‖ ≤ Φ(α) + Ψ(α). (26)
Since φ(t) = (ln ... ln︸ ︷︷ ︸

K-times

1
t )
−p is monotonously increasing function then for in-

creasing α the function Φ(α) increases. By other side, the function Ψ(α) is
monotonously decreasing. According to behavior of functions Φ and Ψ (namely,
their monotonicity and concavity) to choose a value of regularization parameter
α = α̂ minimizing right-hand side of (26) we will balancing values Φ(α) and
Ψ(α), i.e.

Φ(α̂) = Ψ(α̂)
And, hence

‖x0 − xh,δ
m,α,n‖ ≤ 2Φ(α̂).

But, since function φ is unknown (namely, parameter p is unknown), then
such a priori choice of the best value α̂ is impossible. Therefore in considering
situation we need to make use of some a posteriori choice of α. For further
studing we choice the balancing principle as such rule.

Let describe this principle according to our problem. Consider two sets
∆N = {αi = (q2)iα0, i = 1, 2, ..., N}, q > 1,

α0 = n(h + δ)2, N : αN ³ 1,

and
M+(∆N ) = {αi ∈ ∆N : ‖xh,δ

m,αi,n − xh,δ
m,αj ,n‖ ≤

≤ 4Ψ(αj), j = 1, 2, ..., i}. (27)

Within the framework of balancing principle we take
α = α+ := max{α ∈ M+(∆N )}. (28)

as value of regularization parameter Moreover, consider auxiliary set
M(∆N ) := {αi ∈ ∆N : Φ(αi) ≤ Ψ(αi)}

and auxiliary value
α∗ := max{α ∈ M(∆N )}.

Without loss of generally we assume that
M(∆N ) 6= ∅ and ∆N \M(∆N ) 6= ∅.
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And �nally we can estimate closeness of exact and approximate solutions for
value of regularization parameter α = α+.

4. The main results

Theorem 2. Assume that the regularization parameter is choosing according
to (28). Then for any x0 ∈ MK

p,ρ(A), 0 < p ≤ p1, K = 1, 2, ..., the following
estimate

‖x0 − xh,δ
m,α+,n‖ ≤ 6qρ(ln ... ln︸ ︷︷ ︸

K-times

1
α̂

)−p

is valid.

Proof. First, we show that α∗ ≤ α+. Due to (26), behavior of functions
Φ(α), Ψ(α) and de�nition of the set M(∆N ), for any αj < α∗ we have

‖xh,δ
m,α∗,n − xh,δ

m,αj ,n‖ ≤ ‖x0 − xh,δ
m,α∗,n‖+ ‖x0 − xh,δ

m,αj ,n‖ ≤

≤ Φ(α∗) + Ψ(α∗) + Φ(αj) + Ψ(αj) ≤
≤ 2Φ(α∗) + Ψ(α∗) + Ψ(αj) ≤
≤ 3Ψ(α∗) + Ψ(αj) ≤ 4Ψ(αj).

Thus, α∗ ∈ M+(∆N ). And, hence the inequality α∗ ≤ α+ holds true. Further,
according to (26) for α = α∗ and also de�nition of sets M+(∆N ) and M(∆N )
we have

‖x0 − xh,δ
m,α+,n‖ ≤ ‖x0 − xh,δ

m,α∗,n‖+ ‖xh,δ
m,α∗,n − xh,δ

m,α+,n‖ ≤ 6Ψ(α∗). (29)

It is easy to see that from de�nition of function Ψ it follows

Ψ(q2α∗) =
ρc1h + c2δ√

q2α∗
=

1
q

ρc1h + c2δ√
α∗

=
1
q
Ψ(α∗). (30)

By other side, obviously α∗ ≤ α̂ ≤ q2α∗. According to (29) and (30) we obtain

‖x0 − xh,δ
m,α+,n‖ ≤ 6qΨ(q2α∗) ≤ 6qΨ(α̂) =

= 6qΦ(α̂) = 6qρ(ln ... ln︸ ︷︷ ︸
K-times

1
α̂

)−p.

Proof of Theorem 2 is completed. ¤

Theorem 3. Let x0 ∈ M1
p,ρ(A), 0 < p ≤ p1, and the condition of Theorem 2

is satis�es. Then for any δ, h > 0 the estimate

‖x0 − xh,δ
m,α+,n‖ ≤ cp

(
ln

ρ

ρc1h + c2δ

)−p

holds true, where cp = 6qρ
(

2p+1
2

)p
.
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Proof. According to Φ(α̂) = Ψ(α̂) we �nd

ρ ln−p 1
α̂

=
ρc1h + c2δ√

α̂
.

