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For the thermodynamical system described by the Langevin equation with the additive white
noise the expression for a generating potential as a dependence on a two—component superfield
is determined. The usual component of this superfield represents an order parameter, and the
Grassmannian one represents a selfconsistent field conjugated by this parameter.Within the first
order perturbation theory over particle interaction and unharmonicity the explicit expressions for
wave—frequency dependence of autocorrelators of the real order parameter and the corresponding
conjugated field are determined. The condition of stability breaking and the characteristic system
scale are found. For the complex order parameter a form of frequency dependence of the corre-
sponding correlators is determined numerically for different parameters of the theory.
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I. INTRODUCTION

According to the Landau concept a transformation of
nonequilibrium thermodynamic system is unequivocally
represented by the order parameter (OP). Within the
framework of the microscopic theory of phase transitions
the appearance of an ordered state is caused by sponta-
neous symmetry breaking, resulting in switching on a
self-consistent field conjugated by the order parameter.
At development of the formal scheme of phase transi-
tions, where the values of the order parameter and the
self-consistent field change in a self-consistent manner
(at a stationary state they are connected by a func-
tional relation), the natural question appeared — will
they form a unique mathematical structure type of the
vector in a functional space? A positive answer to this
question is given by the field scheme developed below,
within the framework of which the order parameter and
self-consistent field will form a unique superfield, the first
component of which is represented by usual (real or com-
plex) values, and the second by the Grassmannian ones.

From the very beginning it is necessary to note, that
the term “a superfield” is used by use in the conditional
meaning. This field unites usual and Grassmannian vari-
ables, instead of various statistics. Within the framework
of the initial concept [1] a true superfield has got not two
but four components, two of which have Bose charac-
ter, and two others — the Fermi one. Research of four—
components representation has shown [2], that Bose com-
ponents correspond to the condensate and fluctuation
components of the order parameter, and Grassmannian
conjugated pair of Fermi components is related to the
antiphase boundaries. Obviously, in spatially homoge-
neous systems, where such boundaries are absent, four—
components representation of the superfield become sur-
plus and, in essence, it is reduced to the two—components
superfield. Respectively the pair of the Grassmannian
conjugated coordinates y, ¥ is reduced to sole y, and
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the field scheme should be primarily developed.

Apart from the development of the appropriate for-
malism, the purpose of the offered work is in the deter-
mination of the physical meaning of the two—component
superfield. As far as it has Bose character, then as was al-
ready mentioned above (see also [2]), its usual component
7 is reduced to the condensate component of the order
parameter, and the Grassmannian one ¢ — to the fluc-
tuation constituent. The correlator of these components
gives the usual Green function G(r,t) = (n(r,t) ¢ (0,0)).
However, except the field ¢ it is possible to enter other
field ¢ = ¢ — 1)/26, where the point means time deriva-
tive, # — degree of system nonequilibrium. Taking into
account, that the value 20 represents an amplitude of
the fluctuation component [2], it is possible to show,
that the new field ¢ is reduced to the deterministic com-
ponent of the conjugated field. Further, this derivation
will be confirmed by the direct calculations. Meaning in
mind the possible applications of the developed formal-
ism, we shall consider both the real fields n, ¢, ¢, and the
complex one (see sections 2 and 3 respectively). In the
first case for ®*-model, taking into account the interac-
tion and the first order power in unharmonicity series it
is possible the complete consideration. For the complex
fields the calculation becoms much complicated and the
final results are reached only numerically.

II. THE PROBLEM FORMULATION

We shall proceed from the Langevin equation

+((r, 1), (1)

which determining time—spatial dependence of the non-
conserved complex order parameter 7 (r,t). Here the
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point means time derivative, V(1) — synergetic poten-
tial, ¢ (r,t) — stochastic component, normalized by con-

where angular brackets mean averaging, # — the noise
intensity. In the right—hand part (1) before the first term

ditions of white noise the operator —V? and the operator — (D/8) V? before
in (2) appear for the case of conserved order parameter,
where D is diffusion coefficient [2].

