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ON OPTIMAL SELECTION OF GALERKIN’S
INFORMATION FOR SOLVING SEVERELY
ILL-POSED PROBLEMS

S.G.SoLoDKY, G. L. MYLEIKO

PE3IOME. [lns po3B’si3yBaHHS €KCIIOHEHIIHHO HEKOPEKTHUX 3374 PO3P00-
JIEHO €KOHOMIYHMI MPOEKI[IHII MeTO, IKUil MOJIArae y KOMOIHyBaHHI CTaH-
JapTHOro Meroma TixomoBa Ta mpunnmny HeB'si3ku Mopozosa. llpum mpomy
BCTAHOBJIEHO, IO 3AIIPOIIOHOBAHUI aIrOPUTM 3a0e3Iedy€e ONTUMAJILHUN TOPsi-
JOK iH(OpMAIHHOT CKIAIHOCTI Ha KJIACI JTOCTIIKYBAHUX 330a4.

ABSTRACT. An economical projection method is developed for solving expo-
nentially ill-posed problems. The method consist in combination of the stan-
dard Tikhonov method and the Morozov discrepancy principle. Herewith, it
is established that this approach provides optimal order of information com-
plexity on the class of problems under consideration.

1. INTRODUCTION

The implicit (a posteriori) choice of the regularization parameter without any
information on smoothness of a desired solution is usually assume to be the key
issue in the theory of ill-posed problems. It is well-known, there are a lot of
different rules of a regularization parameter choice among them we mention
discrepancy principle [6,8,9,20], Gfrerer’s method [3,19], the monotone error
rule |27|, the balancing principle [2,4, 14, 25| which sometimes is called the
Lepskij principle. Nowadays, it is sure the discrepancy principle is the most
common one.

In the present paper that is extension of the research started in [23, 24]
the authors develop economical projection method for effective solving severely
ill-posed problems. As a regularization the standard Tikhonov method is ap-
plied. Unlike to above-mentioned works, the regularization parameter is chosen
a posteriori, namely, according with the balancing principle. Moreover, it is es-
tablished that a proposed strategy maintains optimal oder accuracy on the
class of problems under consideration, as well as provides oder estimates of the
information complexity.

The organization of the material is as follows: in Section 2 we give the state-
ment of the problem. Further in Section 3 the regularization and discretization
methods are described. Auxiliary statements and facts are in Section 4. An
algorithm of the regularization parameter choice by discrepancy principle is

Key words. Severely ill-posed problems; minimal radius of Galerkin information; dis-
crapency principle; information complexity.
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presented in Section 5. The combination of proposed methods allows to estab-
lished optimal order accuracy for solving equations from the class of problems
under research. Finally, in Section 6, the authors establish the main result.
Namely, the order estimate for the minimal radius of the Galerkin information
is obtained.

2. STATEMENT OF THE PROBLEM
Following |23| we present the rough statement of the problem. Consider
Fredholm’s integral equation of the first kind

Aa(t) = £(0), te 0,1, 1)
with
1
= / a(t T)dr, (2)
0
acting continuously in Ly = L2(0,1). Suppose that Range(A) is not closed in

Ly and f € Range(A).

We also assume that a perturbation fs € Lo : ||f — fs5]| <0, 0 >0 is given
instead of the right-hand side of the equation (1).

The problem (1) is regarded as severely ill-posed problem if its solution has
substantially worse smoothness than a kernel a(-, 7) In such case it is nature to
assume that an exact solutions satisfies some logarithmic source condition, in
other words it belongs to the set

My(A) = {u:u=lnP(A"A) o, o] < p},

where p, p are some positive parameters and A* is adjoined operator to A. Such
problems are called exponentially ill-posed (see e.g. [5]).

Note, that the exact information about smoothness, namely, the parameter
p, is usually not available by practical experiment. For this reason the set

U M4 (3)

p€(07p1]

is considered in place of M,(A). Here p1 < oo is an upper bound for possible
values of p.

