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BALANCING PRINCIPLE FOR ITERATED TIKHONOV
METHOD OF SEVERELY ILL-POSED PROBLEMS

GANNA MYLEIKO, SERGEI SOLODKY

PE3IOME. B mamiit crarti po3ragaaerscsa mpobaemMa HAOIMKEHOTO PO3B’sa3y-
BaHHS JKOPCTKO HEKOPDEKTHWX 33349 31 30ypeHmMu BXiTHUMH JaHuMu. o
pery/IlOBaHHS TaKUX 33Jad OyJI0 3aCTOCOBAHO iTepoBaHmii MeTon TixoHOBa
3 MPaBWJIOM 3YIWHKH 3TiMHO OpWHNUOY piBHOBaru. [ljas 3ampomoHOBAHOTO
miaxomy Oysia 3HaliIeHa MOPSIKOBa OIIHKA, MOXUOKM Ha KJIACl 3a7ad9, M0 I0C-
LK YIOTHCS.

ABsTrRACT. Considered in this paper are the problem of approximate solving
severely ill-posed problems with perturbed input data. In oder to regularize
these problems the iterated Tikhonov method with balancing principle as stop
rule was applied. For this suggesting approach an order of accuracy on the
class of problems under investigation was found.

1. INTRODUCTION
In this paper we consider the problem of approximate solving severely ill-
posed problems represented in the form of operator equation of the first kind

Ax =y, (1)

where A : X — Y is linear compact injective operator between Hilbert spaces X
and Y. Let us denote inner products in these spaces by (-, -) and corresponding
norms by || - ||. The symbol || - || stands also for standart operator norm.
It will become clear from the context which exactly space or norm is under
consideration. Suppose also that an available perturbation ys € Y : |ly — ys|| <
0,6 > 0, is known instead of the right-hand side y and a perturbed operator
Ap o |JA— Ap|| < h,h > 0, is known instead of A, where Aj : X — Y is also
linear compact injective one.

Usually, equation (1) is referred to as a severely ill-posed problem if its
solution g = A~'y has a finite "smoothness" in some sense, but A is an
infinitely smoothing operator.

A distinguishing characteristic of such kind of problems is the fact that zg
belongs to some subspace V' continuously embedded in X, the singular values
of the canonical embedding operator Jy from V into X tend to zero with
polynomical rate, while the singular values {0;};°; of the operator A tend to
zero exponentially.

Following [2], [7] suppose that zo belongs to the set

lep(A) ={z:z=(n..InA*A)"H P, |v| < p}, (2)

K-times
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when some unknown 0 < p < p;, K = 1,2,..., and known p > 0, where the
operator function (In...In(A*A)~!)™P well defined by the spectral decomposi-

K-times
tion
oo
AA=D 0] (0,7,
=1
of the operator A*A, i.e.

(o In(A*A) ") Po = (.. In(0; %) P (¥;,0) ;.
K-times =1 K-times

Further, without loss of generality we assume that

-1
e, k=1,
IA|| < My, Mg =mi/* my = { ) ,

i.e.
o <mg, 1=1,2, ...

Example 1. To illustrate severely ill-posed problems let us consider a problem
from satellite gravity gradiometry. With the surfaces of the Earth and the
satellite orbit assumed to be sphericals with radius 71 < 73, correspondently,

= {u €R3, |u| = ’I“i} ,4 = 1,2, then one of the problems arising in this
theory ( see, e.g.,[4], [11]) could be formulated as an equation (1) with the
operator

Az(u) = — /j;g (W) 2(0)d, (v), wEQy,. (3)

471, u—v|?
1
In satellite gradiometry the exact solution of equation (1) with operator (3)
is usually considered to be an element of the spherical Sobolev space

oo 20+1
1
S e L@ AR =23 (14 ) I AP < o0 )
1=0 k=1
for some positive index s, where
VW) = S Yng(2), e,
™

/m )0 (1)

and {Yy,;,m=0,1,....,5 = 1,2, ...,2m + 1} is a set of spherical harmonics La-
orthonormalized with respect to the unit sphere in R3.
As for the singular values o; of the operator (3) the following relation (see,

e.g., [12])

1
Ino 2 =<1+ =
no,; +2
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is valid, then there are some constants co > ¢; > 0 such that for any f € H*
two-sided estimate

cllflls < [n*(A"A) L < eal f1ls

is valid. Tt, in particular, means that any element of H® belongs to the set (2)
with K =1 and p = s.