The basis for construction of the field scheme is a gen-

erating functional [1-3]

1
Zutr ) = [ty exw (5 [un+ ) are) Do, )
. ov oC
Z{n@, )} = ( [T 6400, t) + 5 = ¢(r,t) pdet | 2] ) (4)
o o7
(r’t) C
[
Its variation over the test field u(r,t) gives the ob-  Then Lagrangian (8) takes the form
served correlators. Z{u} represents functional Laplace
transformation of the dependence Z{n}, in which the ar- i 2 1
gument of the d—function is equation (1). The determi- c="1 |6]> — = (™) — 0" )
nant in (4) in the Ito convention is reduced to the noise 4 2
intensity €, providing transition from continuous integra- LOV gt OV
tion over ¢ to n. Averaging over ( is performed according —¢ an + ) o (10)

to the distribution
1 2
P{C} o exp {—4—9 [iceol drdt} LB

following from (2). Using the integral representation

S{a(r, B)} = 7Oexp (- / :mp*drdt) Dp  (6)
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and performing averaging over (5), the functional (4)
takes the standard form

Zin(r,0)} = / exp [-S{n(r,1), 0@, )} Dg,  (7)

where action S = [ Ldrdt is determined by Lagrangian

. )%
L=¢*(n—p)+e o (8)

Here and below, if the otherwise is not meant, the coor-
dinate r is measured in units of correlation length £, the
time ¢+ — in units of #~1, and the synergetic potential V'
— in the scale 6.

Let us enter the field ¢, determined by the equality

n=2¢+ 2. 9)

After substituting into (7) the last term, which repre-
sents a complete derivative of V() with respect to ¢, in
functional (3) the multiplier appears

Azz/exp{%/[vw)

— V (n:)] dr dt} Do Dn; Dry, (11)

which is determined by the initial 7;(r,t) and final
n¢(r,t) fields of the order parameter. This multiplier de-
scribes system relaxation from the state 7; to ny. After
its separation it is possible to omit the last term in (10).
For representing the rest of the terms into a canonical
form let us introduce the superfield

® =n+x9, (12)

where Grassmannian coordinate x has the usual proper-

ties
xx' +x'x =0, /dx =0, /de =1. (13)
As a result we obtain Lagrangian
L= /[% (*D® + ®DP*) + V(@)} dx, (14)
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where the superderivative operators are entered in the
following form

D =Dy + Dy, B:DO_Dl;
5 X a\ 8

Component Dg contains even order of the time deriva-
tive, D1 — only odd order (the first). The equivalence of
the last term in (14) and the last member in (10) it is
possible is attained by performing a formal expand of the
dependence V(@) in Maclaurin’s series and getting rid of
the supercoordinate x in degrees of superfield (12) with
the help of equations (13). As to the rest of the terms,
their identity follows immediately after substituting (15)
into (14). Substituting the superfield (12) into operators
(15), it is easy to see that they have the following prop-
erties:

2n
8‘I>

Dg"® = 277" 5

n

D'® = —
1 6tnn7

n=12,... (16)

On the other hand, the action of the infinitesimal oper-

ators eD, eEB, e — 0 gives
el iy xv—g t—=t+e;
eEB:Xéx—s; t—>t—e.
e 1 dn=e (i —¢); 5¢=—Zﬁ;
eyt = —e (i +¢7);  6¢" = —Zﬁ*- (17)

Thus, the operator D increases time, and D reduces it,
whereas they both reduce supercoordinate. According to
(17) the action of the operators e”, P on the compo-
nent 7 leads to a change along the other one ¢, included
in the combination with the rate of change of the order
parameter 7). As to the action on the component ¢, it
is bound up with the second derivative 7} of time depen-
dence of the order parameter.

For further problem solution it is necessary to substi-
tute Lagrangian (14) into the corresponding Euler equa-
tion. The expressions which will be obtained below is
substantially dependent on the complex properties of the
order parameter and the conjugated field. Let us start
with the more simple case.

III. REAL FIELDS

Here ® = ®* and the first term in integrand of Eq.(14)
takes the form of ®Dy®. Correspondingly, the motion
equation reads
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Do = V(@) (18)

where a prime means (variational) derivative on the cor-
responding argument. Substituting to expressions (12),
(15), with the use of Eq.(13) for a component of the su-
perfield we obtain

i = -2V (n)o,

26 =—V'(n).

Taking into account the definition of the conjugated field
f = -=V'(n), one can see, that the component of super-
field (12), corresponding to the Grassmann variable, is
reduced to the conjugated field: ¢ = %f Using this con-
dition in definition (9) of the fields ¢, it is easy to notice,
that Eq.(9) plays a role of the averaged Langevin equa-
tion (1).

