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HYPERCYCLIC COMPOSITION OPERATORS

Z.H. MOZHYROVSKA

Abstract. In this paper we give survey of hypercyclic composition operators. In pacticular,
we represent new classes of hypercyclic composition operators on the spaces of analytic
functions.
Keywords: hypercyclic operators, functional spaces, polynomial automorphisms, symmet-
ric functions

1. INTRODUCTION

Hypercyclicity is a young and rapidly evolving branch of functional analysis, which was
probably born in 1982 with the Ph.D. thesis of Kitai [24]. It has become rather popular, thanks
to the efforts of many mathematicians. In particular, the seminal paper [17] by Godefroy and
Shapiro, the survey [20] by Grosse-Erdmann and useful notes [37] by Shapiro have had a con-
siderable influence on both its internal development. Let us recall a definition of hypercyclic
operator.

Definition 1.1. Let X be a Fréchet linear space. A continuous linear operator T : X → X
is called hypercyclic if there is a vector x0 ∈ X for which the orbit under T, Orb(T, x0) =
{x0, Tx0, T2x0, . . .} is dense in X. Every such vector x0 is called a hypercyclic vector of T.

The investigation of hypercyclic operators has relation to invariant subspaces problem. It
is easy to check that if every nonzero vector of X is hypercyclic for T, then T has no closed
invariant subsets, and so no closed invariant subspaces as well. In his paper [32] Read shows
that there exists continuous linear operator on `1 for which every nonzero vector is hypercyclic.
It is still open problem does exist a linear continuous operator on a separable Hilbert space
without closed invariant subspaces.

The classical Birkhoff’s theorem [7] asserts that any operator of composition with translation
x 7→ x + a, Ta : f (x) 7→ f (x + a), (a 6= 0) is hypercyclic on the space of entire functions H(C) on
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the complex plane C, endowed with the topology of uniform convergence on compact subsets.
The Birkhoff’s translation Ta has also been regarded as a differentiation operator

Ta( f ) =
∞

∑
n=0

an

n!
Dn f .

In 1941, Seidel and Walsh [35] obtained an analogue for non-Euclidean translates in the unit
disk D. Variants and strengthenings of the theorems of Birkhoff and Seidel and Walsh were
found by Heins [22], Luh [25], [26] and Shapiro [36], while Gauthier [15] gave a new proof of
Birkhoff’s theorem.

In 1952, MacLane [27] showed that there exists an entire function f whose derivatives f (n)
(n ∈ N0) form a dense set in the space H(C) of entire functions, in other words, that the
differentiation operator D is hypercyclic on H(C). This result was rederived by Blair and Rubel
[8]. Duyos-Ruiz [14] showed the residuality of set of entire functions that are hypercyclic for D;
see also [16] and [19].

The most remarkable generalization of MacLane’s theorem, which at the same time also in-
cludes Birkhoff’s theorem was proved by Godefroy and Shapiro in [17]. They showed that if
ϕ(z) = ∑

|α|≥0
cαzα is a non-constant entire function of exponential type on Cn, then the operator

f 7→ ∑
|α|≥0

cαDα f , f ∈ H(Cn) (1.1)

is hypercyclic.
We fix n ∈ N and denote by Ta : Cn → Cn the translation operator Ta f (z) = f (z + a) for

a ∈ Cn and by Dk : Cn → Cn the differentiation operator Dk f (z) = ∂ f
∂zk

(z) for 1 ≤ k ≤ n.

Theorem 1.2. (Godefroy, Shapiro). Let T be a continuous linear operator on H(Cn) that commutes with
all translation operators Ta, a ∈ Cn (or, equivalently, with all differentiation operators Dk, 1 ≤ k ≤ n).
If T is not a scalar multiple of the identity, then T is hypercyclic.

Further hypercyclicity for differential and related operators are obtained by Mathew [28],
Bernal [4] for spaces H(O), O ⊂ C open; by Bonet [9] for weighted inductive limits of spaces of
holomorphic functions.

Let us recall that an operator Cϕ on H(Cn) is said to be a composition operator if Cϕ f (x) =
f (ϕ(x)) for some analytic map ϕ : Cn → Cn. It is known that only translation operator Ta for
some a 6= 0 is a hypercyclic composition operator on H(C) [6]. However, if n > 1, H(Cn)
supports more hypercyclic composition operators. In [5] Bernal-González established some
necessary and sufficient conditions for a composition operator by an affine map to be hyper-
cyclic. In particular, in [5] it is proved that a given affine automorphism S = A + b on Cn, the
composition operator CS : f (x) 7→ f (S(x)) is hypercyclic if and only if the linear operator A is
bijective and the vector b is not in the range of A− I.

In [11] Chan and Shapiro show that Ta is hypercyclic in various Hilbert spaces of entire func-
tions on C. More detailed, they considered Hilbert spaces of entire functions of one complex

variable f (z) =
∞

∑
n=1

fnzn with norms ‖ f ‖2
2,γ =

∞

∑
n=1

γ−2
n | fn|2 for appropriated sequence of posi-

tive numbers and shown that if nγn/γn−1 is monotonically decreasing, then Ta is hypercyclic.
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In [34] Rolewicz proved that even though the backward shift operator B : `2(N) → `2(N) on
the space of square summable sequences defined by

B(x1, x2, x3, . . .) = (x2, x3, . . .)

is not hypercyclic, the operator λB (weighted backward shift) is hypercyclic for any λ ∈ C
with |λ| > 1. A related result which came later due to Kitai [24] and Gethner and Shapiro [16]
is that, in addition, the set of hypercyclic vectors is Gδ and dense in `2(N). Further results on
hypercyclic operators are described in [20].

