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ARITHMETICAL COMPLEXITY OF MODIFIED FULLY
DISCRETE PROJECTION METHOD FOR THE PERIODIC

INTEGRAL EQUATIONS

E.V. SEMENOVA

Ðåçþìå. Ðîçãëÿäà¹òüñÿ çàäà÷à ñêîðî÷åííÿ îáñÿãó iíôîðìàöiéíèõ çàòðàò
ïðè ðîçâ'ÿçàííi ïåðiîäè÷íèõ iíòåãðàëüíèõ ðiâíÿíü ç ìiíiìàëüíîþ ïîõèá-
êîþ. Äëÿ öüîãî ïðîïîíó¹òüñÿ äåÿêà ìîäèôiêàöiÿ ïîâíiñòþ äèñêðåòíîãî
ïðîåêöiéíîãî ìåòîäó. Äîâåäåíî, ùî öÿ ìîäèôiêàöiÿ çáåðiãà¹ íàéêðàùó
òî÷íiñòü ÷èñåëüíîãî ìåòîäó â ìåòðèöi ñîáîë¹âñüêèõ ïðîñòîðiâ ç îáñÿãîì
àðèôìåòè÷íèõ äié N log N çà ïîðÿäêîì.
Abstract. The reduction of arithmetical operations for the solving of pe-
riodic integral equations with minimal error bound is considered. For this
some modi�cation of a fully discrete projection method was proposed. It was
proved that such modi�cation guarantees the best possible accuracy of the nu-
merical method in the metric of Sobolev spaces with the order of arithmetical
operations N log N .

1. Introduction
Periodic integral equations are frequently found in various problems of nat-

ural sciences that can be described by a boundary value problems such as
Laplace or Helmholz equations. To illustrate this, we rewrite Dirichlet problem
for Laplace equation on the simply connected domain Ω. So it takes the form

4G(X) = 0, X ∈ Ω, (1)
G(X) = g(X), X ∈ Γ = ∂Ω, (2)

where Γ is a smooth boundary of domain Ω and function g is continuous. As
it is well-known (see [8]), the problem (1) has a unique solution under quite
natural condition on Γ. Solving (1) by direct method, using the representation
of the function G(X), X ∈ Ω in the form of a simple-layer potential, we derive
to a boundary integral equation

Su = g, (3)

where S is a single layer operator with logarithmic kernel and u = ∂G
∂n

is
a normal derivation on the boundary. Note that by so-called Cauchy data
(G|Γ, ∂G

∂n

∣∣
Γ
) we can easily �nd the function G(X) for X ∈ Ω. Thus for solving

boundary value problem (1) it is necessary to solve periodic integral equation
of the �rst kind (3). It is such kind of problem that will be the object of our
investigation. Periodic integral equations are well-known and various aspects
of their solving in the metric of Sobolev spaces were investigated, for example,
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in [2], [4], [7]. The most widely-used approaches for numerical solving of periodic
integral equations are fully discrete collocation and projection methods that
applied together with selfregularization principle. In the paper we will consider
modi�cation of a fully discrete projection method that was �rstly proposed
for solving the integral Symm equation (see Example 1) in [4] and extended
on the class of pseudodi�erentional equation in [12]. Moreover we introduce
some additional projection in the method to reduce amount of arithmetical
operations.

2. Statement of the problems
In the space L2(0, 1) we consider the following integral equation

Au(t) = f(t), t ∈ [0, 1], (4)
where f is 1- periodic function and operator A has the form

A =
q∑

p=0

Ap, Apu(t) =
∫ 1

0
kp(t− s)ap(t, s)u(s)ds. (5)

Let's denote by C∞ = C∞([0, 1]2) the space C∞ of smooth 1-biperiodic
functions of both variables. Suppose that ap ∈ C∞([0, 1]2), p = 0, . . . , q, and

a0(t, t) 6= 0,∀t ∈ [0, 1]. (6)
Moreover assume that kp(t) is 1 - periodic function with known Fourier co-
e�cients k̂p(n) by trigonometric basis for each p = 0, . . . , q. Additionally we
suppose that for some α ∈ R and β > 0 the following inequalities

c00|n|α ≤ |k̂0(n)| ≤ c0|n|α, n ∈ Z/0, (7)

|k̂0(n)− k̂0(n− 1)| ≤ cnα−β, n ∈ Z, (8)
|k̂p(n)| ≤ cnα−β, n ∈ Z, p = 1, . . . , q, (9)

hold true, where c, c0, c00 > 0 and

n =
{ |n|, n ∈ Z/0

1, n = 0 .

Denote by Hλ1 and Hλ1,λ2 , −∞ < λ1, λ2 < ∞, Hilbert spaces of 1-periodic
functions and 1-biperiodic functions with the norm

‖u‖λ1 :=

(∑

n∈Z
|n|2λ1 |û(n)|2

)1/2

< ∞,

‖a‖λ1,λ2 :=


 ∑

(k,l)∈Z2

|k|2λ1 |l|2λ2 |â(k, l)|2



1/2

< ∞

respectively. Here

û(n) =
∫ 1

0
e−n(t)u(t)dt, â(k, l) =

∫ 1

0

∫ 1

0
e−k(t)e−l(s)a(t, s)dtds
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are Fourier coe�cients of functions u(t) and a(t, s) by trigonometric basis
{ek}+∞

k=−∞, where ek(t) = ei2πkt, t ∈ [0, 1].
In general case in the space H0 = L2(0, 1) operatorA is compact and problem

is unstable. But for considered class of equations (4) with (6)-(9) it is possible
to choose appropriate pair of spaces to regularized problem. As it was shown
in [7, Theorem 6.3.1], operator A under our assumptions creates isomorphism
between Hλ and Hλ−α for any λ ∈ R. That is why if f ∈ Hλ−α the equation
(4) has unique solution u ∈ Hλ. Let's consider more precisely the structure of
(4). Following [7, Ch.6], we rewrite the equation (4) in a such way