Within the framework of our researches we construct an approximation to
the exact solution 2 (1), which has minimal norm in Lo and belongs to the set
M(A). From now on, we assume that a parameter p is unknown.

Let {e;}°, be some orthonormal basis in Lg, and let P, denotes the orthog-
onal projection onto span{es,ea, ..., en}

m

Pup(t) = Y (g ci)eild).

=1

Consider the following class of operators (2):

o0
H = {A: A <q0, Y @dn¥m® <Al rs>0, (4)
n+m=1
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anm —/ / a(t, T)en (T)drdt,

Y < e_%,*y = (v0;71), n =1if n = 0 and n = n otherwise.
If the kernel a(t,7) of A has mixed partial derivatives and the inequalities

O tia(t; T 2
/ / [ ET ] dtdt < o0
hold foralli = 0,1,...,7r,5 =0,1,..., s then it is known (see e.g. [16]), A € HY*
for some v = (70,71)-

From now on, class of equations (1) with operators belonging to Hy® (4)
and solutions from M (A) (3) will be denoted by (Hy®, M(A)). In the present
paper we concentrate on the study of projection methods for solving equations
belonging to (HY°, M(A)), r>s.

A discretization projection scheme of equations (1) with the perturbed right-
hand side one can define by means of a finite set of the inner products

(Aej’ei)v (Zvj) €, (5)

(fs,ex), kew, w ={i: (7)€}, (6)

where © to be an bounded domain of the coordinate plane [1,00) X [1,00).
The inner products (5), (6) are used to call the Galerkin information about
(1). Here card(€2) is the total number of the inner products (5). In particular,

if Q = [1,n] x [1,m], then one deal with the standard Galerkin discretization
scheme, card(2) = n - m. Researches for various classes of ill-posed problems

where

related to such scheme of discretization were conducted in a number of works
among which we mention [7,17,18].

Definition 11. A projection method of solving (1) can be associated with
any mapping P = P(Q) : Ly — Lo which by the Galerkin information (5),
(6) about (1) provides a correspondence between the right-hand side of the
equation being solved and an element P(Aq)fs € L2, which is a polynomial
by the basis {e;}°; with harmonic numbers from wy := {j: (¢,j) € Q}. This
element is taken as an approximate solution (1).

The error of the method P(Q2) on the class of equations (Hy®, M,(A)) is
defined as

es (H°, M(A),P(Q)) = sup  sup sup |zt — P(Aq) 5.
AeH® zteM(A) fs:llf—fs511<6

The minimal radius of the Galerkin information is given by

R S M(A)) = inf inf S M(A Q)).
o (M M(A) = imf - nf es (P57, M(4), P(D))

This value describes the minimal possible accuracy (among all projection meth-
ods), while the Galerkin information amount are bound. Thus, Ry charac-
terizes information complexity on the class of problems (HY", M(A)).
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It is easy to see, that such studies belong to the range of problems from
Information Based Complexity Theory. The fundamentals of this theory were
introduced in monographs [28,29]. It should be noted that in recent years the
interest to such researches in the light of ill-posed problems is greatly increase.
In the work [18] first economical projection methods for solving moderately ill-
posed problems were constructed. The standard Galerkin scheme was employed
as discretization scheme. But first order estimates for complexity of moderately
ill-posed problems were obtained in [16,21,22]. The authors point to the fact
that optimal orders of such values are achieved under a modified Galerkin
scheme that is called hyperbolic cross. The complexity of severely ill-posed
problems began to be study relatively recently. These researches are highlighted
in the series of works, we mention [7,23,24].

In the present paper as opposite to above-mentioned one, an economical
projection scheme with a posteriori rule of regularization parameter choice will
be developed for solving severely ill-posed problems.

3. REGULARIZATION AND DISCRETIZATION STRATEGIES
To guarantee stable approximations we apply the standard Tikhonov method.
By means of this method the rugularized solution x,, is defined as the solution
of the variation problem

Lo(x) = || Az — f5|* + aflz|* — min. (7)

For a numerical realization of the standard Tikhonov method it is necessary to
carry out all computations with finite amount of input data. For that reason
the variation problem (7) is replaced by following

Ion(x) = [ Apz = f5) + a|z]|* — min,

where A, is some operator of the finite rank.