In this paper we represent the new classes of hypercyclic composition operators on spaces of
analytic functions. In Section 1 we consider some examples of hypercyclic composition opera-
tors on H(C). In Section 2 we find hypercyclic composition operators on H(Cn) which can not
be described by formula (1.1) but can be obtained from the translation operator using polyno-
mial automorphisms of Cn. To do it we developed a method which involves the theory of sym-
metric analytic functions on Banach spaces. In the first subsection we discuss some relationship
between polynomial automorphisms on Cn and the operation of changing of polynomial bases
in an algebra of symmetric analytic functions on the Banach space of summing sequences, `1.
We also consider operators of the form CΘ

−1TbCΘ for a polynomial automorphism Θ and show
that if CS is a hypercyclic operator for some affine automorphism S on Cn, then there exists a
representation of the form S = Θ ◦ (I + b) ◦Θ−1 + a that is we can write CS = CΘ

−1TbCΘTa. To
do it we use the method of symmetric polynomials on `1 as an important tool for constructing
and computations. In the next subsection we prove the hypercyclicity of a special operator on
an algebra of symmetric analytic functions on `1 which plays the role of translation in this al-
gebra. In Section 3 we propose a simple method how to construct analytic hypercyclic operator
on Fréchet spaces and Banach spaces. There are some examples. Some hypercyclic operators
on spaces of analytic functions on some algebraic manifolds are described in Section 4.

For details of the theory of analytic functions on Banach spaces we refer the reader to Dineen’s
book [13]. Note that an analogue of the Godefroy-Shapiro Theorem for a special class of entire
functions on Banach space with separable dual was proved by Aron and Bés in [2]. Current state
of theory of symmetric analytic functions on Banach spaces can be found in [1, 18]. Detailed
information about hypercyclic operators is given in [3].

2. TOPOLOGICAL TRANSITIVE, CHAOTIC AND MIXING COMPOSITION OPERATORS

This chapter provides an introduction to the theory of hypercyclicity. Fundamental concepts
such as topologically transitive, chaotic and mixing maps are defined. The Birkhoff transitivity
theorem is derived as a crucial tool for showing that a map has a dense orbit.

Definition 2.1. Let X be metric space. A continuous map T : X → X is called topologically
transitive if, for any pair U, V of nonempty open subsets of X, there exists some n ≥ 0 such that
Tn(U) ∩V 6= ∅.

Topological transitivity can be interpreted as saying that T connects all nontrivial parts of X.
This is automatically the case whenever there is a point x ∈ X with dense orbit under T. What
is less obvious is that, in separable complete metric spaces, the converse of this case is also true:
topologically transitive maps must have a dense orbit. This result was first obtained in 1920 by
G. D. Birkhoff in the context of maps on compact subsets of RN.



78 Z.H. Mozhyrovska

Theorem 2.2. (Birkhoff transitivity theorem). Let T be a continuous map on a separable complete
metric space X without isolated points. Then the following assertions are equivalent:
(i) T is topologically transitive;
(ii) there exists some x ∈ X such that Orb(x, T) is dense in X. If one of these conditions holds then the
set of points in X with dense orbit is a dense Gδ-set.

Definition 2.3. Let T be a continuous map on a metric space X.
(a) A point x ∈ X is called a fixed point of T if Tx = x.
(b) A point x ∈ X is called a periodic point of T if there is some n ≥ 1 such that Tnx = x. The
least such number n is called the period of x.

Definition 2.4. (Devaney chaos). Let X be metric space. A continuous map T : X → X is said
to be chaotic (in the sense Devaney) if it satisfies the following conditions:
(i) T is topologically transitive;
(ii) T has a dense set of periodic points.

Definition 2.5. Let X be metric space. A continuous map T : X → X is called mixing if, for any
pair U, V of nonempty open subsets of X, there exists some N ≥ 0 such that

Tn(U) ∩V 6= ∅ for all n ≥ N.

Every mathematical theory has its notion of isomorphism. Let X, Y be metric space. When
do we want to consider two continuous operators S : Y → Y and T : X → X as equal? There
should be a homeomorphism φ : Y → X such that, when x ∈ X corresponds to y ∈ Y via φ
then Tx should correspond to Sy via φ. In other words, if x = φ(y) then Tx = φ(Sy). This is
equivalent to saying that T ◦ φ = φ ◦ S.

We recall that a homeomorphism is a bijective continuous map whose inverse is also contin-
uous. It is already enough to demand that φ is continuous with dense range.

Definition 2.6. Let X, Y be metric space and S : Y → Y, T : X → X be a continuous map.
(a) Then T is called quasiconjugate to S if there exists a continuous map φ : Y → X with dense
range such that T ◦ φ = φ ◦ S, that is, the diagramm

Y S−→ Y

φ ↓ ↓ φ

X T−→ X
commutes.
(b) If φ can be chosen to be a homeomorphism then S and T are called conjugate.

As we seen, operators may often be interpreted in various ways. MacLane’s operator is both
a differential operator and a weighted shift. Birkhoff’s operators are differential operators as
well. Here now we have interpretation of Birkhoff’s operators Ta: they are special composition
operators. Writing

τa(z) = z + a
we see that τa is an entire function such that

Ta f = f ◦ τa.

In fact, τa is even an automorphism of C, that is, a bijective entire function. This observations
serve as the starting point of another major investigation: the hypercyclicity of general compo-
sition operators.
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The further results of this section we also can find in [21].
Let Ω be an arbitrary domain in C, that is, a nonempty connected open set. An automorphism

of Ω is a bijective analytic function
ϕ : Ω→ Ω

its inverse is then also holomorphic. The set of all automorphisms of Ω is denoted by Aut(Ω).
Now, for ϕ ∈ Aut(Ω) the corresponding composition operator is defined as

Cϕ f = f ◦ ϕ,

that is, (Cϕ f )(z) = f (ϕ(z)), z ∈ Ω.