Au = Du +
q∑

p=1

A′pu = f ′, (10)

where Du =
∫ 1
0 k0(t − s)u(s)ds, A′0 := A′0 = 1

a0(t,t)

∫ 1
0 k(t − s)(a0(t, s) −

a0(t, t))u(s)ds, A′p := A′p = Ap

a0(t,t) for p = 1..q and f := f ′ = f
a0(t,t) . Note

that D ∈ L(Hλ,Hλ−α) is performing the isomorphism between the spaces Hλ

and Hλ−α and operators Ap ∈ L(Hλ,Hλ−α+β), p = 0, .., q are compact on the
pair of spaces Hλ and Hλ−α. Further we will deal with equation (10) instead
of (4).

Thereafter for all λ ≤ µ there are constants c′λ, c′′λ > 0, such that for any
v ∈ Hλ the following inequality

c′λ‖v‖λ ≤ ‖Av‖λ−α ≤ c′′λ‖v‖λ (11)
holds true.

Further we assume that exact solution of equation (4) belongs to some
Sobolev spaces, namely u ∈ Hµ for some µ > α + 1/2 and ‖u‖µ ≤ 1. Then due
to conditions (11) we have that f ∈ Hµ−α and ‖f‖µ−α ≤ c′′µ.

Note that classical elliptic pseudodi�erential equations are included in the
class of equations (4) with conditions (6)- (9) (see for detail [6]). Below we
rewrite the examples of some equations that satisfy the conditions (6)- (9).

Example 1. The typical example of equation from the class under consider-
ation is an integral Symm's equation

Au(t) :=
∫ 1

0
k0(t− s)u(s)ds +

∫ 1

0
a1(t, s)u(s)ds = f(t), (12)

k0(t− s) = log | sinπ(t− s)|, (13)

a1(t, s) =





log |γ(t)−γ(s)|
| sin π(t−s)| , t 6= s

log(|γ′(t)/π|), t = s

.

As it is known, the kernel a1(t, s) of operator A1 presents the C∞-smooth and
1-biperiodic function and Fourier coe�cients k0 have the view

k̂0(n) =
{ 1

2|n| , n ∈ Z/0
log 2, n = 0.
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It is evident that conditions (6)-(9) are satis�ed for a0(t, s) = k1(t, s) ≡ 1,
α = −1 and any β > 0.

Example 2. The integral equation
∫ 1

0
|x(t)− x(s)|2 log |x(t)− x(s)|u(s)ds = f(t), t ∈ [0, 1],

arises for solving biharmonic Dirichlet problems in the bounded domain with
smooth Jordan boundary (see for more detailed information, for example, [1], [7,
Ch. 6]). Rewrite the equation in the form

∫ 1

0
k0(t− s)a0(t, s)u(s)ds +

∫ 1

0
a1(t, s)u(s)ds = f(t),

where
a0(t, s) =

|x(t)− x(s)|2
sin2 π(t− s)

for t 6= s, a0(t, t) =
|x′(t)|2

π2
,

a1(t, s) = |x(t)− x(s)|2 log
|x(t)− x(s)|
| sinπ(t− s)| for t 6= s, a1(t, t) ≡ 0,

k0(t) = sin2 πt log | sinπt|.
The Fourier coe�cients k0 are known and have the following view k̂0(0) =
−1

2 log 2 + 1
4 ,

k̂0(±1) = 1
4 log 2− 3

16 ,

k̂0(n) =
1

4|n|(n2 − 1)
, |n| ≥ 2.

It is easy to see that conditions (7)-(9) satis�ed for α = −3, β = 1. Thus,
the equation under consideration is also included in the investigated class of
problems.

To make more precise the smoothness properties of functions ap, p = 0, . . . , q,
we introduce in consideration the space of Gevre function of Roumieu type
(see [3, p.112]):

Gη1,η2 =
{

a ∈ C∞ : ‖a‖2
η1,η2

:=

:=
∞∑

k,l=−∞
|â(k, l)|2e2η2(|k|1/η1+|l|1/η1 ) < ∞

}
, η1, η2 > 0.

(14)

Note that with η1 = 1 by (14) it follows that function a(t, s) has analytic
continuations in both variables into the strip {z : z = t + is, |s| < η2

2π} of
complex plane. Further suppose that ap ∈ Gη1,η2 , p = 0, . . . , q, for some η1 ≥ 1
and η2 > 0. It should be noted that condition (14) doesn't restrict the class
of equation under consideration but allows to take better into account the
smoothness of kernels ap. At �rst such assumption for ap was proposed in
the paper [4], which considered particular case of mentioned class of periodic
integral equations, namely Symm integral equation.

In the paper we state the aim to reduce the amount of arithmetical operations
of fully discrete projection method for solving (4) with conditions (7)-(9) and
(14). For that we propose modi�cation of the method that should not in�uence
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on the best error accuracy of solution for a priori case of choosing regularization
parameter.