A system of equations (19a), (19b) allows to find com-
ponents of the superfield 7, ¢ if the synergetic poten-
tial V'(n) is known. In this way asymmetry of equations
(19a), (19b) with respect to the time derivatives order is
apparent. It vanishes, with the transition from the con-
jugated field to the fluctuation field ¢ with the help of
relation (9). The corresponding equations take the form
of

i =-V'(n)+ 2, (20a)

@ =V"(n)e. (20b)

For further progress of the problem we shall pick out
interaction in the synergetic potential:

V{®} = Vp{®} + Vine { @},
Vo{®} = / {%@2 + % (V<I>)2] drdy,
Vi {@) = / / Vine L X' Hxdy,

1
Vine X, X'} = 5//<I>(r’,t’,x')¢(r,t,x)

xv (,1') B(r,t,x) D', ¥, ) drdr,

v(r,r')=v(r)d(r—r')—w(r—r'). (21)

Here in kernel v(r,r’) the contributions are divided,
caused by self-action (unharmonicity) of v(r) and the
two—particle interaction w (r — '), the sign of which
specifies the attractive character. In accordance with (21)
the nonlinear component has the form of
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‘/;nt(XaXI) = U(Xaxl) - W(Xaxl) (22)

In the first term, representing self-action, it is natural to put ¢ = ¢/, x = x'. As a result we obtain the expression

U(6x) = 50t =)0 = 1) [ o2t e, i, (23)

where the multiplier y — x’ corresponds, in accordance with (13), to the Grassmannian d—function. Below the su-
persymmetric perturbation theory will be constructed on the basis of this expression. Obviously, by this it is not
necessary to use coordinate representation. On the contrary, it is convenient to use the spatial Fourier transform in
the second term of (22), which represents a two—particle interaction. As a result it takes the form of

1
5 > B aalt',X) Buclt, ) wie 10 ® 10 (8, X) Pre gt X)- (24)

W, x') = 5
Kk q

In the mean—field approximation the sum over q is reduced to sole term q = 0, and the pair of multipliers, corre-
sponding to the various arguments, is replaced by average

(Crelt, X1, X)) = (@t X) Puc(t', X)) - (25)

Performing in (24) designate k' on —k’, for second term (22) we obtain

Wit x;t',x') Z<D (t, )Pk (', X we i Cre (E— ', x — X')s
2 K
Wik = Wik + W2k k- (26)

As will be shown below, the supercorrelator (25)  correlators.
gives the basic observed values — the structural factor Therefore it is convenient to introduce basic supercor-
(n(r,t)n(0,0)) and susceptibility (n(r,t)¢(0,t)). There-  relators By, T4, which is determined by equalities
fore it is necessary to pass from the motion equation
18) for the superfield @) to the appropriate equation no_ /
§or )the supercorrelator Cy(z,z'), where z designates a B (6 x) = x+X, T:fox) =1Exx"  (29)
set of values t, x. With this purpose we shall pick out

bare component C’l((o) (z,2"), which obeys the equation Using the multiplication rule

A ! — B " " ! "
Le(2)CO (2, 2') = 8z — 2); G x) / 06 x)CO X)X, (30)
_ -1
Li(2) = Do — (207, 27 s easy to see, that operators (29) obey the multiplica-
5(2) = x6(t), mc=7(1+k3)" tion table:
After time Fourier transformation its solution takes the
form of
B.|B_| T, | T_
o —1
e — 2n, (x — x)+4+xxw (28) B, |B_|B.|T_| T,
@ w? 4+ 12
B_|B.|B_|-T,|-T_
Peculiarity of this expression consists in the presence of
terms containing multipliers x°, x, x’, xx’. Taking into T,|T-|T+| B_ | B}
account properties (13) it is easy to see, that such struc-
ture is inherent of not only bare, but also of all super- T |T,|T_|-B.|-B_
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On the other hand, representing superfield (12) as a
vector—column with components 1, ¢, we obtain the ma-
trix representation [5]

+1 0

B = (5 7). 61)
(o 1y,
||Tﬂ:||_<i1 0)5

o- (1)

The relations obtained above show that the operators
B., T, will form complete basis for the decomposition
of the supercorrelators. So, expression (28) is written
down as

c® = g8, +4B_ 4+ 51, +5T_,

(0) _ (0) _ 21
=0 97 = "1

0 _ 1(27)* £ (wr)? 5
501_2 1+ (wr)? (32)

where for the sake of brevity the indeces w, k are omit-
ted. Substituting superfield (12) into definition (25), with
the account of (29) one can see, that the components
g+ = go £ g1, S+ = So £ 51 give the observed correla-
tors:

(ng) = g-, (33)
(¢9) =

<7777> = S—i—:

(on) = 9+,

In accordance with (32) in linear approximation they
have a standard form

© _ _ (0 _ _ 27T 4
g, g+ 1+(w7’)2’ (3 )

Dgs =g + (Uﬂ: + wg(o)) A,

(wr)?