Definition 2.7. Let Ω be a domain in C and ϕn : Ω → Ω, n ≥ 1, holomorphic maps. Then the
sequence (ϕn)n is called a run-away sequence if, for any compact subset K ⊂ Ω, there is some
n ∈ N such that ϕn(K) ∩ K = ∅.

We will usually apply this definition to the sequence (ϕn)n of iterates of an automorphism ϕ
on Ω. Let us consider two examples.

Example 2.8. (a) Let Ω = C. Then the automorphisms of C are the functions

ϕ(z) = az + b, a 6= 0, b ∈ C,

and (ϕn)n is run-away if and only if a = 1, b 6= 0.
Indeed, let ϕ be an automorphism of C. If ϕ is not a polynomial then, by the Casorati-

Weierstrass theorem, ϕ({z ∈ C; |z| > 1}) is dense in C and therefore intersects the set ϕ(D),
which is open by the open mapping theorem. Since this contradicts injectivity, ϕ must be a
polynomial. Again by injectivity, its degree must be one, so that ϕ is of the stated form. Now, if
a = 1 then ϕn(z) = z + nb, so that we have the run-away property if and only if b 6= 0; while if
a 6= 1 then (1− a)−1b is a fixed point of ϕ so that (ϕn)n cannot be run-away.

(b) Let Ω = C∗ = C \ {0}, the punctured plane. An argument as in (a) shows that the
automorphisms of C∗ are the functions

ϕ(z) = az or ϕ(z) =
a
z

, a 6= 0.

Then (ϕn)n is run-away if and only if ϕ(z) = az with |a| 6= 1.

We first show that the run-away property is a necessary condition for the hypercyclicity of
the composition operator.

Proposition 2.9. Let Ω be a domain in C and ϕ ∈ Aut(Ω). If Cϕ is hypercyclic then (ϕn)n is a
run-away sequence.

Corollary 2.10. There is no automorphism of C∗ whose composition operator is hypercyclic.

If Ω = C, the automorphisms are given by

ϕ(z) = az + b, a 6= 0, b ∈ C,

and Cϕ is hypercyclic if and only if a = 1, b 6= 0; see Example 2.8(a). Thus the hypercyclic
composition operators on C are precisely Birkhoff’s translation operators.

Let us now consider the simply connected domains Ω other than C. By the Riemann mapping
theorem, Ω is conformally equivalent to the unit disk, that is, there is a conformal map ϕ : D→
Ω. It suffices to study the case when Ω = D.
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Proposition 2.11. The automorphisms of D are the linear fractional transformations

ϕ(z) = b
a− z

1− āz
, |a| < 1, |b| = 1.

Moreover, ϕ maps T bijectively onto itself, where T is the unit circle.

Now, linear fractional transformations are a very well understood class of analytic maps. Us-
ing their properties it is not difficult to determine the dynamical behaviour of the corresponding
composition operators; via conjugacy these results can then be carried over to arbitrary simply
connected domains.

Theorem 2.12. Let Ω be a simply connected domain and ϕ ∈ Aut(Ω). Then the following assertions
are equivalent:
(i) Cϕ is hypercyclic;
(ii) Cϕ is mixing;
(iii) Cϕ is chaotic;
(iv) (ϕn)n is a run-away sequence;
(v) ϕ has no fixed point in Ω;
(vi) Cϕ is quasiconjugate to a Birkhoff’s operator.

2.1. COMPOSITION OPERATORS ON THE HARDY SPACE

In this section we consider an interesting generalization of the backward shift operator. The
underlying space will be the Hardy space H2. Arguably its easiest definition is the following. If
(an)n≥0 is a complex sequence such that

∞

∑
n=0
|an|2 < ∞,

then it is, in particular, bounded, and hence

f (z) =
∞

∑
n=0

anzn, z ∈ C, |z| < 1,

defines a analytic function on the complex unit disk D. The Hardy space is then defined as the
space of these functions, that is,

H2 =

{
f : D→ C; f (z) =

∞

∑
n=0

anzn, z ∈ D, with
∞

∑
n=0
|an|2 < ∞

}
.

In other words, the Hardy space is simply the sequence space `2(N0), with its elements written
as analytic functions. It is then clear that H2 is a Banach space under the norm

‖ f ‖ =
(

∞

∑
n=0
|an|2

) 1
2

when f (z) =
∞

∑
n=0

anzn,

and it is even a Hilbert space under the inner product

〈 f , g〉 =
∞

∑
n=0

anbn when f (z) =
∞

∑
n=0

anzn, g(z) =
∞

∑
n=0

bnzn.

The polynomials form a dense subspace of H2.
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Let ϕ be an automorphism of the unit disk D and let Cϕ f = f ◦ ϕ be the corresponding
composition operator, where we now demand that f belongs to H2.

Proposition 2.13. For any ϕ ∈ Aut(D), Cϕ defines an operator on H2.

Our aim now is to characterize when Cϕ is hypercyclic on H2. It will be convenient to consider
ϕ as a particular linear fractional transformation.

Indeed, let

ϕ(z) =
az + b
cz + d

, ad− bc 6= 0,

be an arbitrary linear fractional transformation, which we consider as a map on the extended
complex plane Ĉ = C∪ {∞}. Then ϕ has either one or two fixed points in Ĉ, or it is the identity.

Theorem 2.14. Let ϕ ∈ Aut(D) and Cϕ be the corresponding composition operator on H2. Then the
following assertions are equivalent:
(i) Cϕ is hypercyclic;
(ii) Cϕ is mixing;
(iii) ϕ has no fixed point in D.

3. HYPERCYCLIC COMPOSITION OPERATOR ON SPACE OF SYMMETRIC FUNCTIONS

In this section we consider hypercyclic composition operators on space of symmetric analytic
functions, the basic results are given in [31].