3. Auxiliary statements
For further presentation of our results we will use the following notations.

Let's introduce n-dimensional subspaces of trigonometric polynomials
TN = {uN : uN (t) =

∑

k∈ZN

ckek(t)},

ZN =
{

k : −N

2
< k ≤ N

2
, k = 0,±1,±2, . . .

}
. (15)

Denote by PN and PΩ orthogonal projectors
PNu(t) =

∑

k∈ZN

û(k)ek(t) ∈ TN ,

PΩN
a(t, s) =

∑

l,k∈ΩN

â(k, l)ek(t)el(s) ∈ TN × TN ,

where ΩN is some domain on coordinate plane restricted by square
(−N/2, N/2]× (−N/2, N/2]. Also denote by QN and QN,N interpolation pro-
jectors, such that QNu(t) ∈ TN , QN,Na(t, s) ∈ TN × TN and on the uniform
grid it holds true

(QNu)(jN−1) = u(jN−1), j = 1, 2, . . . , N,

(QN,Na)(jN−1, iN−1) = a(jN−1, iN−1), j, i = 1, 2, . . . , N.

It is well-known (see, for example, [7, Ch.8]), that

‖u− PNu‖λ ≤
(

N

2

)λ−µ

‖u‖µ, λ ≤ µ, u ∈ Hµ, (16)

‖u−QNu‖λ ≤ cλ,µNλ−µ‖u‖µ, 0 ≤ λ ≤ µ, µ >
1
2
, u ∈ Hµ, (17)

where cλ,µ =
(

1
2

)λ−µ
γµ, and γµ =

(
1 + 2

∑∞
j=1

1
j2µ

) 1
2
.

Moreover, for any vN ∈ TN according to inverse Bernshtein inequality it
holds

‖vN‖µ ≤
(

N

2

)µ−λ

‖vN‖λ, λ ≤ µ. (18)

4. Discretization of operator Ap, p = 0, . . . , q
Note that operator D has simple structure and doesn't need any additional

discretization. Thus we need to discretize only operators Ap for each p =
0, . . . , q,. This will be done further.

Let's consider the following domain of coordinate plane

Dη1

M = {(k, l) : |k|1/η1 + |l|1/η1 <

(
M

2

) 1
η1

, k, l = 0,±1,±2 . . .} (19)

Note that Dη1

M ⊆ D1
M for all η1 ≥ 1.
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Assume that the discrete information about kernels ap(t, s) and right hand
side f is given in the knots of uniform grids

(
j1
M , j2

M

)
, where j1, j2 = 1..M.

Let's approximate the kernels ap in the following way
ap,M = PD

η1
M

QM,Map, (20)

where PD
η1
M

is ortoprojector on span of vectors {ei, ej} such that (i, j) ∈ Dη1

M .

Then the operators Ap,M can be approximate by

Ap,Mu(t) =
∫ 1

0
kp(t− s)ap,M (t, s)u(s)ds. (21)

where function ap,M has the form (20). To �nd the approximative properties
of operator (21) we state the following auxiliary lemmas.
Lemma 1. Let a ∈ Gη1,η2 for η1 ≥ 1, then for ∀λ1, λ2 and

M > 2
(

max{λ1, λ2}η1

η2

)η1

it holds true

‖a− PD
η1
M

a‖λ1,λ2 ≤
(

M

2

)λ1+λ2

e−2η2(M
2 )1/η1‖a‖η1,η2 .

Proof. We rewrite the norm of element a− PD
η1
M

a in the following way

‖a− PD
η1
M

a‖2
λ1,λ2

≤ ‖
∑

|k|>0

∑

l:(k,l)/∈D
η1
M

â(k, l)ek(t)el(s)‖2
λ1,λ2

=

=
∑

|k|>0

∑

l:(k,l)/∈D
η1
M

|k|2λ1 |l|2λ2 |â(k, l)|2 =

=
∑

|k|>0

∑

l:(k,l)/∈D
η1
M

|k|2λ1 |l|2λ2 |â(k, l)|2e−k,le
+
k,l =: S1,

where e±k,l = e±2η2(|k|1η1+|l|1/η1 ). Further it is worth to estimate the norm of S1

depending on values k and l.
At �rst we consider the case then |k| < M

2 , |l| < M
2 and (k, l) /∈ Dη1

M . In the
view of fact that maxk,l/∈D

η1
M
|k|2λ1 |l|2λ2e−k,l = (M

2 )2(λ1+λ2)e−4η1(M
2 )1/η2 we have

S1 =
∑

|k|< M
2

∑

|l|< M
2

:(k,l)/∈D
η1
M

|k|2λ1 |l|2λ2 |â(k, l)|2e−k,le
+
k,l =

=
(

M

2

)2(λ1+λ2)

e−4η2(M
2 )1/η1‖a‖2

η1,η2
.

Let consider the element S1 for the case |k| < M
2 , |l| ≥ M

2 and (k, l) /∈ Dη1

M ,
then

S1 =
∑

|k|< M
2

|k|2λ1
∑

|l|≥M
2

:(k,l)/∈D
η1
M

|l|2λ2 |â(k, l)|2e−k,le
+
k,l.
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Since the function x2νe−2η2x
1

η1 has the maximum in the point x1 =
(

νη1

η2

)η1

,
then for all

|l| > M

2
≥

(
λ2η1

η2

)η1

it holds true

|l|2λ2e−2η2|l|1/η1
<

(
M

2

)2λ2

e−2η2(M
2 )1/η1

.