Example 2. Let us consider a two-dimensional model of the scattering by
a perfectly reflecting periodic structure. According to Bao [3], Hettlich and
Kirsch [5], we can formulate the problem as follows. Let f € C%*(R) be 27-
periodic function with f(z) > 0 for all z € R. We set

Qp ={(z,y) 1y > f(z),z €R}.
Then by

Oy ={(z,y) 1y = f(z),z €R}
we denote a periodic interface which should be determined from scattering data.
For this end, we introduce an incident field u/(x,y; k) given by

ul (z,y; k) = exp{ik(zsinf — ycosh)}, (4)

which is a time-harmonic electromagnetic plane wave. Here i = /—1 and the
constant £ € R is the refraction index of the material occupying €y, and is
given by k = wcy 1\ﬁ , where w is the angular frequency, cg is the speed of
light, 4 > 0 is the magnetic permeability and € is the dielectric coefficient.
Moreover, in (4), 0 is regarded as the angle of incidence.

We assume that

T
0<0] < =
<| |<2
and
0<k:<i
o’

Then the resulting scattering field u® (z, y; k) satisfies the Helmholtz equation
with the perfect reflection boundary condition

Au® + E*u® =0 in Qy, (5)
u® +u’ =0 on 09y, (6)
u® satisfies so-called outgoing wave condition:
WS = Zunez‘(anwﬁny)’ if y > || £l o020 (7)
nez

In this example the function u® under consideration is regarded as complex-
valued. Here, we set

an =n+ksing, B, =+k2— (n+ksinf)2, 0<argf, <. (8)
S

Moreover, we impose the (k sin 6)-quasi-periodicity condition over u
u®(x + 2m,y; k) = exp(2mik sin 0)u” (z, y; k) (9)

for all (z,y) € R? (see, e.g., [3]).
Now we can state our inverse problem.
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Determine y = f(z), z € R, from measurement v (x, y; k),
x € (0;27), where u® satisfies (5)-(7) and (9).
By the (k sin #)-quasi-periodicity, setting
w=u(z,y; k) = ul (z,y; k) + v (z,y; k).
We can rewrite (5)-(7) and (9) in terms of the total field wu:
Au+k*u=0in Qf, (10)
u =0 on 08y, (11)
u(x 4 27, y; k) = exp(2mik sin 0)u(x, y; k), (12)
u — u! satisfies the outgoing wave condition. (13)

Since k is fixed such that (8) is true, we simply write u(z,y) in place of

u(z,y; k). Then our inverse problem is equivalent to determine y = f(z),
R, from measurement
u(z,0),z € (0;2m),
where u satisfies (10)-(13).
For fixed positive constants My, M, k and ag, a such that
0<M<agp<aand 0 <k <1, we set

F={feC***R): [ fllestrpn < Mo, f is 2m-periodic,

& f & f .
—(0) = —(2 =0,1,2,3
dxj ( ) dm] ( 7T)7 .7 ) ) ) )
f(0) = f(27) = —ag, —a < f(x) < —M,
0<z<2m}
as an admissible set of unknown surfaces.
Denote
3 . d3 3
lowoag <SS ¢ 1@ - GDE
+ . — I
C3+Fk[0;27] pard dxi Cloan]  0<za'<omaite |z — a'|F
Let us set

Qf ={(z,y) 1y > f(x),x € R} for f € F.
For f; € F,7 = 1,2, let us consider
Auj + k2uj = 0in Qy,,
u; =0 on €y,,
u; is (ksin 6)-quasi-periodicity, i.e.
uj(x + 2m,y) = exp(2mik sin O)u;(x,y).

We further assume that u; — u! satisfies the outgoing wave condition.

x €

Theorem (2.1) [5] shows that in stated above conditions there exists a con-

stant C' = C(k,0,F) > 0 such that
C

— o1 <
1f1 = fallcjoen < o

1
H(u1*U2)(':0)”H1(0;2w) ||
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provided that for all f1, fo € F. Hence, solution of equation (5) belongs to the
set (2) with K =2 and p=1.