Then
α̂ =

(
ρc1h + c2δ

ρ

)2

ln2p 1
α̂

.

As for any x > 0 the relation lnx < x is valid, then

α̂ ≤
(

ρc1h + c2δ

ρ

)2 (
1
α̂

)2p

,

α̂ ≤
(

ρc1h + c2δ

ρ

) 2
2p+1

.

Hence, due to Theorem 2 we have

‖x0 − xh,δ
m,α+,n‖ ≤ 6qρ

(
ln

(
ρ

ρc1h + c2δ

) 2
2p+1

)−p

=

= 6qρ

(
2p + 1

2

)p (
ln

ρ

ρc1h + c2δ

)−p

.

Denoting cp = 6qρ
(

2p+1
2

)p
, we obtain the assertion of Theorem. ¤

Remark 2. In the case p1 = 1 and h = 0 the result of Theorem 3 was obtained
earlier in [13]. Thus, Theorem 3 generalizes result of [13] for any p1 > 0 and
h > 0.
Theorem 4. Let x0 ∈ MK

p,ρ(A), 0 < p ≤ p1, K = 2, 3, ... and the condition
of Theorem 2 is ful�led. Then, for su�ciently small h, δ > 0 the estimate

‖x0 − xh,δ
m,α+,n‖ ≤ cp


ln ... ln︸ ︷︷ ︸

K-times

ρ

ρc1h + c2δ



−p

holds true, where cp = 2p6qρ.
Proof. Φ(α̂) = Ψ(α̂), then

ρ


ln ... ln︸ ︷︷ ︸

K-times

1
α̂



−p

=
ρc1h + c2δ√

α̂
,

α̂ =
(

ρc1h + c2δ

ρ

)2

ln ... ln︸ ︷︷ ︸

K-times

1
α̂




2p

.

As for any x > exp(exp(...(exp︸ ︷︷ ︸
K-times

(1)))) the inequality ln ... ln︸ ︷︷ ︸
K-times

x < x is valid, then

α̂ ≤
(

ρc1h + c2δ

ρ

) 2
2p+1

,
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by that we have found the upper estimate for value of regularization parameter
which theoretically minimizing accuracy.

Thus, by Theorem 2 we obtain

‖x0 − xh,δ
m,α+,n‖ ≤ 6qρ


ln ... ln︸ ︷︷ ︸

K-times

1
α̂



−p

≤

≤ 6qρ


ln ... ln︸ ︷︷ ︸

K-times

(
ρ

ρc1h + c2δ

) 2
2p+1



−p

.

Further, we will �nd upper-bound estimate for

ln ... ln︸ ︷︷ ︸

K-times

(
ρ

ρc1h + c2δ

) 2
2p+1



−p

.

First, let K = 2, i.e. we will �nd upper-bound estimate for
[
ln ln

(
ρ

ρc1h + c2δ

) 2
2p+1

]−p

.

Obviously, that for any �xed p, 0 < p < ∞, there exist such h0, δ0 > 0 that
for all 0 < h ≤ h0 and 0 < δ ≤ δ0 the inequality

(
2p + 1

2

)2

≤ ln
ρ

c1ρh + c2δ

is ful�led. Whence, from monotonicity of ln it follows

ln
(

2p + 1
2

)2

≤ ln ln
ρ

c1ρh + c2δ
,

ln
(

2p + 1
2

)
≤ 1

2
ln ln

ρ

c1ρh + c2δ
.

ln ln
(

ρ

ρc1h + c2δ

) 2
2p+1

= ln ln
ρ

ρc1h + c2δ
− ln

2p + 1
2

≥

≥ 1
2

ln ln
ρ

ρc1h + c2δ
.

Hence, [
ln ln

(
ρ

ρc1h + c2δ

) 2
2p+1

]−p

≤ 2p

[
ln ln

ρ

ρc1h + c2δ

]−p

.