The idea to apply the hyperbolic cross to operator equations of the second
kind belongs to S.V. Pereverzev and implements in the series of works (see
e.g. [10-13]). The efficiency of the hyperbolic cross for ill-posed problems has
been demonstrated in [15,16,23]. Within the framework of our researches we
apply a projection scheme with 2 = I'¢, where

2n
T = {1} x [1;22] [ J @71 24) x [1;2077)9) ¢ [1;227] x [1;2°7]  (8)
k=1
is a hyperbolic cross on the coordinate plane by the basis {e;}°; involved in
the definition of the class HY®. Here for r > s the parameter a is an arbitrary
real number such that 1 < a < %, and for a = 1 we set 7 = s. To simplify
computations we assume that ak are integer numbers. An approximate solution
one can find from an operator equation of the second kind

axr + Ay Ayx = A fs.

On other words, we seek an approximate solution z = xgm of the form

Zoon = o A7 An) AL f5. (9)
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where go(A) = (o + A\)71, and

2n
An - P]_AP220,n + Z (PQI@ - P2k71) AP2(2n7k>u,~ (10)
k=1

Moreover we introduce following auxiliary elements

Ta = ga<A*A)A*f7 (11)

LTan = ga(A:;An)A:;f (12)

4. AUXILIARY RESULTS
In this Section we formulate some definitions and facts, and also the series
of auxiliary assertions which shell later need.
It is well-known (see e.g. [30]), that for any linear bounded operator A the
inequalities

l(al + A*A) Y| < ah, [|(od + ATA) A7) < 1o 13)
|A(al + A*A)"LA*|| < 1

hold.

Lemma 1. (see [30, p. 34]) If g to be bounded Borel measurable function on
[0;93], A€ L(L2,La), Al < 7o, then

A'g(AA%) = g(A" )", y
Ag(A*A) = g(AA™)A. (14)
Lemma 2. (see [20]) Let ||A|| < o < e~ Y2, Then for sufficiently small a €
(0,e=2P) it holds
14zo = f] <59 ' pValn ™" 1/a,
where x4 is determined by (11).
Lemma 3. (see [20]) Let | Al <o < e Y2, and a is such that
|Aze — fIl < d6,

where d > 0 is some positive constant. Then the estimate

2" — 2] < €M7P1/5
1s fulfilled. The constant & > 0 depends only on d, p and p.
Lemma 4. For any a > 0 and n € N the estimate

1/2

5
1AZa = Il < [[An0, = Pozn foll + (I(L = Pyan) £ +6%) 77 + 1714 = Al

holds, where xo and :E‘;’n is determined by (11) and (9), respectively.
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Proof. First off all, we note that

|27l = [ m™P(A*A)v]l < p sup [In"P1/A| < p. (15)
0<A<A2

Further, consider the decomposition
Azo — f = An‘ri,n — Py2n f5 + 51+ Sa,
where
S1:= = (I = Anga(AnAn) A7) (f = Pn f5)
Sz 1= (Aga(A"A)A" — Anga(ALAn) A7) T
Now we are going to bound each term S, S2. By (13), (14) we immediate find
151l < 11 = An(ad + AL An) T AGIIIF = Pozn foll <
< = (af + An A7) T AR AL = Poza) f + Pyzn(f = f5)| <
< (11 = P £ +8%).
It remains to estimate the norm of Sy. First, rewrite S as follows
Sz = (Aga(A"A) A" — Anga(A;An)Ay) =
= a(ad + A AX) T (AA* — A A% (al + AAY) L f =51 459,
where
51 = (ol + A AX) T (A — Ay) A (o + AA*) ! Axt,
Sy 1= a(ad + A A% H A, (A" — A%) (af + AA*) ™ Azt
Further, we bound norms of 5; and 5. By (13), (14) and (15) we obtain
5] < afl (o + An A7) IIA = Aull]| (af + A*A) ™ A" Allfl2T|| <