As far as the history of studing severely ill-posed problems, we should no-
tice, that these studies could be traced back to work [8], where the estimate
of accuracy for the Tikhonov regularization were found for equations (1) with
operators of both finite and infinite smoothness. Moreover, some regularization
methods for severely ill-posed problems were considered in [6], where, in par-
ticular, a general class regularization methods (according to Bakushinskiy; see,
e.g., [1]) were suggested for solving (1) in the case of perturbed operators and
the right-hand sides; for choosing a regularization parameter was employed a
modification from [10]. Further, severely ill-posed problems were considered, in
particular, in works [7], [2], [12], [13]. In [12] the approch for solving ill-posed
problems (1) with solutions from (2) for K = 1 was proposed. It suggests
a combination of usual Tikhonov’s regularization with Morozov’s discrepancy
principle. The indicated combination allows to achieve the order-optimal ac-
curacy (in the logarithmic scale) O(In~! %) of recovering solution from the set
M]i o(A) for any p > pg > 0. In [13] for solving the same problem Tikhonov’s
method was employed again; however, for the stop rule was considered the bal-
ancing principle. This approach also allows to attain the order-optimal accuracy
O(In™' }) of recovering solutions from pointed set for all 0 < p < 1. Notice,
that studies initiated in [12] were extended in [14] to the more wide class of
ill-posed problems (1) with solutions (2) for any K =1,2,... and p > py > 0.
Herewith the order-optimal accuracy of recovering solutions O((ln...ln%)_p)

K-times
was obtained.

Unlike the works described above, in the present paper for regularization of
severely ill-posed problems (1) with solutions (2) for K > 1, and perturbed
operators and the right-hand sides iterated Tikhonov’s method will be applied,
and a regularization parameter will be chosen in accordance with the balancing
principle. Subsequently we will demonstrate that the suggested approach for
solving (1)-(2), which consists in combination of iterative Tikhonov’s method
and balancing principle, provides accuracy O((In ... lnh%ﬂs)_p).

K-tim
We recall that iterated Tikhonov’s method comsitstse Sim a choosing a na}tllilsral m,

. . . ho . . :
initial approximation zy’,, and consistently computation of elements T, =

1,2,...,m, by the rule

2 = a(Ap Ay + al) el |+ a(Af Ay + o) T AL ys, (14)

7,00 1—1,«
. . h76 h76 J—
where m > p; and as the approximate solution we take zp; . If zy', = 0 then

the element a:ﬁ{fsa can be rewritten in the form of

m
aid, = o TN AG Ay + o) T Ays. (15)
=1
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Obviously, any numerical realization of the Tikhonov method requires us to
curry out all computations with a finite-dimensional approximation Ay , in-
stead of Aj. Thus we assume finite-dimensional approximation Ay, with
rank(Ap, ) = n to be chosen such that

_fépt , 0<h <y,
|Ap — Ap |l <€, where e = { hoo hs3 (16)
Further, along with (15) we will also consider auxiliary elements:
m . .
Lo = Z o HA*A 4 ad) T ALy, (17)
i=1
m . .
'r?I}n,oz,n = Z az—l( ;kL,nAhm, + 04[)_1 ;kt,ny7 (18)
i=1
m . .
Ol = D& A A+ D) A s, (19)
i=1

Recall that generating function of the iterated Tikhonov method has the form
(see [15, p.21])

i i 1 o
Ima(N) :—;a Ya+ ) fx(l—m), X0,

and satisfies inequality (see [15, p.22])

sup ﬁgm@()\)g m

0<A<o0 «

2. AUXILIARY STATEMENTS
We shall later need the following auxiliary results and facts.
Thus, for any linear operators A, B € L(X,Y) and natural m the decompo-
sition (see [15, p. 92|)

m—1
A™—B™ =" Al(A-B)B" ! (20)
j=0

holds true.

Lemma 1. (see |15, p. 34|) If g is bounded, Borel measurable function with
respect to the [0; M|,
A€ L(X,Y), ||A| < Mk then

A*g(AA®) = g(A*A)A*,

Ag(A*A) = g(AA™)A.
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In addition, it is well-known that for any bounded linear operator B
B(al +B*B)~! = (oI + BB*) !B,

I(al + B*B)™|| <™, |(al +B*B)™'B*|| < (21)

1
2\/a’
|B(al +B*B)"'B*| <1
hold.
Before proceeding further we establish a nomber of auxiliary assortations
which will be need later for analysis of approximating properties of suggesting
approch.