3.1. POLYNOMIAL AUTOMORPHISMS AND SYMMETRIC FUNCTIONS

Definition 3.1. A polynomial map Φ = (Φ1, . . . , Φn) from Cn to Cn is said to be a polynomial
automorphism if it is invertible and the inverse map is also a polynomial.

Definition 3.2. Let X be a Banach space with a symmetric basis (ei)
∞
i=1. A function g on X is

called symmetric if for every x =
∞

∑
i=1

xiei ∈ X,

g(x) = g
( ∞

∑
i=1

xiei

)
= g

( ∞

∑
i=1

xieσ(i)

)
for an arbitrary permutation σ on the set {1, ..., m} for any positive integer m.

Definition 3.3. The sequence of homogeneous polynomials (Pj)
∞
j=1, deg Pk = k is called a homo-

geneous algebraic basis in the algebra of symmetric polynomials if for every symmetric polyno-
mial P of degree n on X there exists a polynomial q on Cn such that

P(x) = q(P1(x), . . . , Pn(x)).

Throughout this paper we consider the case when X = `1. We denote by Ps(`1) the algebra
of all symmetric polynomials on `1. The next two algebraic bases of Ps(`1) are useful for us:
(Fk)

∞
k=1 (see [18]) and (Gk)

∞
k=1, where

Fk(x) =
∞

∑
i=1

xk
i and Gk(x) = ∑

i1<···<ik

xi1 · · · xik .
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By the Newton formula G1 = F1 and for every k > 1,

Gk+1 =
1

k + 1
((−1)kFk+1 − FkG1 + · · ·+ F1Gk).

Denote by Hn
s (`1) the algebra of entire symmetric functions on `1 which is topologically gen-

erated by polynomials F1, . . . , Fn. It means that Hn
s (`1) is the completion of the algebraic span of

F1, . . . , Fn in the uniform topology on bounded subsets. We say that polynomials P1, . . . , Pn (not
necessary homogeneous) form an algebraic basis in Hn

s (`1) if they topologically generate Hn
s (`1).

Evidently, if (Pj)
∞
j=1 is a homogeneous algebraic basis in Ps(`1), then (P1, . . . , Pn) is an algebraic

basis in Hn
s (`1). We will use notations F := (Fk)

n
k=1 and G := (Gk)

n
k=1.

Proposition 3.4. Let Φ = (Φ1, . . . , Φn) be a polynomial automorphism onCn. Then (Φ1(P), . . . , Φn(P))
is an algebraic basis in Hn

s (`1) for an arbitrary algebraic basis P = (P1, . . . , Pn).
Conversely, if (Φ1(P), . . . , Φn(P)) is an algebraic basis for some algebraic basis P = (P1, . . . , Pn) in

Hn
s (`1) and a polynomial map Φ on Cn, then Φ is a polynomial automorphism.

Proof. Suppose that Φ is a polynomial automorphism and

Φ−1 = ((Φ−1)1, . . . , (Φ−1)n)

is its inverse. Then Pk = (Φ−1)k(Φ1(P), . . . , Φn(P)), 1 ≤ k ≤ n. Hence polynomials Φ1(P), . . . , Φn(P)
topologically generate Hn

s (`1) and so they form an algebraic basis.
Let now (Φ1(P), . . . , Φn(P)) be an algebraic basis in Hn

s (`1) for some algebraic basis P =
(P1, . . . , Pn). Then for each Pk, 1 ≤ k ≤ n, there exists a polynomial qk on Cn such that Pk =
qk(Φ1(P), . . . , Φn(P)). Put (Φ−1)k(t) := qk(t), t ∈ Cn. Since (Φ1(P), . . . , Φn(P)) is an algebraic
basis, the map

(x1, . . . , xn) 7→ (Φ1(P(x)), . . . , Φn(P(x)))
is onto by [1, Lemma 1.1]. Thus Φ : Cn → Cn is a bijection and so the mapping ((Φ−1)1, . . . , (Φ−1)n)
is the inverse polynomial map for Φ. �

3.2. SIMILAR TRANSLATIONS

We start with an evident statement, which actually is a very special case of the Universal
Comparison Principle (see e.g. [20, Proposition 4]).

Proposition 3.5. Let T be a hypercyclic operator on X and A be an isomorphism of X. Then A−1TA is
hypercyclic.

We will say that A−1TA is a similar operator to T. If T = CR is a composition operator on
H(Cn) and A = CΦ is a composition by an analytic automorphism Φ of Cn, then A−1TA =
CΦ◦R◦Φ−1 is a composition operator too. If A is a composition with a polynomial automor-
phism, we will say that A−1TA is polynomially similar to T. Now we consider operators which
are similar to the translation composition Ta : f (x) 7→ f (x + a) on H(Cn).

Example 3.6. Let Φ(t1, t2) = (t1, t2− tm
1 ) for some positive integer m. Clearly, Φ is a polynomial

automorphism and Φ−1(z1, z2) = (z1, z2 + zm
1 ). So

Φ(t + a) = (t1 + a1, t2 + a2 − (t1 + a1)
m)

=

(
t1 + a1, t2 + a2 − tm

1 − am
1 −

m−1

∑
j=1

(
m− j

j

)
tm−j
1 aj

1

)
.
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Thus we have

Φ ◦ (I + a) ◦Φ−1(t) = Φ(Φ−1(t) + a) =
(

t1 + a1, t2 + a2 − am
1 −

m−1

∑
j=1

(
m− j

j

)
tm−j
1 aj

1

)
.

Hence the composition operator with the (m− 1)-degree polynomial Φ ◦ (I + a) ◦Φ−1 is similar
to the translation operator Ta = C(I+a) and so it must be hypercyclic. Here I is the identity
operator.