Further, in case of arbitrary K > 2 we will show, that for su�ciently small
h, δ > 0 the inequality

ln ... ln︸ ︷︷ ︸
K-times

(
ρ

ρc1h + c2δ

) 2
2p+1

≥ 1
2
ln ... ln︸ ︷︷ ︸
K-times

(
ρ

ρc1h + c2δ

)
(31)
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is ful�led. For that reason we will carry out the proof by induction. Thus, for
K = 2 the inequality (31) was proof earlier. Let assume now, that inequality
(31) is ful�led for K − 1, K ≥ 3, i.e.

ln ... ln︸ ︷︷ ︸
(K−1)-times

(
ρ

ρc1h + c2δ

) 2
2p+1

≥ 1
2

ln ... ln︸ ︷︷ ︸
(K−1)-times

(
ρ

ρc1h + c2δ

)
.

Then the relation

ln ... ln︸ ︷︷ ︸
K-times

(
ρ

ρc1h + c2δ

) 2
2p+1

≥ ln


1

2
ln ... ln︸ ︷︷ ︸

(K−1)-times

ρ

ρc1h + c2δ




holds true.
Further,

ln


1

2
ln ... ln︸ ︷︷ ︸

(K−1)-times

ρ

ρc1h + c2δ


− 1

2
ln ... ln︸ ︷︷ ︸
K-times

ρ

ρc1h + c2δ
=

= ln




1
2 ln ... ln︸ ︷︷ ︸
(K−1)-times

ρ
ρc1h+c2δ


 ln ... ln︸ ︷︷ ︸

(K−1)-times

ρ
ρc1h+c2δ




1/2




=

= ln


1

2


 ln ... ln︸ ︷︷ ︸

(K−1)-times

ρ

ρc1h + c2δ




1/2

 > 0.

Hence,

ln


1

2
ln ... ln︸ ︷︷ ︸

(K−1)-times

ρ

ρc1h + c2δ


 ≥ 1

2
ln ... ln︸ ︷︷ ︸
K-times

ρ

ρc1h + c2δ
.

Thus, inequality (31) holds true, then

ln ... ln︸ ︷︷ ︸

K-times

(
ρ

ρc1h + c2δ

) 2
2p+1



−p

≤

1

2
ln ... ln︸ ︷︷ ︸
K-times

ρ

ρc1h + c2δ



−p

=

= 2p


ln ... ln︸ ︷︷ ︸

K-times

ρ

ρc1h + c2δ



−p

.

And it means, that due to Theorem 2

‖x0 − xh,δ
m,α+,n‖ ≤ 6qρ2p


ln ... ln︸ ︷︷ ︸

K-times

ρ

ρc1h + c2δ



−p

.

Denoting cp = 2p6qρ we complete the proof of Theorem. ¤
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Remark 3. In [14] for solving severely ill-posed problems (1)-(2) with perturbed
right-hand sides yδ and exactly given operators A a combination of standard
Tikhonov regularization with Morozov's discrepancy principle was considered.
This approach allows to achieve the accuracy O((ln ... ln︸ ︷︷ ︸

K-times

1
δ )−p) among the set

MK
p,ρ(A),K ∈ N, of solutions. Moreover, in [14] the lower bound p0 of possible

values for parameter p (p > p0 > 0) was used. By other side, in Theorem 4 was
shown that the strategy (14), (27), (28) of solving severely ill-posed problems
guarantees the same order of accuracy on the same set MK

p,ρ(A) of solutions.
But in this case the upper bound of possible values for p (0 < p ≤ p1) is used.

Remark 4. In [14] for solving problems (1) with perturbed right-hand sides
only and with desired solutions from the set (2) for arbitrary K ∈ N was shown

e(MK
p,ρ(A), δ) = O((ln ... ln︸ ︷︷ ︸

K-times

1
δ
)−p),

where

e(MK
p,ρ(A), δ) := inf

S:Y→X
sup

x0∈MK
p,ρ(A)

sup
yδ∈Y :‖y−yδ‖≤δ

‖x0 − Syδ‖.

Hence, e(MK
p,ρ(A), δ) determines the least possible accuracy of solving (1) on the

set (2) among all approximate methods S : Y → X constructed on perturbed
data yδ. It means (see Theorem (4.1) [14]) that the value O((ln ... ln︸ ︷︷ ︸

K-times

1
δ )−p) gives

the order-optimal accuracy.
On the other hand, it follows from Theorems 3, 4 when h = 0 the received ac-

curacy of approximate solving (1) has the representation O((ln ... ln︸ ︷︷ ︸
K-times

1
δ )−p). This,

in its turn, means that in the case of exactly given operator A the suggested
approach also provides the order-optimal accuracy of solving severely ill-posed
problems.
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