Lemma 2. Let

1
e, k=1,
lA| < Mk, MK:m}(/Q, mk:{ 1

Then the following estimate

.-
lzo — Tm,all < p(ln...ln&) P
K-times

holds true, where Tpm o determined by (17).
Proof. First, we note that

lzo — Tm.all = ([(n... In(A*A) =) "Py—
K-times
ST @ N AR A + al) AT A . (AT A) ) P <
i=1 K-times

<pllll =" oA A+ al) AT A (.. In(A7A) )P <
=1

K-times
<p sup |[I- iai_l#,](ln...lnl)_ﬂ <
0<A<mg i=1 ()\ + a)l K-times A
1
S p sup m hl...hl* P .
0</\SmK|(a T )‘) (K-times)\) |

To estimate the expression standing under sign of supremum we consider two

events:

1) A < a. As function (In...In$) P monotonously decreases for A, then
——

K-times
(=% (. Inm) P < (... In—) .
a+ A ~——\ ~——
K-times K-times
2) A > a. We consider the function
FO) = )\im(ln...lni)’p, A € (0;mg].

K-times
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It is easy to show that

') = A—m—l(ln...lni)—p—l( In...In %)_1...(ln%)_1x
K-times (K—1)-times
1 1 1
x[p—mln...lnx In..ln X]nx]

K-times (K —1)-times
As f'(A\) < 0 for p < m consequently f(\) monotonously decreases for p <
m, m > 0. Thus,
f(A) < f(a) for A > « and

a \™" 1 a \™ 1 1
In..In~ )P = A (In.In )P <
(a+)\) (.13 3) (a—i—)\) o 3 s

K-times K-times
A 1 1
S W(h’l...h’l*)_p S (h’l...h’l*)_p.
@ K-times @ K-times @

Herewith, in general case we have

1 _
lzo — Zm,all < p(ln...lna) P
K-times

hence, the proof is completed. O

Lemma 3. Let

e 1, k=1,
Al < My, Mg =m% my, = . .
K
e M1, k=2 .. K

Then the estimale
ol ) (h+e)
< Ja
holds true, where T o and J:fmam determened by (17), (18) correspondently.
Proof. Clearly, that

h

m,a,n

1z, — =

lzoll = [|(n.... In(A*A) ™) P <

K-times

1
<p sup |(In..In—)7P| <p.
O<Asm K—times)\

A= Apnll < |A = Apll + [[An — Anpll < h +e.
Further, we estimate the norm
|Zm,0 — x?n,a,n” = ||gm,a(A*A) A"y — Qm,a(AZ,nAh,n)Alt,ny|’ =
= [|gm.a(A"A)A" Ao — gm.a(Ah nAnn) AhnAzoll <
< pllgm.a(ATA)A"A = g o (A} o Ann) Ap Al
We consider the expression standing under norm’s sign:

gm,a(A*A)A*A - gm,a(Alt,nAh,n)Az,nA =
= gm,a(A*A)A*A - gm,a( Zm,Ah,n) Z7nAh,n+
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+gm,a(A2,nAh,n)AZ,nAh,n — 9m,«a (AZ,nAh,n)A;L,nA = Il + 127
where

I == gma (A*A)A™A — gm,a(AZ,nAh,n)A;;nAhv"’

Iy := gm,a(Az,nAh,n)Az,nAh,n — Im,a (Az,nAhﬂ) Z,HA
Now we estimate each of summands I, Io.
Thus,

L=I—-a"(al+AA)™™ — (I —a™(al + A} ,Apn) ™) =
=a"[(al + A}, Apn) ™™ — (@l + ATA)T™.
We apply the formula (20) to expression standing in braces:

m—1

Li=a™) (al + A5 Apn) 7 - [(0] + A Apg) ™' = (o + A*A)7!