It is known (see [1]) that the map

FF
n : f (t1, . . . , tn) 7→ f (F1(x), . . . , Fn(x))

is a topological isomorphism from the algebra H(Cn) to the algebra Hn
s (`1). Now we will prove

more general statement.

Lemma 3.7. Let P = (Pk)
n
k=1 be an algebraic basis in Hn

s (`1). Then the map

FP
n : f (t1, . . . , tn) 7→ f (P1(x), . . . , Pn(x))

is a topological isomorphism from H(Cn) onto Hn
s (`1).

Proof. Evidently, FP
n is a homomorphism. It is known [1] that for every vector (t1, . . . , tn) ∈ Cn

there exists an element x ∈ `1 such that P1(x) = t1, . . . , Pn(x) = tn. Therefore the map FP
n is

injective. Let us show that FP
n is surjective. Let u ∈ Hn

s (`1) and u = ∑ uk be the Taylor series
expansion of u at zero. For every homogeneous polynomial uk there exists a polynomial qk on

Cn such that uk = qk(P1, . . . , Pn). Put f (t1, . . . , tn) =
∞

∑
k=1

qk(t1, . . . , tn). Since f is a power series

which converges for every vector (t1, . . . , tn), f is an entire analytic function on Cn. Evidently,
FP

n ( f ) = u. From the known theorem about automatic continuity of an isomorphism between
commutative finitely generated Fréchet algebras [23, p. 43] it follows that FP

n is continuous. �

Let x, y ∈ `1, x = (x1, x2, . . .) and y = (y1, y2, . . .). We put

x • y := (x1, y1, x2, y2, . . .)

and define
Ty( f )(x) := f (x • y).

We will say that x 7→ x • y is the symmetric translation and the operator Ty is the symmetric
translation operator. It is clear that if f is a symmetric function, then f (x • y) is a symmetric
function for any fixed y.

In [12] is proved that Ty is a topological isomorphism from the algebra of symmetric analytic
functions to itself. Evidently, we have that

Fk(x • y) = Fk(x) + Fk(y) (3.1)

for every k.
Let g ∈ Hn

s (`1) and α = (α1, . . . , αn). Set

Dαg := FF
n Dα(FF

n )
−1g =

(
∂α1

∂tα1
1
· · · ∂αn

∂tαn
n

f
)
(F1(·), . . . , Fn(·)),

where f = (FF
n )
−1g.
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Theorem 3.8. Let y ∈ `1 such that (F1(y), . . . , Fn(y)) is a nonzero vector in Cn. Then the symmetric
translation operator Ty is hypercyclic on Hn

s (`1). Moreover, every operator A on Hn
s (`1) which com-

mutes with Ty and is not a scalar multiple of the identity is hypercyclic and can be represented by

A(g) = ∑
|α|≥0

cαDαg, (3.2)

where cα are coefficients of a non-constant entire function of exponential type on Cn.

Proof. Let a = (F1(y), . . . , Fn(y)) ∈ Cn. If g ∈ Hn
s (`1), then

g(x) = FF
n ( f )(x) = f (F1(x), . . . , Fn(x))

for some f ∈ Hn
s (`1) and property (3.1) implies that

Ty(g)(x) = FF
n Ta(FF

n )
−1(g)(x).

So the proof follows from Proposition 3.5 and the Godefroy-Shapiro Theorem. �

A given algebraic basis P on Hn
s (`1) we set

TP,y := (FP
n )
−1TyFP

n and Dα
P := (FP

n )
−1DαFP

n .

Corollary 3.9. Let P be an algebraic basis on Hn
s (`1) and let y ∈ `1 such that (F1(y), . . . , Fn(y)) 6= 0.

Then the operator TP,y is hypercyclic on H(Cn). Moreover, every operator A on H(Cn) which commutes
with TP,y and is not a scalar multiple of the identity is hypercyclic and can be represented by the form

A( f ) = ∑
|α|≥0

cαDα
P f , (3.3)

where cα as in (1.1).

Note that due to Proposition 3.4 the transformation (FP
n )
−1TyFP

n is nothing else than a com-
position with Φ ◦ (I + a) ◦Φ−1, where Φ(F1, . . . , Fn) = (P1, . . . , Pn) and a = (F1(y), . . . , Fn(y)).
Conversely, every polynomially similar operator to the translation can be represented by the
form (FP

n )
−1TyFP

n for some algebraic basis of symmetric polynomials P. This observation can
be helpful in order to construct some examples of such operators.

Example 3.10. Let us compute how looks the operator TP,y for P = G. We observe first that
Gk(x • y) = ∑k

i=0 Gi(x)Gk−i(y), where for the sake of convenience we take G0 ≡ 1. Thus

TyFG
n f (t1, . . . , tn) = Ty f (G1(x), . . . , Gn(x)) = f (G1(x • y), . . . , Gn(x • y))

= f
(

G1(x) + G1(y), . . . ,
n

∑
i=0

Gi(x)Gn−i(y)
)

.

Therefore

TG,y f (t1, . . . , tn) = f
(

t1 + b1, . . . ,
k

∑
i=0

tibk−i, . . . ,
n

∑
i=0

tibn−i

)
, (3.4)

where t0 = 1, b0 = 1 and bk = Gk(y) for 1 ≤ k ≤ n.
According to the Newton formula and Proposition 3.4 the corresponding polynomial auto-

morphism Φ can be given of recurrence form Φ1(t) = t1, Φk+1(t) = 1/(k + 1)((−1)ktk+1 −
tkΦ1(t) + · · ·+ t1Φk(t)) which is not so good for computations.
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The hypercyclic operator in Example 3.6 is a composition with an m− 1 degree polynomial
and so does not commute with the translation because it can not be generated by formula (1.1).
However, the composition with an affine map in Example 3.10 still does not commute with Ta.
Indeed, by (3.4),

Ta ◦ TG,y f (t1, . . . , tn) = f
(

t1 + b1 + a1, . . . ,
n

∑
i=0

tibn−i + an

)
;

TG,y ◦ Ta f (t1, . . . , tn) = f
(

t1 + b1 + a1, . . . ,
n

∑
i=0

(ti + ai)bn−i

)
,

where a0 = 1. Evidently, Ta ◦ TG,y 6= TG,y ◦ Ta for some a 6= 0 whenever b 6= (0, . . . , 0, bn).