< pllA— A,
5211 < all (@f + An A7) Aul|A° = A3 (o + AA) ™" A7) <
p
< = — .
< 2a— 4

Thus,
- - 5p
1521l < [I51ll + [I521] < -~ [14 = Ax]l-
Summing up the above bounds, we finally get
1Aza = fIl < | And = Paon fsl|+
1/2  5p
+ (10 = Pan)fIP +0%)' 4 224 = A,
The lemma is proved. o

Lemma 5. The two-side estimates
2% < card(TL) <2-2%"n, r=s, (16)
7]122‘m < card(I'y) < 77222”‘, r> s,

. _93(1—a) _9l—a
are hold, with m =1+ 113%, n2 = %_gﬁ
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Proof. From (8) it follows

2n
card(T'%) = anrd(Qk)7
k=0

where
O = (2F=1;2F] x [1;2@n=R)a] -k =1,2,... 2n
T x [1; 220, k=0 ’
and we obtain
1 2n ( "
a\ _ o2an ko(2n—k)a
card(I') = 2°9™ + 3 Z 272 .
k=1

Further, consider two cases. It is obvious that for » = s it holds

1 & 1

card(I'L) = 27" + 3 ; 22n = 221 (1 4-n) = 22" (1 + n) .
Hence,
2%y < card(T}) < 2-2%"n.
When r > s the sequence {card(Qj)}2", is the geometric progression with the
quotient 2'7%, and the relation
1 2n
a\ _ o2an - k(1—a)
card(I'y) =2 (1 + 5 Z 2 >
k=1

is hold. It follows that

2n

1 1 1— 2(17a)(2n+1)
ay _ ~92an k(l1—a) | _ ~92an
card(I';) = 2 <1+22 ) 52 <1+ ey .

k=0

Further, we obtain lower and upper bounds for the bracketed expression:
1— 2(1—0,)(2n+1) 9 _9l-a (1 + 2(1—a)2n) 9 _9l-a
1—20-a) 1—2l-a 1ol

1— 2(1—a)(2n+1) 1— 23(1—(1)

> —_.
Lt a2 1 o

Thus, finally we get

1 _ 23(1—&) 2 o 21—0,
(1 + | 22" < card(T%) < ﬁ?‘m.

1—2l-a 1-2
The statement of the lemma is proved. O
It is known (see. [21]), that for any A € HY® the inequality
A= Anl < ers(n) (17)
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is fulfilled, where

712r+1/2\/772—2rn, r—s
g n)= T .
r,s( ) 7 (1 + 1_221157T) 2—2nas’ r>3

5. ERROR ESTIMATE OF THE ALCORITHM
5.1. Algorithm (Discrepancy principle as stop rule). Let us fix 6 € (0,1)
and o € (0, 1]. We are going to choose the regularization parameter o according
with the rule

a€Ng(d)={ ara=ay :=afd™, m=0,1,2,..., «ac (6% a0}, (18)
and the discretization parameter n as follows
4
ers(n) = 57)5. (19)

Now, we describe proposed algorithm with the discrepancy principle as a
stop rule concerning to studied problem.

1. Input data: A € HY®, fs, 0, p.
2. To construct A,, (10) and Py2» fs we compute the inner products (5), (6).
3. The cycle: m=1,2,..., M, a = ay, = agf™.

An approximate solution xgmvn (9) is computed by solving the equation

amal, o+ A Al = A AT .

m=om,n

The cycle is running as long as stop rule conditions will be meet.
4. The stop rule (the discrepancy principle)

1Anz0,, i — Paen fs]| < d6, (20)
|Anad,, = Poen fs]| > do, (21)
with m < M, d>+/2+1, and xiM,n is determined by (9).

Introduced projection method (10), (18)—(21) we denoted as P'.