) _
S

9 —

SO =

Taking into account (9) from Eqs.(34) we obtain usual

. . -1
expression for response function (np) = 27 (1 + iwT)
The relation Sio) = 27g_ corresponds to the fluctuation—
dissipation theorem, and decreasing the autocorrelator
S(_O) o« w? in a hydrodynamic limit w — 0 justifies the
separation conjugated field. Using Fourier-images for the
moment of time ¢ = 0 we obtain

sV =2r,  ¢0) =71, (35)
s90) = @nl(Cc-1),

where term C — oo corresponds to ultra—violet diver-
gence of the autocorrelator of the conjugated field at
t — 0. Obviously, the given divergence is stipulated by
the peculiarity of the mean field approximation and re-
ally C' < oco. Further the magnitude C will be obtained
according to physical reasons.

For the transition from bare correlators to the ex-
act ones it is necessary to take into account interaction
(22) which is written down in approximation to the self-
consistent field. In order to prevent nonlinear terms in
expression for W{®} we accept C ~ C(, As a result,
the Dyson equation is written down as

cl= (C(O))il —% - wC), (36)

where ¥ means the self-energy function. Carrying out
the decomposition type of (32) for the X, C

2 = 0’0B+ + O'1B_ + 20T+ + ElT_,

C= goB+ + ng_ + S()T+ + SlT_, (37)

after the substitution in (36) we obtain

DS =S¢ — (Sx +ws?) A

P [fn

+A (E+E, — O'+(77) —w { (gf)gf) +g

~A (3489 +2osP) - (

A =550 — g9y,
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o g(,) + U_gf))]} + w?A?,
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Here bare components gf ), Sf ) are given by expres-
sions (34).

So as to find the components 0¢ 1, ¥o,1, which deter-
mine self-energy function (37), let us use the first order of
the perturbation theory over unharmonicity (23). With
this purpose it is necessary to find second derivative of
the functional Z{®(r,t,x)} type of (7) over superfield
®(r,t,x). Then there will by a carry out decomposition
of Z{®(r,t, x)} over the components of the actions corre-
sponding to contribution (23). Accepting the kernel v(r)
to be independent on the coordinate, we obtain the first
correction to the supercorrelator(25) as

v

CW(z,2") = -1 <tI>(z)/tI>4(zl)dzl<I>(z')>0, (39)

where z is a set of the values r, ¢, y, and averaging will
be carried out over a free field. It is necessary to use the
Wick theorem , representing average over six multipliers
® by product of the three bare supercorrelators type of
(25). Taking into account, that the number of possible
coupling to such supercorrelators resulting in (39) equals
12, we obtain

C(z,2") = /C(O) (z,21)8(z — 2')CO (2, 2")dz,

(40)
where the self-energy part is determined by equality
B(z—2') = =3vd(z — 2)CV (21, ). (41)

Using the definition of basic correlators (29), we come to
the expression

%(t) = —3vB_CO (¢t = 0)4(t). (42)
Substituting here Fourier-image of decomposition (32),

in accordance with (35) and the table of multiplication
of basic supercorrelators we obtain

o0 = —3vg\" (0)5(t) = 0, (43)
o1 = —3vg\” (0)6(t) = 3vd(t),

o1 = 3085 (0)(t) = 3vr [1+ (2r) 72 (C — 1)] 8(1).

The use of expressions (34), (43) in equalities (38) gives
the following result for correlators (33):

2T 4wr?
Do = T g (1O T )
_ (27)? 4w?
P51 = om0~ T )

wrp?
DS = 1+ (wr)?
(27)2 3v (wT)?
1+ (wT)? Z(C ~Dtw 1+ (wr)? (44)

The hydrodynamic limit w — 0 should give condition
S_ — 0, therefore in the last expressions in the (44) it
is necessary to put C' = 1. As a result the autocorrelator
of the conjugated field takes the form of

k)

14 (wr)?
Accordingly, for the denominator D in linear approxima-
tion over v we find

DS_

8wr? — 6vT(3 + dwt?)