With account of this we have

S1 =
∑

|k|< M
2

|k|2λ1e−2η2|k|1/η1
∑

|l|≥M
2

:(k,l)/∈D
η1
M

|l|2λ2 |â(k, l)|2e−k, le+
k,l ≤

≤
(

M

2

)2(λ1+λ2)

e−4η2(M
2 )1/η1‖a‖2

η1,η2
.

For the third case when |k| > M
2 , l < M

2 , (k, l) /∈ Dη1

M the estimation of S1

can be found similar to the second one, namely we get

S1 =
∑

|k|> M
2

|k|2λ1e−2η2|k|1/η1
∑

0<|l|< M
2

:(k,l)/∈D
η1
M

|l|2λ2e2η2|l|1/η1 |â(k, l)|2e+
k,l

≤
(

M

2

)2(λ1+λ2)

e−4η2(M
2 )1/η1‖a‖2

η1,η2
.

And in the last case when |k| > M
2 , |l| > M

2 , the element S1 can be easily
estimated as in the cases above, namely we have

S1 =
∑

|k|≥M
2

∑

|l|≥M
2

|k|2λ1 |l|2λ2e−k,l|â(k, l)|2e+
k,l

≤
(

M

2

)2(λ1+λ2)

e−4η2(M
2 )1/η1‖a‖2

η1,η2

for M ≥
(

max{λ1,λ2}η1

η2

)η1

.

Summarizing all cases considered above, we arrive to statement of lemma.

Lemma 2. Let a ∈ Gη1,η2 for η1 ≥ 1, then for λ1, λ2 > 1/2 and

M > 2
(

max{λ1, λ2}η1

η2

)η1

it holds true

‖a− PD
η1
M

QM,Ma‖λ1,λ2 ≤ c1

(
M

2

)λ1+λ2

e−2η2(M
2 )1/η1‖a‖η1,η2 ,

where c1 = z1 + 1, z1 := z1(λ1, λ2) = γλ1 + γλ2 + γλ1γλ2 .
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Proof. Due to simple transformation we have

‖a− PD
η1
M

QM,Ma‖λ1,λ2 ≤ ‖PD
η1
M

(a−QM,Ma)‖λ1,λ2 + ‖(I − PD
η1
M

)a‖λ1,λ2 .

For the further estimation we need the previous result, that was obtained in
Lemma 2 [10]. Namely, for λ1, λ2 > 1/2 it holds true

‖a−QM,Ma‖λ1,λ2 ≤ z1

(
M

2

)λ1+λ2

e−2η2(M
2 )1/η1‖a‖η1,η2 .

Using inequality above and lemma 1 we have

‖a− PD
η1
M

QM,Ma‖λ1,λ2 ≤ ‖a− P η1

DM
a‖λ1,λ2 + ‖PD

η1
M

(QM,Ma− a)‖λ1,λ2 ≤

z1

(
M

2

)λ1+λ2

e−2η2(M
2 )1/η1‖a‖η1,η2 +

(
M

2

)λ1+λ2

e−2η2(M
2 )1/η1‖a‖η1,η2 ≤

≤ c1

(
M

2

)λ1+λ2

e−2η2(M
2 )1/η1‖a‖η1,η2 ,

what was to be proved.
For the further analysis we need following results

Proposition 2. [7, Lemma 6.1.3] Let k(t) be 1 - periodic function such that

|k̂(n)| ≤ c0n
α n ∈ Z. (22)

Then for any λ > 1
2 it ful�ls

∥∥∥∥
∫ 1

0
k(t− s)v(t, s)ds

∥∥∥∥
λ−α

≤ c02λ−α+1γλ−α‖v‖λ,λ−α,

where c0 is some constant and v(t, s) is 1-biperiodic function in Sobolev space
Hλ,λ−α.

Proposition 3. [7, Lemma 6.1.1] For any λ1, λ2 ≥ 1
2 , u, a ∈ Hλ1,λ2 it holds

true
‖au‖λ1,λ2 ≤ z2‖a‖λ1,λ2‖u‖λ1,λ2 ,

where z2 := z2(λ1, λ2) = 2λ1+λ2+2γλ1γλ2 .

Further we need the following additional bounds. Namely using the propo-
sitions 2, 3 and integral representation of Ap it is easy to �nd that for any
λ1 > 1/2 and λ2 > 1/2

‖Ap‖λ1,λ2 ≤ z3‖ap‖λ1,λ2 , (23)

where z3 := z3(λ1, λ2) = 2λ1+1γλ1z2(λ1, λ2) is some increasing function. Now
we are ready to prove the error of approximation for the operator
Ap ∈ L(Hλ,Hλ−α) by Ap,M . The corresponding result is formulated in the
lemma 3.
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Lemma 3. Let Ap has the form (5) for all p = 0, . . . , q and the conditions
(6)-(9) are ful�lled. Moreover we assume that ap ∈ Gη1,η2 , p = 0..q for η1 ≥ 1

and η2 > 0. Then for all λ > max{1
2 , 1

2 + α} and M > 2
(

η1

η2
max{λ, λ− α}

)η1

it holds true

‖Ap −Ap,M‖λ,λ−α ≤ c2‖a‖η1,η2

(
M

2

)2λ−α

e−2η2(M
2 )1/η1

,

where c2 = c1c02λ−α+1γλ−αz2.