J=0

3

x(ad + A* Ay~ — om

[ing

3
L

x(al + A*A)~™H = o™ (ol + A;;’nAh,n)_j_l(A* — A}, ) AX

J

Il
)

x(al + A*A)"™H 4 o™ (o + Ay, Apg) T AL (A= App)x

j=0
x (ol + A*A)~™H,
Whence by Lemma 1 and estimates (21) we obtain
m—1
I < Yl + A7y Ap) P (@l + AAS) T A+
j=0
HI(ad + A Ann) 7T AL - I(0d + A A)TH ) x
m—1
xa™[|A = Al = Y a7 I(ad + ATA) T X
j=0
x||(al + A*A)T Al + [[(af + Af , Angn) 7HI @
<0+ 4 ) oA = ] <

m—
1 o1 ;

< —]—1 —m+j+1 +a7 o™ %

< E_O 5 ]

Va 2\/a

x||A - AhnH—Z\fllA Ahn||<\f(h+€)

Then, due to (21) we find
12| = [|gm.a(Ah nAnn) Apn (Ann — A <

| x

(o + A}*l,nAhm)_j_l(A*A — Aj pAnn) X
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< sup VAgma(N)] - [Ann, — A < Y2
0<A<mx Vo

Summarizing relations (22) and (23) we finally obtain

L vm
T

(h+e). (23)

m
lman = Thanll <0 ( T2+ 6+ Y2 (h+)) =

p(m + Vi) (h +e)
o |

Thus, Lemma is proved. g

Theorem 1. Let

Mgmw@w%mp{l

and xo = A7y € M;;(A).
Then the estimate

1. plm++y/m)(h+e) dym
on _xmoanH < :0(( lni) P+ + (24)
— Va Va
K-times
holds true, where x?,{fsmn is approximate solution determined by (19).
Proof. Using triangle’s rule we obtain
h h h,o
||1:U - xm Q, n” < on — Tm a” + me o xm,a,n” + ||xm,oz,n - l‘W?Z,Oé,’VLH'
We consider last summand:
h * *
me,a,n - xm ,Q, nH Hgm,a( h,nAh,n) honY—
_gm,a(Az,nAh,n)Ah,nyén < Hgm,a(A;;,nAh,n) Z,n”x
xly=ysll < sup (VAgma(N))-
0<A<mg
Thus, by inequality (19) we find
i — aliall < 0 (25)
f

And finally summarizing Lemma 2, Lemma 3 and relation (25) we obtain the
assertion of Theorem. O

3. THE BALANCING PRINCIPLE
The balancing principle consists in choosing a value of regularization param-
eter o such that to balance two functions which give accuracy estimation. In
our case, these functions are represented by (see (24))

O() :=p(In... lné)fp,
K-times
plm + ) (b + €) + 6/
Ja .

U(a) :=
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Taking into account, that (see (16))
o Sp~t ,0<h <y,
A, h>6
we can represent function ¥(«) as

W(a) = pcih + ¢od

\/a I

where

o m+ /m ,0< h <6, o = m+2ym 0 < h <34,
" 2m+vm) k>0 T \um h>6

Thus, we can rewrite (24) in the form

lzo — 20l < ®(@) + ¥ (). (26)
Since ¢(t) = (ln...In1)~? is monotonously increasing function then for in-

K-times
creasing « the function ®(«) increases. By other side, the function ¥(«) is
monotonously decreasing. According to behavior of functions ® and ¥ (namely,
their monotonicity and concavity) to choose a value of regularization parameter
a = & minimizing right-hand side of (26) we will balancing values ®(«) and
U(a), i.e.
o(a) = ¥(a)
And, hence
o — a, | < 20(@).
But, since function ¢ is unknown (namely, parameter p is unknown), then
such a priori choice of the best value & is impossible. Therefore in considering
situation we need to make use of some a posteriori choice of a. For further
studing we choice the balancing principle as such rule.
Let describe this principle according to our problem. Consider two sets

Ayn = {a;i = (¢*)'a0,i =1,2,.., N}, ¢>1,
(o) :n(h—l—(S)Q, N:ay =1,
and h,d h,é
M*(An) ={o € A : |@niain — Tmiaymll <
<A4V(wj), j=1,2,...,1i}.
Within the framework of balancing principle we take
a = oy = max{a € MT(An)}. (28)
as value of regularization parameter Moreover, consider auxiliary set
M(AN) :=={a; € An : P() < ¥(ay)}
and auxiliary value
oy = max{a € M(An)}.
Without loss of generally we assume that
M(AN) 7é Q) and AN \M(AN) 7& @
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And finally we can estimate closeness of exact and approximate solutions for
value of regularization parameter o = a.