D~(1-6 —
(1 =6vr) 1+ (wr)?
8wr? (2wt — gv) (46)
[1+ (wr)?]
The condition D = 0 results in the dispersion law
w = —iTe}l, from which the effective relaxation time is
determined as follows:
1-6 5
— 6uT
= . 4
ef T<1+12v7'—4w7'2> (47)
From here it is visible, that at 4wr? — 1207 = 1 we

have 7 = 00, and the system gets instable, which corre-
sponds to phase transition to the order state. Returning
to the measure units and taking into account a Cure ratio
7 = (26)1, we find a point of stability breaking

6. = w — 6v. (48)

Thus, in agreement with the usual theory of phase transi-
tions (see [4]) the two—particle interaction promotes sys-
tem ordering, and prevents unharmonicity.

IV. COMPLEX FIELDS

Varying the action corresponding to Lagrangian (14)
over ®*, & we obtain the motion equations for the com-
plex conjugated fields:

6‘/Ent _ —
Looq>(z,) = 25(1)*(2,), LOO = D1 — (27’) 1; (49&)
Lll‘I)*(Zl) =2 6‘/int L11 = —Dl — (27')71. (49b)

3 (2')’
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It is significant that they differ in sign of the operator
D1 of the first time derivative and do not contain opera-
tor Do of the even degrees 9" /0t", n = 0, 2. As the latter
appeared in the motion equation (18) for the real field
it is necessary to complete systems (49a), (49b) by the
equations

6‘/;nt —
LlO(I)(ZI) = 25(1)*(2’)’ Lip =Do — (2T) 1; (50&)
* 6I/Ent —
Lo1®*(2') = 254,(2,)7 Lot =Dg — (27)7'. (50Db)

In contrast to Eqs.(49a), (49b) here transition to the
complex conjugated field, meaning conversion of time,
does not change sign before the operator Dy.

Let us multiply equations (49a), (50b) by ®(z), and
(49b), (50a) by ®*(z), then substitute there the nonlin-
ear components (23), (24) and carry out averaging of the
obtained expressions. Then, splitting nonlinear terms by
means of the Wick theorem, we obtain

L% (¢, X')CP (x, x') = 6°76(x, X')

+wC® (x, )C (6, X') + T 06 X)CP (x x)- (51)

Here all the values have got matrix structure, reflected by
Greek indeces, accepting values 0, 1 (over the repeated
indeces summation is meant). So, the supercorrelator
(25) has matrix elements

C"(z, 7'

(®(2)2(2"),

C%(z,2") = (®(2)®*(2)

)

)
C%(z,2") = (8" (2)8(2))

)

)
)
)
)

011 (Z, 5!

(@"(2)®"(2")), (52)

where indeces specify the number of complex conjugated
signs at the corresponding multipliers ®. As well as in
case of real order parameter, each of these elements is
decomposed over the basic operators By, T.. Desig-
nating the matrix with elements (52) as C, it is pos-
sible to present this decompositi(ln by equality type of
(37), where the coefficients go.1, So,1 will also have ma-
trix structure. Then, after the multiplication of equality
(52) by (Cv‘s(x’,x"))_l, its summation over the index
~ and integration over the argument x' we obtain the
matrix Dyson equation (compare with (36))

Gl (aw))‘l _wC—%. (53)

Here the supercorrelator C has coincident matrix ele-
ments type of C°M)(y, x).

To ascertain the physical meaning of the elements of
the matrices go,1, §0’1 it is necessary to pass to the corre-
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lators g+ = go + g1, §i = Sp + 5; and to use definitions
(33), (52). So, for the matrix S, we obtain

(m)y =5, (m*) =SY,
() = S°, (n*n*y =S4 (54)

At definition of the matrix g_ it is necessary to replace n
for ¢ in the second multiplier, for the matrix gy — in the
first, and for the autocorrelator of the conjugated field
S_ — in both. Obviously, physically observable values
will be only nondiagonal matrix elements.

At first let us determine the bare supercorrelator ma-
trices C(©) = L—!. Because the elements Lg; = L1y have
according to Eqs.(50a), (50b) the same form as for the
real order parameter, then the nondiagonal elements of
matrices go,1, So,1 are set by equality (32). For the de-
termination of the diagonal elements it is necessary to
convert the operators Log, L11 given by equality (49a),
(49b). With this purpose let us pick out from the opera-
tor Dy term (1/2)0/0t and multiply the numerator and
the denominator of expression

Log =1/ {[-@n™" = (1/2)0/0¢] + D1 (1/2)0/01)}

by a sum of the members, which is in square brackets [6].