Proof. Taking into account Lemma 1, the Propositions 2 and 3, we have

‖(A−Ap,M )‖λ−α = ‖
∫ 1

0
kp(t− s)(ap − PD

η1
m

QM,Map)(t, s)u(s)ds‖λ−α ≤

≤ c02λ−α+1γλ−α‖(ap − PD
η1
m

QM,Map)(t, s)u(s)‖λ−α ≤
≤ c02λ−α+1γλ−αz2‖ap − PD

η1
m

QM,Map‖λ,λ−α‖u(s)‖λ ≤

≤ c2

(
M

2

)2λ−α

e−2η2(M
2 )

1
η1 ‖ap‖η1,η2‖u(s)‖λ,

which was to be proved.
Corollary 3. From Lemma 3 follows that

‖
q∑

p=0

Ap −Ap,M‖λ,λ−α ≤ c2(q + 1) max
p
{‖ap‖η1,η2}

(
M

2

)2λ−α

e−2η2(M
2 )

1
η1

Now we are ready to propose fully discrete method for solving equations
under consideration.

5. Fully Discrete Projection Method
Taking into account representation (10), we approximate A as follows

AM = D + Pl

q∑

p=0

Ap,MPl, (24)

where l = N τ , for some 0 < τ < 1. Note that our approximate variant of A
is distinguished from respective approximation from [12] by using additional
projections Pl and PD

η1
m
. Such projection helps to bound the amount of arith-

metical operations. The right-hand side of equation (4) we approximate as
following

fN := QNf,

where N > M . The main idea of the fully discrete projection method (FDPM)
for equation (4) consists in solving the equation

AMuN := DuN + Pl

q∑

p=0

Ap,MPluN = QNf, (25)

where Ap,M has the view (21) and uN ∈ TN is considered as approximate
solution of (4). Note that by virtue of (7) and (8), it holds true Ap,M ∈
L(Hλ,Hλ−α+β), p = 0, . . . , q.
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Lemma 4. Let the conditions of Lemma 3 be satis�ed and f ∈ Hµ−α. Moreover
operator AM has the form (24). Then for all l ∼ N τ , τ ∈ [ µ−λ

µ−λ+β , 1) and
max{α + 1/2, 1/2} < λ < µ it holds true

‖(A−AM)‖λ,λ−α ≤ c3

(
N

2

)λ−µ

+ c4e
−2η2(M

2 )1/η1

(
M

2

)2λ−α

,

where
c3 := 2(q + 1) max

p
{‖ap‖µ,µ+β−α}z3(µ, µ + β − α),

c4 = c2(q + 1) max
p
{‖ap‖η1,η2}.

Proof. Due to simple transformation we have

A−AM = (I − Pl)
q∑

p=0

Apu+

+ Pl




q∑

p=0

Ap,M −
q∑

p=0

Ap


Pl + Pl

q∑

p=0

Ap(I − Pl).

(26)

Consider each summand separately.
By virtue of the fact that Ap ∈ L(Hλ,Hλ−α+β) for p = 0..q and taking into

account (16) and (23) we �nd that

‖(I − Pl)
q∑

p=0

Apu‖λ−α ≤
(

l

2

)λ−µ−β

‖
q∑

p=0

Apu‖µ−α+β ≤

≤
(

l

2

)λ−µ+β

(q + 1) max
p
{‖ap‖µ,µ+β−α}z3(µ, µ + β − α).

Because of l = N τ and N τ(λ−µ−β) ≤ Nλ−µ for τ ∈
[

µ−λ
µ−λ+β ; 1

)
, one can

derive the estimate

‖(I − Pl)
q∑

p=0

Apu‖λ−α ≤ (q + 1)max
p
{‖ap‖µ,µ+β−α}z3(µ, µ + β − α)

(
N

2

)λ−µ

.

Similar estimate holds for third summand from (26), namely

‖Pl(
q∑

p=0

Ap(I − Pl)u)‖λ−α ≤ ‖
q∑

p=0

Ap‖λ−β,λ−α‖(I − Pl)u‖λ−α ≤

≤
(

l

2

)λ−µ−β

(q + 1)max
p
{‖ap‖λ−β,λ−α}z3(λ− β, λ− α) ≤

≤
(

N

2

)λ−µ

(q + 1) max
p
{‖ap‖λ−β,λ−α}z3(λ− β, λ− α).
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The second summand from (26) we estimate with help of Lemma 3:

‖Pl(
q∑

p=0

Ap,M −
q∑

p=0

Ap)Pl‖λ,λ−α ≤

≤ c2(q + 1)max
p
{‖ap‖η1,η2}e−2η2(M

2 )1/η1

(
M

2

)2λ−α

.

Combing the corresponding bounds we get the statement of the lemma.
Lemma 5. Let the conditions of Lemma 3 are ful�lled. Then for any λ ∈
(max{α + 1/2, 1/2}, µ) and for su�ciently small N and M such that

c3

(
N

2

)λ−µ

+ c4e
−2η2(M

2 )1/η1

(
M

2

)2λ−α

<
c′λ
2

it holds true
‖v‖λ ≤ dλ‖AMv‖λ−α,

where dλ = 2
c′λ
.