Corollary 3.11. There exists a nonzero vector b ∈ Cn and a polynomial automorphism Θ on Cn such
that Θ ◦ (I + b)Θ−1(t) = A(t) + c where A is a linear operator with the matrix of the form

A =


1 1 0 0
... . . . . . . ...
0 · · · 1 1
0 · · · 0 1

 (3.5)

and c 6= 0.

Proof. We choose b ∈ Cn such that all coordinates bk, 1 ≤ k ≤ n are positive numbers. Let Φ
be a polynomial automorphism associated with TG,y in Example 3.10, where y ∈ `1 is such that
Gk(y) = bk, 1 ≤ k ≤ n. Then, according to (3.4), we can write Φ ◦ (I + b)Φ−1(t) = R(t) + b,
where

R =


1 0 0 · · · 0
b1 1 0 · · · 0
...

...
...

...
...

bn−2 bn−3 · · · 1 0
bn−1 bn−2 · · · b1 1

 .

We recall that the index of an eigenvalue λ of a matrix M is the smallest nonnegative integer k
such that rank((M− λI)k) = rank((M− λI)k+1). The matrix R has a unique eigenvalue 1 and
since all coordinates bk of b are positive, the index of this eigenvalue is equal to n. Indeed, for
each k < n, (R−λI)k contains an (n− k)× (n− k) triangular matrix with only positive numbers
in the main diagonal and (R− λI)n = 0. Therefore, from the Linear Algebra we know that the
largest Jordan block A associated with the eigenvalue 1 is n× n and so it can be represented by
(3.5). Thus there is a linear isomorphism L on Cn such that A = LRL−1. Hence

(L ◦Φ) ◦ (I + b) ◦ (L ◦Φ)−1(t) = L ◦ (R + b) ◦ L−1(t) = A(t) + L(b).

So it is enough to set Θ := L ◦Φ and c := L(b). �

Theorem 3.12. Let S be an affine automorphism on Cn such that CS is hypercyclic. Then there are
vectors a, b and a polynomial automorphism Θ on Cn such that S = Θ ◦ (I + b) ◦Θ−1 + a.

Proof. Let S(t) = A(t) + c be an affine map on Cn such that CS is hypercyclic. Without loss of
the generality we can assume that A is a direct sum of Jordan blocks A1, . . . , Am and each block
Aj acts on a subspace Vj of Cn. In the proof of Theorem 3.1 of [5] is shown that the spectrum of
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each block Aj is the singleton {1}. So each Aj is of the form as in (3.5). Let Θ(j) be a polynomial
automorphism of Vj as in Corollary 3.11, that is,

Θ(j) ◦ (I + b(j)) ◦Θ−1
(j) = Aj + b(j),

for some b(j) ∈ Vj. Put Θ = Θ(1)+ · · ·+Θ(m) and b = b(1)+ · · ·+ b(m). Then Θ ◦ (I + b) ◦Θ−1 =
A + b. Let a = c− b. Hence

S = A + c = A + b + a = Θ ◦ (I + b) ◦Θ−1 + a.

�

Of course, the converse of Theorem 3.12 (with b 6= 0) also holds.
We do not know whether it is always possible to choose Θ so that a = 0. In other words: Is

every hypercyclic operator which is a composition by an affine automorphism polynomially similar to a
translation? Moreover, we do not know any example of a hypercyclic composition operator on
H(Cn) which is not similar to a translation.

3.3. THE INFINITY-DIMENSIONAL CASE

Let us recall a well known Kitai-Gethner-Shapiro theorem which is also known as the Hyper-
cyclicity Criterion.

Theorem 3.13. Let X be a separable Fréchet space and T : X → X be a linear and continuous operator.
Suppose there exist X0, Y0 dense subsets of X, a sequence (nk) of positive integers and a sequence of
mappings (possibly nonlinear, possibly not continuous) Sn : Y0 → X so that

(1) Tnk(x)→ 0 for every x ∈ X0 as k→ ∞.
(2) Snk(y)→ 0 for every y ∈ Y0 as k→ ∞.
(3) Tnk ◦ Snk(y) = y for every y ∈ Y0.

Then T is hypercyclic.

The operator T is said to satisfy the Hypercyclicity Criterion for full sequence if we can chose
nk = k. Note that Ta satisfies the Hypercyclicity Criterion for full sequence [17] and so the
symmetric shift Ty on Hn

s (`1) satisfies the Hypercyclicity Criterion for full sequence provided
(F1(y), . . . , Fn(y)) 6= 0.

Finally, we establish our result about hypercyclic operators on the space of symmetric entire
functions on `1. But before this, we need the following general auxiliary statement, which might
be of some interest by itself.

Lemma 3.14. Let X be a Fréchet space and X1 ⊂ X2 ⊂ · · · ⊂ Xm ⊂ · · · be a sequence of closed
subspaces such that

⋃∞
m=1 Xm is dense in X. Let T be an operator on X such that T(Xm) ⊂ Xm for each

m each restriction T|Xm satisfies the Hypercyclicity Criterion for full sequence on Xm. Then T satisfies
the Hypercyclicity Criterion for full sequence on X.

