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Based on the analysis of the con�guration space of an one{particle system, the presence of

the quantum interference is shown to result in the e�ective interaction of an exchange{type. The

quenched disorder is represented by analogy with the thermodynamic 
uctuations for which the

halfwidth of scattering of the particle levels plays the role of temperature. With regard to fermions

within the framework of Anderson locator approach, the gap in the single excitation spectrum caused

by the condensation of pairs of the coupled sites is shown to determine the density of the extended

states. Its dependence on the level scattering width and the chemical potential shift from the band

center is found. The law of collective mode dispersion is established. For the charged fermions,

the collective mode is of an ordinary di�usion type, but in the case of the neutral ones (quantum

crystal), the zero{sound mode of oscillations of the extended fermion density appears within the

long{wave limit. The dependencies of the zero{sound velocity and typical values of its frequency

and wave number on the temperature and parameter of the quantum dilatation are examined. The

dependencies of the extended state condensate density and e�ective interaction parameter on the

level scattering width W are determined for Bose case. The collective excitations are demonstrated

to reduce to the �rst sound which is transformed, as the value W decreases, into a pure dissipative

mode, and the second sound the velocity of which critically depends on W .
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I. INTRODUCTION

Beginning with Anderson paper [1], in the quantum

theory the problem of describing the stochastic sys-

tem experiencing the ergodicity breaking has arose. The

straightest way in accounting the non{ergodicity e�ects

consists in the study of Kubo relaxation function [2,3]. Its

static pole provides the non{ergodicity parameter de�n-

ing the compressibility in the localized state; in the ex-

tended one, the relaxation function has an ordinary di�u-

sion pole. It appeared however that the self{consistency

equations obtained in Ref. [3] do not bring to a critical

behaviour of the di�usion coe�cient in the vicinity of the

threshold of mobility [46], and, hence, the method [2,3]

does not make a representation of Anderson transition

like in the case with the phase transition scheme.

The greatest promise in this direction is held by the

application of the nonlinear �{model (see Ref. [4] and

references therein). In so doing, however, the problem

of choice of the long{range order parameter turns to be

quite important. The cause of this importance lies in

the fact that the ergodicity breaking presents a more in-

tricate phenomenon than the symmetry breaking inves-

tigated within the framework of the standard theory of

phase transitions [5]. So, it was found [6] that, for the sys-

tem of noninteracting fermions, the density of particles

at Fermi level (compressibility) behaves in a non{critical

manner and, hence, cannot be used as an order parame-

ter. A scheme [7] was proposed where its role was played

by a certain functional. Recently, however, Kirkpatrick

and Belitz [8] proceeding from the assumption that the

localization process is caused by the competition of ef-

fects of the quenched disorder and electron interaction,

have shown on the basis of the renormalization group

approach that appearance of the interaction gives rise

to the �xed point that is stable at the dimensionality

d > 4 (but not d � 2 as in Ref. [7]). The density of states

therewith exhibits the critical behaviour and Anderson

transition is represented by standard Landau scheme.

The present paper is concerned with the derivation

of the mean{�eld theory for noninteracting particles

| both fermions and bosons. In contradistinction to

Refs. [4, 6, 8] we do not proceed from the �eld approach

but from the quantum statistical theory [9]. The main

idea of our approach consists in the fact that formally

the quenched disorder can be considered as thermody-

namic 
uctuations for which the energy level scattering

width W plays the role of temperature. Another fact

of a fundamental nature is the consideration of the ef-

fective interaction. It results from the presence of the

quantum interference which stipulates dividing the con-

�guration space of the system into the subspaces of single

and collective excitations [10]. With regard for this fact,

the one{particle problem reduces to the site analog of
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the BCS model in the superconductivity theory. Accord-

ingly, the ergodicity breaking under Anderson transition

is described by analogy with the phase transformation

of order 2 + � where � ! 0 is the addition caused by

the sites resonating and corresponding to the logarith-

mic singularity [11].

Methodically, when investigating the localization

problem, one should highlight the mutually complemen-

tary approaches by Anderson [1] and Edwards [12]. In

the context of the site representation by Anderson, the

localized state is recognized as initial, and the transition

involves formation of the extended state band. The ap-

plication of Edwards wave approach assumes, on the con-

trary, that the extended state is initial, and rearrange-

ment of the system is localization related. Since the time

of representation of the indicated models, a great deal

of papers have been published (see review [4] and ref-

erences therein). Here one may set o� the scaling theo-

ries [6,13,14], application of the replica method [15,16],

the supersymmetrical approach [17,18], diagram meth-

ods [19] | [23], the above{mentioned mode{coupling

method [2,3]. Most of these papers contained the con-

sideration of the collective excitation behaviour as rep-

resented by Edwards. In addition to the evident method-

ical advantages, it can be probably further explained by

the fact that determination of the basic experimentally{

measurable values (of the conductivity and polarization

type) is achieved within the framework of such an ap-

proach in the most natural way.