4. THE MAIN RESULTS

Theorem 2. Assume that the regularization parameter is choosing according
to (28). Then for any xg € lefp(A), 0<p<p, K=12,.., the following
estimate

1. _
on - wm 0 ,m || < 6qp(\1 In ,5) b
K-times

18 valid.

Proof. First, we show that a, < ay. Due to (26), behavior of functions
®(a), ¥(a) and definition of the set M (Ay), for any a; < o, we have

| <

h,6 h, h,0
H ma*,n maj,nH < ||x0 - J:Tri,a*,nH + on - xrrz,aj,n

< B(ay) + ¥(ay) + P(o)) + V(ay) <
<20 (ov) + V(o) + V(e ) <
<3V(ow) + ¥(oj) < 4Y(e).

Thus, ax € MT(Ay). And, hence the inequality . < ay holds true. Further,
according to (26) for & = v, and also definition of sets M (Ay) and M(Ay)
we have

h,d
n"l,a+,n ’ < ||'CE0 - xm Qi n” + ||'Im Qx,n xm o, ’ < 6‘1’(0[*) (29)

|0 — x
It is easy to see that from definition of function W it follows
h 0 1pcah o 1
peihtc0  lpah+co “U(ay). (30)
Vo, q O q

By other side, obviously o, < @ < ¢?ay. According to (29) and (30) we obtain

‘I’(QZQ*) =

on - xm a+,n” < 6Q‘ll(q a*) < GQ\P( )

~ 1
= 6¢P(a) = 6¢p(In.... lné)_p.
K-times

Proof of Theorem 2 is completed. O

Theorem 3. Let xg € Mlip(A), 0 < p < p1, and the condition of Theorem 2
is satisfies. Then for any 6,h > 0 the estimate

—p
h,6 P
_h < In ———
|zo xm,wﬂl” =6 < n pcih + 025>

holds true, where ¢, = 6qp (2p+1)
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Proof. According to ®(a) = V(@) we find
1 perh+ 26
va o

2
e (Yt
p a
As for any x > 0 the relation Inx < z is valid, then

. (PC1h+C25>2<1)2p
a< | —— = ,
P a

2
&< <pc1h+02(5>2p+1.
p

pln™P

)1

Then

Hence, due to Theorem 2 we have

2 -p
h,o P 2t
— ) < 6 1 _— =
on xm,a+,n” = bgp ( n (pclh i 025>

_6 2p+1 P 11’1* -
— 0P 2 pc1h + 6 '

P
Denoting ¢, = 6gp (@) , we obtain the assertion of Theorem. O

Remark 2. In the case py = 1 and h = 0 the result of Theorem 3 was obtained
earlier in [13]. Thus, Theorem 3 generalizes result of 13| for any p1 > 0 and
h > 0.

Theorem 4. Let xg € szp(A), 0<p<p, K=223,.. and the condition
of Theorem 2 is fulfiled. Then, for sufficiently small h,§ > 0 the estimate

—-p
h,d 14
-z < In...In—0
||$0 xm,our,nH >Cp (A& ' n’pclh—i—CQ(S
K-times
holds true, where c, = 2P6qp.
Proof. ®(a) = ¥(a), then
-p
| | 1 pcih + ¢od
n..ln— =
p \ /a \/5 )
K-times
2p
~ pcrh + cad 2 1
o=|—— In...In—
p ——a
K-times

As for any x > exp(exp(...(exp(1)))) the inequality In...Inz < z is valid, then
—_— —— "

K-times K-times

2
&< <p01h+025>2p+1
= p )
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by that we have found the upper estimate for value of regularization parameter

which theoretically minimizing accuracy.
Thus, by Theorem 2 we obtain
-p

1
|xo — :v?,fa+7n|| < 6gp ln...lné <
K-times

<6gp |In...1 p o
-~ qp n... n m

K-times

Further, we will find upper-bound estimate for

—-p

—-p

)\
In..In{ ————
~—— \ pc1h + c30

K-times

First, let K = 2, i.e. we will find upper-bound estimate for

221 P
p P+
Inln (| ———
[n " <pc1h—|—625) ]

Obviously, that for any fixed p, 0 < p < oo, there exist such hg,dp > 0 that
for all 0 < h < hg and 0 < § < §p the inequality