Proof. Let Y(m)
0 and X(m)

0 be dense subsets in Xm, and S(m)
k corresponding sequence of mappings

associated with T|Xm as in Theorem 3.13. Put X0 =
⋃∞

m=1 X(m)
0 and Y0 =

⋃∞
m=1 Y(m)

0 . It is clear
that both X0 and Y0 are dense in X. For a given y ∈ Y0, we denote by m(y) the minimal number
m such that y ∈ Y(m)

0 . We set Sk(y) := S(m(y))
k (y). Then

Tk ◦ Sk(y) = Tk|Xm(y)
◦ S(m(y))

k (y) = y, ∀y ∈ Y0
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and Sk(y) = S(m(y))
k (y) → 0 as k → ∞ for every y ∈ Y0. Similarly, if x ∈ X0, then x ∈ X(m)

0 for
some m and Tk(x) = Tk|Xm(x)→ 0 as k→ ∞. So T satisfies the Hypercyclicity Criterion for full
sequence on X. In particular, T is hypercyclic. �

We denote by Hbs(`1) the Fréchet algebra of symmetric entire functions on `1 which are
bounded on bounded subsets. This algebra is the completion of the space of symmetric poly-
nomials on `1 endowed with the uniform topology on bounded subsets.

Theorem 3.15. The symmetric operator Ty is hypercyclic on Hbs(`1) for every y 6= 0.

Proof. Since y 6= 0, Fm0(y) 6= 0 for some m0 [1]. So, Ty is hypercyclic (and satisfies the Hy-
percyclicity Criterion for full sequence) on Hm

s (`1) whenever m ≥ m0. The set
⋃∞

m=m0
Hm

s (`1)
contains the space of all symmetric polynomials on `1 and so it is dense in Hbs(`1). Also
Hm

s (`1) ⊂ Hn
s (`1) if n > m. Hence by Lemma 3.14, Ty is hypercyclic. �

4. ANALYTIC HYPERCYCLIC OPERATORS

In this section we will show a simple method how to construct polynomial and analytic
hypercyclic operators. Basic results of this section we can find in [29].

Let F be an analytic automorphism of X onto X and T be an hypercyclic operator on X. Then
TF := FTF−1 (and TF−1 := F−1TF as well) must be hypercyclic [20] and, in the general case,
they are nonlinear. The following examples show that TF are nonlinear for some well known
hypercyclic operators T and simple analytic automorphisms F.

Example 4.1. Let A(D) be the disk-algebra of all analytic functions on the unit disk D of C

which are continuous on the closure D. Denote X1 = {
∞

∑
k=0

a2k+1t2k+1 ∈ A(D)} and X2 =

{
∞

∑
k=0

a2kt2k ∈ A(D)}. Clearly A(D) = X1 ⊕ X2.

For every f = f1 + f2, f1 ∈ X1, f2 ∈ X2 we put{
F( f1) := f1,
F( f2) := f2 + f 2

1 . Then we have
{

F−1( f1) = f1,
F−1( f2) = f2 − f 2

1 .

So F is a polynomial automorphism of X. Let T( f (t)) = f ( t+1
2 ). It is known that T is hypercyclic

on A(D) [10, p. 4].
Let us show that TF = FTF−1 is nonlinear. It is enough to check that TF(λ f ) 6= λTF( f ) for

some λ ∈ C and f ∈ A(D). Let f (t) = t + t2 ∈ A(D). Then

TF(λ f ) = F(T(F−1(λt + λt2))) = F(T(λt + λt2 − λ2t2))

= F(T(λt + (λ− λ2)t2)) = F
(

λ
( t + 1

2

)
+ (λ− λ2)

( t + 1
2

)2)
=

(2λ− λ2)t
2

+
(λ + 3λ2 − 4λ3 + λ4)t2

4
+

(3λ− λ2)

4
for any λ 6= 0, λ 6= 1. Thus TF(λ f ) 6= λTF( f ).

By the similar way in the next example we consider the space of entire analytic functions
H(C) and T( f ) = f (x + a) to show that TF−1 is nonlinear, where F is defined as above.
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Example 4.2. Let f (t) = t + t2 ∈ H(C) then F( f ) = t + 2t2, F(λ f ) = λ(t + t2) + λ2t2. Thus

T(F(λ f )) = λ(t + a) + 2λ(1 + λ)at + (λ + λ2)(t2 + a2)

for any λ 6= 0. Since F−1( f ) = t− t2, we have

F−1TF(λ f ) = λ(t + t2)− 4λ2a2(t + t2) + λ(a + a2 + 2t) + 4λ2at(t + a)
−4λ3at(t + a)− 4λ3a2t2(2 + λ) 6= λTF−1( f ).

So, the operator TF−1 = F−1TF is nonlinear.

Example 4.3. Next we consider the Hilbert space `2. Let (ek)
∞
k=1 be an orthonormal basis in `2

and x =
∞

∑
k=1

xkek ∈ `2. We define an analytic automorphism F : `2 → `2 by the formula{
F(x2k−1e2k−1) = x2k−1e2k−1,

F(x2ke2k) = x2ke−x2k−1e2k, k = 1, 2, . . . .

Let Tµ be a weighted shift
Tµ(x) = (µx2, µx3, . . .).

Tµ is a hypercyclic operator if |µ| > 1 (see [34]). Then the operator TF = FTµF−1 is hypercyclic.
We will show that TF is nonlinear.

Let a ∈ `2, a = (a1, a2, . . . an, . . .), a =
∞

∑
k=1

akek and λ ∈ C. We will show that TF(λa) 6= λTF(a).

F−1TµF(λa) = (µλa2e−λa1 , µλa3eµλa2e−λa1 , µλa4e−λa3 , µλa5eµλa4e−λa3 , . . .).

So, TF(λa) 6= λTF(a) and moreover, the map λ  Tµ(λa) is not polynomial. Thus TF is an
analytic (not polynomial) hypercyclic map.