Proof. Using the inequality (11) and lemma 4 we have

‖v‖λ ≤ 1
c′λ
‖Av‖λ−α ≤ 1

c′λ
(‖AMv‖λ−α + ‖(A−AM )v‖λ−α) ≤

≤ 1
c′λ

‖AMv‖λ−α

1− 1
c′λ

(
c3

(
N
2

)λ−µ + c4e
−2η2(M

2 )1/η1 (
M
2

)2λ−α
) ≤ 2

c′λ
‖AMv‖λ−α,

which was to be proved.
The estimation of accuracy for FDPM on the class of problems (4)-(9) with

nonperturbed input data is established in the following assertion (see for detail
[10]).
Theorem 1. Let the conditions (6)- (9) are ful�lled, and operator AM has the
form (24). Then for any λ ∈ (max{1/2 + α, 1/2}, µ), µ > α + 1/2 and for all

M, N : M > 2
(

η1

η2
max{λ, λ− α}

)η1

,

c3

(
N
2

)λ−µ + c4e
−2η2(M

2 )1/η1 (
M
2

)2λ−α
<

c′λ
2

(27)

it holds true

‖u− uN‖λ ≤ c5

(
N

2

)λ−µ

+ c6e
−2η2(M

2 )1/η1

(
M

2

)2λ−α

, (28)

where c5 = 1 + dλc′′λ + dλc3 + dλc′′µγµ−α, c6 = dλc4.

Proof. Using the inequality (16) and ‖u‖µ ≤ 1 we �nd

‖u− uN‖λ ≤ ‖u− PNu‖λ + ‖PNu− uN‖λ ≤
(

N

2

)λ−µ

+ ‖PNu− uN‖λ (29)

Using Lemma 5 it is easy to �nd the bounds for second summand in (29),
namely

‖PNu− uN‖λ ≤ dλ‖AM (PNu− uN )‖λ−α ≤
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≤ dλ(‖(A−AM )PNu‖λ−α + ‖AMuN −APNu‖λ−α) ≤
≤ dλ(‖(A−AM )PNu‖λ−α + ‖QNf − f‖λ−α + ‖A(PNu− u)‖λ−α).

Taking into account the lemma 4, inequalities (11), (16), (17) and the fact that
‖u‖µ ≤ 1 we have

‖PNu− uN‖λ ≤ dλ

(
c3

(
N

2

)λ−µ

+ c4e
−2η2(M

2 )1/η1

(
M

2

)2λ−α

+

+c′′µγµ−α

(
N

2

)λ−µ

+ c′′λ

(
N

2

)λ−µ
)

.

Substituting the bound above in (29) we obtain the desired estimation.
Corollary 4. As follows from (16), the optimal error of recovering the elements
from u ∈ Hµ, λ < µ is the following

‖u− un‖λ ≤ nλ−µ‖u‖µ,

where un ∈ Tn is some approximation. From Theorem 1 follows that for M ³
logη1 N we have ‖u− uN‖λ ³

(
N
2

)λ−µ
, that establish optimality of the method.

6. Calculation of arithmetical operations
Let construct the matrix corresponding to the element PlAp,MPluN (t). Using

the fact that
∫

k0(t− s)ei(s)ds = k̂0(i)ei(t) we have

PlAp,MPluN (t) = Pl

∫ 1

0
kp(t− s)QM,Map(t, s)PluN (s)ds =

= Pl

∫ 1

0
kp(t− s)

∑

m,k∈D
η1
M

Q̂M,Map(m, k)em(t)ek(s)
∑

i∈Zl

û(i)ei(s)ds =

= Pl

∑

m,k∈D
η1
M ,i∈Zl

Q̂M,Map(m, k)û(i)em(t)
∫ 1

0
kp(t− s)ek+i(s)ds =

= Pl

∑

m,k∈D
η1
M ,i∈Zl

Q̂M,Map(m, k)k̂p(k + i)û(i)em+k+i(t) =

(30)

To obtain the matrix form of FDPM (25) one can make the following substitu-
tion ∣∣∣∣

m + k + i → m
k + i → k

∣∣∣∣
and as the result get

PlAp,MPluN (t) =
∑

m∈Zl


∑

i∈Zl

Λp,η1
m,i û(i)


 em(t),

where
Λp,η1

m,i =
∑

(m−k,k−i)∈D
η1
M ,k∈ZM+l

Q̂M,Map(m− k, k − i)k̂p(k).
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Thus, the equation (25) can be rewritten as the system of linear equations

Dū +
q∑

p=0

Λp,η1 ū = f̄ , (31)

where ū = {û(i)}i∈ZN
is Fourier coe�cient of desired solution, f̄ = {f̂(i)}i∈ZN

is Fourier coe�cient for right-hand side and Λp,η1 = {Λp,η1
m,i }m,i∈Zl

.
Proposition 4. Calculation of matrix Λp,η1 requires N log N arithmetical op-
erations (a.o.) by the order.

Proof. Since Dη1

M ⊂ D1
M for η1 ≥ 1, then the biggest amount of arithmetical

operations is needed for calculation of matrix Λp,1 and we consider this case
below. Since (m−k, k− i) ∈ D1

M , then by the de�nition of the set D1
M we have

that m − i ∈ ZM . Let l = m − i and calculate the amount of a.o. for element
Λp,1

m,i near diagonal l. For that rewrite the element Λp,1
m,i in the following way

Λp,1
m,m−l = ym =

∑

ZM+l

Q̂M,Map(m−k, l−(m−k))k̂p(k) =
∑

k∈ZM+l

α(m−k)kp(k).

Using FFT, we can construct the element Λp,1
m,m−l for all m ∈ ZM+l with (M +

l) log(M + l) a.o. by the order. Because of l ∈ ZM , the total amount of a.o.
for constructing elements of matrix Λp,1 is M(M + l) log(M + l). Taking into
account the fact that l log l ∼ N for τ ∈ [ µ−λ

µ−λ+β , 1) we arrive to the required
result.

Let's calculate the amount of arithmetical operations that is necessary to
construct all the elements from equation (31).