As a result, the bare correlator C’ég) (X, X") = Loy (x, X")
takes the form of

—x (1 + 2iwT) + '

(0) N — 2
Coo (x> X") T 1+ 2iwr (55)
In a similar way we obtain
—x (1 = 2iwT) + X'
() =2 U2 EX 5

1 — 2iwr

Using definition (29), for a component of decomposition
(32) one has

@00 _ o, 0T o0 _ o 1H T
Jo 1+ 2iwr O 1+ 2iwr’

(0)11 -9 7:(4)’7' (0)11 - _9 1-— in 57
Jo T 2ir O T O

All other components of these matrices elements equal
zero. In agreement with the case ¢ = 0 time Fourier—
images take the form of

a%(0) = —g"(0) = 1/2,
g9%(0) = ¢ (0) = —1/2. (58)

As a result, we find final expressions for matrices of the
bare correlators from expressions (34), (56):
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ORI 1 1+ (LUT)2]71

9+ 2 ( 1+ (LUT)Q]_l 1 ) ’

30 — a7 ( (1+ 21'7%0)111 1+ (wT)Q]_f) ’
[1+ (wr)?] (1 - 2irtw)

U (27)? 0 1
Y ST e\ o)
3o _ (wT)? 0 1
- T Tr@nz\l 0)

The calculation of matrix elements of the self-energy
function ¥ reads (compare with (42))

(59)

Soo(t) = —%UB_cg? (t = 0)6(1),
Sor(t) = —vB_CY (t = 0)4(1),
Tio(t) = —vB_C{Y (t = 0)5(¢),

i (t) = —%UB,C&? (t = 0)5(¢). (60)

Decomposing C(©) (t = 0) in a series as (32) with coeffi-
cient (35), (57) and using the multiplication rule for the
operators B, T for matrix decomposition type of (37)
we find

Re S a

0.4+

0.2+

0.0 T T
0 4 8 [

(61)

Substituting the expressions (59), (61) to matrix equa-
tion (53) and separating result over components, we ob-
tain a system of 16 linearized equations for elements
of the exact supercorrelator, which are determined by
equalities type of Eqgs.(52). Though analytical solution
of this system does not lead to question of principle, as
a result very cumbersome expressions are obtained, is
convenient by presentable in a graphic form. In figure 1
the form of the frequency dependence is shown for the
autocorrelator

1

§=3 <<nn*) + <n*n)> =5 (s +s(7). (62

1
2

It is obvious, that with raising the particle interaction
parameter w this dependence changes the form — its
maximum shifts to the point w # 0. In other words, the
most preferable state becomes dynamical, in contrast to
the usual static one.
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Fig. 1. The frequency dependence of the autocorrelator (62); a —7=0.5, v =0.1, w=0.2; b —7=0.5, v =0.1, w = 0.4.
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MPEOCTABJIEHHSI HEPIBHOBAKHOI TEPMOOMHAMIYHOI CUCTEMUA
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I1st TepMOOMHAMITHOI CHCTEMH, IO OMUCYETHCS PiBHAHHAM JlamkeBena 3 6iIMM aIUTHBHUM NIYMOM, 3HAM-
JIEHO BUPA3 [I/1d TBIPHOrO (PyHKIIOHAITY B 3aJI€2KHOCTI Bl IBOXKOMIOHEHTHOTO CyIEPIIOJIsd. 3BHYaiiHA KOMIIOHEHTA
IHOTO TOJIST € TAPpAMEeTPOM BIIOPSIKYBAHHS, & 'PACMAHOBA 3MiHHA — CAaMOY3TOKEHE TI0JIe, CIUPSKEHe 10 IIHOT0
mapaMeTrpa. B mepmoMy mopanky 3a MiXKATOMHOIO B3a€MOII€IO i aHTAPMOHI3MOM 3HaiileH] ABHI BUpA3W IJIA da-
CTOTHOI 3aJI€KHOCTI aBTOKOPEJIATOPIB MificHOTO mapamerpa BIOPAIKYBAHHS 1 BIAMOBIIHOTO CIPSAXKEHOTO IOJIS.
Busuageni ymoBu BTpaTu CTiifkocTi i XapakTepuuii Mmacmtab cucremu. 111 KOMILJIEKCHOTO TOJIS YHCEJIHHO OTPH-
MaHWH BUTVIAL 3a/I€KHOCTI BLITOBITHIUX KOPEJIATOPIB IPH Pi3HUX MapaMeTpax 3aJadi.