5. HYPERCYCLIC OPERATORS ON SPACES OF FUNCTIONS ON ALGEBRAIC MANIFOLDS

In this section we represent the basic results which had obtained in [30].
Let q1, . . . , qm be polynomials on Cn. We consider an ideal which is generated by the polyno-

mials
I = (q1, . . . , qn) := {q1p1 + · · ·+ qnqn | pk ∈ P(Cn), k = 1, . . . , n}.

Let V(I) = ∩n
k=1 ker qk be set of zeros of the ideal I . The set V(I) is called algebraic set and on

this set we can define algebra of polynomials

P(V(I)) := P(Cn)/I(V(I)),
where I(V(I)) is set of polynomials, which are equal to zero on V(I).
Definition 5.1. The ideal I is called simple if from p ∈ I and p = p1p2 follows that p1 ∈ I and
p2 ∈ I . In this case the set V(I) is called algebraic manifold.

It is known from algebraic geometry (see [33]), that for simple ideal I , I(V(I)) = I , and
algebra P(V(I)) = P(Cn)/I(V(I)) is ring integrity, that is ring without zero divisors. Every
element of algebra P(V(I)) is class of equivalence for some p ∈ P(Cn),

[p] = {p + q : q ∈ I}.
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We define algebra of entire analytic functions H(V(I)) on the algebraic manifold V(I) as set
of classes

{[ f ] : [ f ] = { f + q : q ∈ I}, f ∈ H(Cn)}.
Let N = {i1, . . . , ik} be some proper subset in {1, 2, . . . , n} andM = {j1, . . . , jm} =

= {1, 2, . . . , n}\N .
The equation

ti1 = ti2 = · · · = tik = 0 (5.1)

sets in Cn linear subspace LM. From another side, if
t1 = Φ1(z1, . . . , zn),
...
tn = Φn(z1, . . . , zn)

for polynomials Φ1, . . . , Φn, then equation (5.1) in coordinates zi1 , . . . , zik sets algebraic manifold
VM:

Φi1(z1, . . . , zn) = 0, . . . , Φik(z1, . . . , zn) = 0.

By striction map Φ = (Φ1, . . . , Φn) on manifold VM we get polynomial automorphism
Φj1(z1, . . . , zn) = tj1 ,
...
Φjm(z1, . . . , zn) = tjm

from VM on LM, which we denote Φ̃.
By the another words, manifold VM is image of subspace LM at polynomial map

((Φ̃−1)j1 , . . . , (Φ̃−1)jm).

Theorem 5.2. Let a be non zero vector in LM. Then composition operator with polynomial map Φ̃−1 ◦
(I + a) ◦ Φ̃ is hypercyclic operator on space H(VM).

Proof. The composition operator with translation I + a is hypercyclic map. Since Φ̃ is polyno-
mial automorphism from VM in LM, thus CΦ̃ is continuous homomorphism from H(LM) in
H(VM). Then, according to Universal Comparison Principle CΦ̃−1◦(I+a)◦Φ̃ = CΦ̃ ◦ Ta ◦ CΦ̃−1 is
hypercyclic operator on space H(VM). �

Example 5.3. Let Φ : C2 → C2 be a polynomial automorphism:{
t1 = z1
t2 = z2 + P(z1),

where P is some polynomial on C. Put N = {2},M = {1}. Then

LM = {t = (t1, t2) ∈ C2 : t2 = 0},

VM = {z = (z1, z2) ∈ C2 : z2 + P(z1) = 0}.
The map Φ̃ : VM → LM is defined by formula Φ̃ : (z1, z2) → (t1, t2) = (z1, 0). Thus Φ̃−1 :
(t1, 0) → (z1, z2) = (t1,−P(t1)). Hence, for a = (a1, a2) ∈ LM, a1 6= 0, a2 = 0, automorphism
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Φ̃−1 ◦ (I + a) ◦ Φ̃ we have a representation

Φ̃−1 ◦ (I + a) ◦ Φ̃(z1, z2) = Φ̃−1 ◦ (I + a)(z1, 0)

= Φ̃−1(z1 + a1, 0)
= (z1 + a1,−P(z1 + a1)),

where I is identity operator on C2. Thus CΦ̃TaCΦ̃−1( f )(z) = f ((z1 + a1),−P(z1 + a1)) is hyper-
cyclic composition operator on VM.

The following questions are natural: Are there polynomials P ∈ P(Cn) for which there is
polynomial automorphism from Cn−1 in ker P? That is, for which P we can find polynomials
Φ1, . . . , Φn on Cn such that, the map Φ = (P, Φ2, . . . , Φn) is polynomial automorphism?

It is known that necessary condition for this Jacobi equality

∂Φ
∂t

=

∣∣∣∣∣∣∣
∂P
∂t1

· · · ∂P
∂tn

... . . . ...
∂Φn
∂t1

· · · ∂Φn
∂tn

∣∣∣∣∣∣∣ (5.2)

is equal to some non zero constant M. Denote by Q(t)
k minors, which are complements to 1-th

array and k-th column. Evidently, Q(t)
k are polynomials. Expanding the determinant (5.2) along

the first column, we get, that
n

∑
k=1

∂P(t)
∂tk

Qk(t) = M.

That is, the polynomials ∂P
∂tk

, (k = 1, . . . , n) generate ideal, which coincides with the whole space

of polynomials on Cn. Thus ∂P
∂tk

do not have common zeros. So we get the next proposition.

Proposition 5.4. If there is polynomial automorphism from Cn−1 in ker P, then polynomials ∂P(t)
∂tk

,
(k = 1, . . . , n) do not have common zeros.

Is it true vice versa? This question is related to the well-known Jacobi problem which remains
open since 1939.
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В цiй статтi мiститься огляд теорiї гiперциклiчних операторiв композицiї, зокрема представлено
новi класи гiперциклiчних операторiв композицiї на просторах аналiтичних функцiй.
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