Lemma 6. Let aps such that the conditions (20) and (21) are satisfied with
d > /241, and the parameter n in (10) is chosen as (19). Then there are the
constants di,ds > 0, that the two-side estimate

di0 < HAwOéM - fH < d20
1s fulfilled.
Proof. First, note that by (17) and (19) it holds
)
Tla- A <s,
(I = Pyn) fI| < 0. (22)
If aips meets the condition (20) then

[ Angan, (A7 An) A5, f5 — Pozn fi| < db,
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and applying Lemma 4 we obtain
|Aza,, — fll < d6+ V262 +6 = (d+ V2 +1)s.
At the same time, kipping in mind (21), for & = ar—1 we have
[ Angans—, (AnAn) A, fs — Pozn f5]| > db. (23)
Owing to the inverse triangle rule it holds
1AZays s — F1| = 1 AnGany o (A5 A ALSs — Pofoll - (V2413 (24)

By spectral decomposition of the operator A we get

[e'e) ~ - )\2 2
Ao —S1° = 32 AN [’f - 1} _

apn + )\i

—2p 2

- aM lIl )‘ ( 7¢k)
; (or + /\2)
> 0203, 5 In" A 2(v, )2
Z (anr—1 +)\2)
Hence,

HAmaM - sz > 92”‘41@1»171 - fH2 (25)

Substituting (23) and (24) in (25), we finally obtain

1Az ay, — fIl = 6(d — V2~ 1)s.
Thus, the lemma is proved with di = 6(d — /2 — 1) and da = 0(d + /2 + 1)4.
5.2. Error estimate of the algorithm P’.

Theorem 1. Let |A| < 4o < e~ /2, the parameters of reqularization apy and
discretization n are chosen as in (20) and (19), correspondingly. Than the
estimate

|2f =22 | <énP1/5 (26)

holds, where the constant ¢ > 0 only depends on ~y,d1,ds, p and p; x aM, 18
determined by (9).

Proof. 1t is obvious that

apng, n|

1)
‘ < H:U - wazu” + HxOéM xOéM,nH + HxaM,n - xOcM,n”‘

||°(U]L - 'rocM,
Owing to 3 for the first term we have
”x]L — Lay H < gln—p 1/5

By applying (13) the last term is immediately bounded

)
1 * A 1 g%
|Zansn = Tay, nll = Il + AL AR) T AL(f = f5)I < NG

Finally, we need to estimate the second term. First, consider the decomposition
Tony — Tayym = (an ] + A*A) T A* Azt — (apr + AL A,) 1AL Axt =
= Tle + Tgl‘T,

(27)
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where
Ty = (an] + A"A) TATA — (an] + AL An) T AL A,,
Ty := (an ] + A% A,) TTAL (A, — A).
y (13), (19) and (17) we have

I < et 20
2\/anr 5p 5p \Janr

It is remain to estimate ||71]|. Due to (14), we rewrite T} as follows
Ty = an (apl + A*A)H(A*A — A% A) (apl + AXA) =T + T,
where
Ty := apr (ay I + A*A) A" (A= A,) (o] + AL A,
Ty = an (apD + A*A) V(A" — A%) Ay (angD + ALA,)

Further, we estimate the norms of T and Ts. Owing to (13), (19) and (17) the
norm of T is immediately bounded as

— 2 0
1T < ——F—=
50 /oM
Now, we are going to estimate the norm of T5. By (14) we have
To = apr (o + A*A)H (A" — AY) (o] + A AL A,

Applying (13), (19) and (17), we obtain

_ 2 9
el < .
P/
Hence,
73] < Tl + Tl < o2
1 1 2 T —
2L
Thus,
6 o

|Zar — Tanrmll < 5\/—

Summing up the above bounds we finally get
1 0 17 9
6_9 <EemP1/5 4
\/7 2 /anu 10 \/7
Further, if ajs is chosen as in (20) and the inequality aps > 6 holds then for
sufficiently small 0 we have