� For the element Q̂M,Map(i, j) we apply the relation

Q̂M,Map(i, j) =
1

M2

M∑

l1=1

M∑

l2=1

ap(l1M−1, l2M
−1)ei(l1M−1)ej(l2M−1)

that can be calculated for all i, j ∈ ZM with the help of FFT by M2 log M
arithmetical operations.

� the elements of the vector f̄ can be calculated by the relation

f̂(i) =
1
N

N∑

=1

f(lN−1)ei(lN−1)

with the help of FFT by N log N a.o.
� the elements of Λp,η1 for l = N τ can be calculated by (N log N) a.o. (see

proposition 4).
Summarizing all items above, we can conclude that the total amount of a.o.

for constructing all elements from (25) is N log N by the order.

7. Perturbed input data
Following [7], suppose that instead of functions ap(t, s), p = 0, . . . , q and f(t)

we are given only some their pertubations ap,ε(t, s), p = 0, . . . , q, and fδ(t) is
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such that in the points of uniform grids it ful�ls

M−2




M∑

i,j=1

|ap,ε(iM−1, jM−1)− ap(iM−1, jM−1)|



1
2

≤ ε, p = 0, . . . , q,

N−1(
N∑

j=1

|fδ(jN−1)− f(jN−1)|2)1/2 ≤ δ‖f‖µ−α.

It is easy to show (see, for example, [7, p.100]), that mentioned estimations are
equivalent to

‖QM,M (ap − ap,ε)‖0,0 ≤ ε, p = 0, . . . , q, (32)
‖QN (fδ − f)‖0 ≤ δ‖f‖µ−α (33)

respectively. Then taking into account perturbation of input data the FDPM
for equation (10) becomes

AM,εuN,ε,δ = DuN,ε + Pl

q∑

p=0

Ap,M,εPluN,ε,δ = QNfδ, (34)

where Ap,M,εv(s) =
∫ 1
0 kp(t − s)PD

η1
M

QM,Map,ε(t, s)v(s)ds and uN,ε,δ ∈ TN is
approximate solution.

We pose the problem to solve equations (4) and (10) with perturbed input
data as (32) and (33) with minimal amount of discrete information (i.e. set of
values for functions fδ(t) and ap,ε(t, s) in the points of uniform grid). At the
same time arithmetical expenses should be less in comparison with methods
known earlier (see, for example, [7] and [12]).

To achieve the aim of our investigation at �rst we state some auxiliary esti-
mations.
Lemma 6. Let estimation (32) is satis�ed then for any λ ≥ max{1/2, α+1/2}
it holds true

‖AM −AM,ε‖λ,λ−α ≤ c7

(
M

2

)2λ−α

ε,

where c7 = c02λ−α+1γλ−αz2(λ, λ− α)(q + 1).

It is easy to �nd that

(AM −AM,ε)u = Pl(
q∑

p=0

Ap,M −Ap,M,ε)Plu.

Using Proposition 2, 3, inequalities (18) and (32) we have
‖(AM −AM,ε)v‖λ−α ≤

≤ ‖
q∑

p=0

Pl

∫ 1

0
k(t− s)PD

D
η1
M

QM,M (ap,ε − ap)(t, s)Plv(s)ds‖λ−α ≤

≤ c02λ−α+1γλ−αz2(λ, λ− α)
q∑

p=0

‖QM,M (ap,ε − ap)‖λ,λ−α‖Plv‖λ ≤
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≤ (q + 1)c02λ−α+1γλ−αz2(λ, λ− α)
(

M

2

)2λ−α

ε‖v‖λ,

which is the required result.
Lemma 7. Let estimation (32) is satis�ed and AM,ε has the form (34). Then
for M such that

dλc7

(
M

2

)2λ−α

ε ≤ 1
2

(35)

operator AM,ε is invertible between spaces Hλ and Hλ−α and the following holds
true

‖u‖λ ≤ 2dλ‖AM,εu‖λ−α. (36)
The lemma can be proved in a similar way as lemma 5 by using the statements

of lemmas 5 and 6.
Lemma 8. Let the conditions (6)-(9) and (32), (33) ful�l and a ∈ Gη1,η2 , η1 ≥
1, η2 > 0. Then for all λ ∈ (max{1/2, α + 1/2}, µ) it holds true

‖uN − uN,δ,ε‖λ ≤ c8

(
N

2

)λ−α

δ + c9

(
M

2

)2λ−α

ε,

where c8 = 2dλc′′µ and c9 = c10c72dλ with c10 ≤ 2 + dλ(c′′λ + c′λ
2 + c′′µγµ−α).

Proof. Using Lemmas 7 and 6, inequality (18) and (33) we �nd
‖uN − uN,δ,ε‖λ ≤ 2dλ‖AM,ε(uN − uN,δ,ε)‖λ−α ≤
≤ 2dλ‖AMuN −AM,εuN‖λ−α + +2dλ‖QNf −QNfδ‖λ ≤

≤ 2dλ

((
N

2

)λ−α

δ‖f‖µ−α + c7

(
M

2

)2λ−α

ε‖uN‖λ

)
.

(37)

Using (28) and (27) we bound the norm of element uN as follows:
‖uN‖λ ≤ ‖u‖λ + ‖u− uN‖λ ≤

≤ ‖u‖λ + c5

(
N

2

)λ−µ

+ c6e
−2η2(M

2 )1/η1

(
M

2

)2λ−α

≤ c10.

Substituting the estimation above in (37) and taking into account (11) we derive
desired estimation.