(219“)2 S p——
5 <

c1ph + c26

is fulfiled. Whence, from monotonicity of In it follows

2
m (2 a2
2 c1ph + 26

2 1 1
In Pt §71nln#.
2 2 c1ph + c26
2
2p+1 2 1
Inln _r 3" =Inln p —1In P+ >
pcih + c26 pcrh + c2d 2
1
> flnln#.
2 pcih + cod
Hence,
2 7-p —p
p 2p+1 p
Inln [ ——— <2’ |\lnln ———— .
[n . <p01h+025> ] - [n np01h+625:|

Further, in case of arbitrary K > 2 we will show, that for sufficiently small

h,d > 0 the inequality

n..1 P G P (31)
SIGES pcih + cod - Q‘W—’;t 2 pcih + cod
-times

K-times
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is fulfiled. For that reason we will carry out the proof by induction. Thus, for

K = 2 the inequality (31) was proof earlier. Let assume now, that inequality
(31) is fulfiled for K — 1, K >3, i.e.

P 2p+1 1 p
In...In - >_ In..ln .
—— pcih + c2d 2 ~~—— pcih + cod
K—1)-times

(K —1)-times (K—
Then the relation
2
1 1
In...In P )" >In|=- In..ln S
~—— \ pc1h + c20 2 ~—~— pcih+c6
K-times (K—1)-times
holds true.
Further,
1 p 1 p
n|- mn.n ——| —=In...In——— =
2 ~—~~— pcih+ 28 QH/—’pclh—l—cyS
(K—1)-times K-times
L' n..In
2 = pc1h+026
1 (K—1)-times .
= In 2| =
ln ln hi
—— rca +c20
(K—1)-times i
1/2
1 p
=In In...lIn —— > 0.
~—~—" pcih + c20
(K —1)-times
Hence,
1 1
In |- In..ln S > —-Iln...In S
2 ~—~— pcih+c6 QW—’pclfH—cQé
(K—1)-times K-times
Thus, inequality (31) holds true, then
—p -p

p 2p+1 p
In...ln | —— < n..ln—" =
~—— \ pc1h + 30 2>—~—pc1h + c30

K-times K-times
-p
=27 [In...In p
~—~~—pc1h + c20
K-times
And it means, that due to Theorem 2
-p
|zo — 2! | <6¢p2P |In...In _r
ma+n W—’pclh+025
K-times

Denoting ¢, = 2P6gp we complete the proof of Theorem. U
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Remark 3. In [14] for solving severely ill-posed problems (1)-(2) with perturbed
right-hand sides ys and exactly given operators A a combination of standard
Tikhonov regularization with Morozov’s discrepancy principle was considered.
This approach allows to achieve the accuracy O((ln...ln%)*p) amonyg the set
K-times
szfp(A),K € N, of solutions. Moreover, in [14] the lower bound po of possible
values for parameter p (p > po > 0) was used. By other side, in Theorem 4 was
shown that the strategy (14), (27), (28) of solving severely ill-posed problems
guarantees the same order of accuracy on the same set M]fp(A) of solutions.
But in this case the upper bound of possible values for p (0 < p < p1) is used.

Remark 4. In [14] for solving problems (1) with perturbed right-hand sides
only and with desired solutions from the set (2) for arbitrary K € N was shown

1. _
e(MIffp(A),(S) = O((ln...lng) Py,
K-times
where
e(sz,(p(A), 0):= inf sup sup lzo = Sysll-

SY=X g0eME,(4)  ys€Y:lly—ysll<s

Hence, e(Mpr(A), J) determines the least possible accuracy of solving (1) on the
set (2) among all approzimate methods S : Y — X constructed on perturbed
data ys. It means (see Theorem (4.1) [14]) that the value O((In...In%)P) gives

) K-times
the order-optimal accuracy.

On the other hand, it follows from Theorems 3, 4 when h = 0 the received ac-
curacy of approzimate solving (1) has the representation O((In...In3) 7). This,

K-times
in its turn, means that in the case of exactly given operator A the suggested

approach also provides the order-optimal accuracy of solving severely ill-posed
problems.
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