HxT - xaM n” < gln_p 1/5 + <

Ty — a0 <¢ln _p15+ \f<c11np15
T (o5 ExL2

with & = £+ 1f
Otherwise, if aps < 6 then by Lemma 2 and Lemma 6 we get

18 < ||Azay, — [l <79 pv/anr P L anr < gt py/ans In TP 1/6.
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Thus,
_ 177_1/) _ o
0
|z — Topnll <EMTPL/0+ 1—0371111 P1/§ =¢éIn"P1/0,
-1
where ¢o = & + %V‘th. The theorem is proved with ¢ = max{¢é, é2}. O

6. MINIMAL RADIUS OF (GALERKIN’S INFORMATION. OPTIMAL ORDER
ESTIMATE

Theorem 2. For sufficiently small 6 the estimate
Ruvs (HD®, M(A)) < e5 (HZ;SM(A),P‘) < ¢, In"P N2
is fulfilled, where ¢, > 0 depends only on v,r,s,d1,d2, p and p. Moreover,
5_%(ln 5_1)1"“%, r=s,
card(I'yy) = )
delta™s, r > s.

Proof. Rewrite the right-hand side of (26) by N, where

cn2, r=s,
] ¢220n r>s
2 ) )
’ 1723(1—(1) ’ 9_91-a
1 < Cl S 27 1 + H_al-a_ S C2 S 1—ol=a (See Lemma 5) Further, we

consider two cases.
First, let 7 = s. Owing to (16),(19) we have

5—1 _ 4 n—1/222rn — 4(0/1)7T Nrn—%—r (28)

dpC1 dpcy ’
with ¢ = 712" T1/2. It is easy to see that In N = In ¢ +2nln2+1nn. It follows
n < BN Kipping in the mind the last inequality, from (28) we obtain the

— 2In2-
lower bound of 51

4(c))7"(2In2)/247
dpcy

For any p > 0 there are some Ny that for all N > Ny it holds In N < NH#.

Hence,

> NT(In N)~1/2,

4(¢))7T(21In2)/2 47

51> NTN,u(fl/2fr) —
o dpcCy
_HA) MV
HpCa

There are always exist p such that (1 — p)r — 1 > 0, and the estimate (26)
we can rewrite as follows

" =20, nll < paIn 7P NZ. (29)
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Now, we are going to consider the case r > s. Using the same arguments as
above, by (16) and (19) we have
Acy) ™

4
o= _—— = —=—N°* 30
DpC2 DpC2 ’ (30)

_ 2"
2 =1 (1 + 71 — 2a5r> .

In this case the estimate (26) we rewrite as follows
ot — a3, | < cpaln? N (31)

Taking into account the definition Ry s (Hy*, M(A)), and also the relations
(29) and (31) we have

2asn

where

Rys (HY*, M(A)) < |la' —2f,, .|l < ¢ In P N>,
where ¢, = max{cp1,¢p2}-
It is remain to express the amount card(I'?) by ¢. Let consider the two cases.

First let r = s, then

card(I'}) ;= N = 2%"p = (\/772_25”)_%711‘*'% = 5_-%(111 5_1)1+%.
2) Now let r > s, then
card(T) 1= N x 220" — (27205m) =% = 53

Thus, summing up obtained estimates of card(I'%), we have

1
s

5_%(1n6*1)1+%, r=s
card(I'y) =< ) :
6 s, r>s
The statement of the theorem is completely proved. d

Below we formulate a result giving the order estimate of the minimal radius
of the Galerkin information.

Theorem 3. The two-side estimate

In"? N** < Ry (H5®, M(A)) < ¢pIn P N**

op+1
holds. The indicate optimal order is achieved under the algorithm P (10),

(18)-(21).

The lower bound for Ry s is established in [26], and the upper estimate was
obtained in Theorem 2.

Remark 4. Comparing results of Theorem 3 to that of [26], where the balancing
principle was applied as stop rule, we can conclude that both approaches are
achieved an optimal order of accuracy. Moreover, the proposed algorithm allows
to provide order estimates on more wide classes of problems. Herewith, we
reduce the amount of the Galerkin information (on the logarithmic multiplier)
when r = s.
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