8. Selection of the discretization levels
Generalizing the results of the previos section we rewrite general estimation

of error for FDPM. By virtue of Theorem 1 and Lemma 7, the accuracy of
method (34) is estimated as

‖u− uN,δ,ε‖λ ≤ ‖u− uN‖λ + ‖uN − uN,δ,ε‖λ ≤

≤ c5

(
N

2

)λ−µ

+ c6e
−η2(M

2 )1/η1

(
M

2

)2λ−α

+

+ c8

(
N

2

)λ−α

δ + c9

(
M

2

)2λ−α

ε.

(38)
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Further following the paper [12] we consider the problem to select such levels
of discretization N and M that minimize the error bound (38). Here we consider
only the case then smoothness of parameters µ is known precisely (a priori case).
1. A priori selection of parameter. The problem of a priori selection of
discretization levels was described in detail in [12] for class of equations under
consideration. Here we slightly modify FDPM. However, as we can see below,
it doesn't in�uence on the best accuracy of the method.

Further we denote by [q] the integer part of number q and formulate the
theorem that establishes a priori rule for choosing discretization parameter.
Theorem 2. Let the conditions (6)-(9) ful�l and input data are perturbed as
(33) and (32). Then for any λ ∈ (max{1/2, α + 1/2}, µ), µ > α + 1/2 with
choosing the discretization parameters according to rule

M̄ =
[
2

(
1

2η2
log

c13

ε

)η1
]

, (39)

N̄ =

[
2

(
c8δ

c5

) 1
α−µ

]
(40)

the error bound of the method (34) has the form

‖u− uN,δ,ε‖λ ≤ c11δ
µ−λ
µ−α + c12ε logη1(2λ−α) c13

ε
, (41)

where
c11 = (c8)

λ−µ
α−µ c

λ−α
µ−α

5 , c12 =
c6

c13

(
1

2η2

)η1(2λ−α)

and
c13 =

c1

c10
max

p
{‖a‖η1,η2}.

Proof. Direct substitution (39) and (40) in (38) gives the statement of theo-
rem.
Remark 4. It is evident that condition (35) ful�ls with choosing M according
(39) for su�ciently small ε. Let's check that condition (27) also holds true.
From (39) it follows that

c13e
−2η2(M

2 )1/η1

= ε.

Then taking into account the relation above and (40) we can conclude that
condition (27) takes place sor su�ciently small ε.

2. Fast solving of FDPM (34). Following [6] for fast solving (34), we pro-
pose to use GMRES. Such approach for solving problem under consideration
has been detailed in [6] and here we only rewrite main points. Denote by

SN := D + Pl

q∑

p=0

Ap,M,εPl.

It is evident that SN is invertable operator (see lemma 7) that acts in TN . Thus
according to theory we can apply GMRES with operator SN and right-hand
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side fN with respect to the space Hα. The procedure concludes in constructing
sequence unN that satis�es the condition for n = 1, 2, . . .

‖SNunN − fN‖α = min
u∈Kn(SN ,fN )

‖SNu− fN‖α,

where Kn(SN , fN ) is well-known Krylov space. As the stopping rule we consider
the discrepancy principle

‖SNunN − fN‖α ≤ cδ‖fN‖α, (42)
where unN is n-iteration of GMRES that we consider as approximation for uN .

Now we are ready to establish the accuracy of GMRES approximation for
our class of problems.
Theorem 3. Suppose that N,M → 0. Let n be the �rst number for which the
condition (42) ful�ls. Then the accuracy of GMRES applied to equation (34) is
the following

‖uN,δ,ε − uNn‖λ ≤ 2dλ

(
N

2

)λ−α

δ‖fN‖α. (43)

Moreover we have that n = O(log(N)).

Proof. Using Lemma 6 we have that
‖uN,δ,ε − uNn‖λ ≤ dλ‖AM,ε(uN,δ,ε − uNn)‖λ−α ≤ dλ‖fN −AM,εuNn‖λ−α.

Further applying the inequalities (18) and (42) one can obtain

‖uN,δ,ε − uNn‖λ ≤ 2dλ

(
N

2

)λ−α

δ‖fN‖α,

what was to be proved.
Remark 5. As we can see from Theorem 3 the accuracy of FDPM method in
combination with GMRES is the following

‖u− uNn‖λ ≤ O(δ
µ−λ
µ−α + ε logη1(2λ−α) 1

ε
).

Such accuracy of FDPM in the case of ε = 0 is optimal by the order (see [11]).
Remark 6. For the realization of GMRES we need at every iteration to com-
pute a matrix-vector product SNfN . Due to the structure of SN as (34) and
relation (30), the calculation can be performed by l ·M2 operations. Since M =
O(log N) (see corollary 4), then due to N = l log l for l = N τ , τ ∈ [ µ−λ

µ−λ+β , 1)
we have that constructing of matrix-vector product SNfN requires N log N a.o.
Moreover, as it is known, for realization of GMRES O(nl) �oating-point oper-
ations must be computed at the n-th iteration, i.e on the n-th step we need
O(N log N) a.o. Thus total amount of a.o. for solving (10) is limited by
O(N log N) by the order.
Remark 7. Let us suppose that ε ≥ cδ and calculate the amount of necessary
discrete information for equation (4) to implement the proposed method (34)
with the accuracy (41). It is evident that in that case M does not exceed the
magnitude O(log(N)). So, for the discretization of Ap,ε less than O(log2 N)
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values of kernels ap,ε(t, s) in the points of the uniform grid should be used.
Note, that in the monograph [7] for the realization of the fully discrete projection
method (34) at M = N the order of discrete information was estimated as
O(N log N) .
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