In the context of the locator representation based on

Anderson approach [1], the system perturbation result-

ing in delocalization is associated with overlapping the

wave functions. As already noted, such an approach

makes possible the representation of the critical be-

haviour of one{particle characteristics of the extended

state density type [11]. Needless to say, the locator

approach adequately re
ects the system collective be-

haviour as well. So, the self{consistent consideration of

Green two{particle function '(K;
) showed [22] that,

within the limits of low values of the wave vector K

and frequency 
 of the collective excitations, it has a

characteristic feature of ' / (
 + iDK

2

)

�1

the pole of

which is determined by the di�usion coe�cientD. Notice

that the self{consistency scheme [11] allowed for �nding

the system behaviour throughout the entire level scatter-

ing region W while the diagram method [22] represents

only the regimes of the weak (W � W

c

) and strong

(W � W

c

) coupling where W

c

is a critical scattering of

levels.

In the context of Edwards propagator approach [12],

the role of perturbation is played by a random potential.

The diagram investigations [19] | [23] of the collective

mode made it possible not only to represent the di�usion

pole of the function '(K;
) but also to prove that the

di�usion coe�cient zeroing is not ensured by the ladder

sequence the terms of which cancel each other, but by

the fan diagrams obtained from the ladder ones through

turning the hole propagator [47]. The approach [19] |

[23] however describes only the limit of the weak cou-

pling (W � W

c

) for the systems of di�erent dimension-

ality. Consideration of the entire range of the values W

for the three{dimensional system is obtained within the

limits of the equivalent mode{coupling method [2,3]. It

is based on Zwanzig{Mori technique where the correla-

tor '(
) of the fermion density is expressed in the form

of the continued fraction of the second order. Its kernel

M(
) = �
+ i=D(
) is the correlator of the force act-

ing on the particle, and describes the memory e�ects.

The mode{coupling approximation consists in the fact

that the memory function M(
) is expressed via the ini-

tial correlator '(
) in the linear form M(
) = �'(
)

where the e�ective coupling constant � / W

2

is deter-

mined by the width W of the energy level scattering.

In Refs. [2, 3] the very absence of interaction ensures the

linear nature of coupling [48]M / '. The self{consistent

investigation has shown that, in the static limit 
 ! 0,

the frequency dependencies D(
), g(
) of the di�usion

coe�cient and compressibility take the following form:

D(
) = const � D, g(
) = i(�=m)D=
 | in the ex-

tended state; g(
) = const � g, D(
) = �i(m=�)g
 |

in the localized state (here, m and � are the mass and

volume concentration of particles respectively).

Though, in combination, Anderson and Edwards ap-

proaches mutually complement the delocalization pic-

ture, direct join, needless to say, cannot a�ord satisfac-

tion. Along with it, recently a paper [24] has appeared

where, on the basis of a self{consistent consideration of

Fermi and Bose excitations of a superconductor, it is il-

lustrated that the standard case is described by the BCS

theory, and the HTSC case is described on the basis of

the concept of Bose{Einstein condensation of strongly

coupled Cooper pairs. The vertex function determin-

ing the fermion self{energy therewith plays the role of

Green function of bosons corresponding to Cooper pairs.

As a result, the self{consistent consideration of Green's

Fermi and Bose functions permitted describing, in a self{

consistent manner, the single and collective excitations

of a superconductor.

The present article is devoted to realization of the pro-

gram [24] on the basis of the locator representation of

Anderson model. The qualitative study of the wave func-

tion type in Section II reveals that, in accordance with

the results [16,17], system symmetry group turns to be

noncompact in which connection its con�guration space

should be divided into two orthogonal subspaces. This

permits reducing Anderson's Hamiltonian to the BCS

type. Section III deals with the derivation, in a standard

manner, of Dyson equation for Green one{particle func-

tion the self{energy function of which is expressed via

the vertex function of the e�ective interaction of parti-

cles. For the latter an equation of Bethe{Salpeter type

is found that concludes the self{consistent description of

the system. In Section IV, the obtained equations are

used to describe single excitations, and in Section V |

collective excitations. The scheme under discussion al-

lows for representing not only the peculiarities of be-

haviour of extended states of a particle but a microscopic

picture of transformation of the fermion di�usion mode

into the sound mode associated with the zero{sound os-

cillations of the extended quantum particle density. Such
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a mode is realized in quantum crystals [25]. In Bose case,

the collective excitations are reduced to the �rst sound

which is transformed into a pure dissipative mode un-

der delocalization, and the second sound which velocity

critically changes close to the threshold of delocalization.

II. STATEMENT AND QUALITATIVE ANALYSIS

OF THE PROBLEM

Let us consider N

0

noninteracting quantum particles

having in the sites r

l

, l = 1; : : :, N

0

of the regular lat-

tice the energy levels "

i

distributed according to the law

P

i

� P ("

i

) where the function P (") is bell{shaped with

the width W and value �" = N

�1

0

P

i

"

i

in the center

of the cupola. Assume that the overlapping of the site

wave functions '

l

i

(r) � '

"

i

(r � r

l

) is characterized by

the integral J

lm

ij

=

R

'

l�

i

(r)'

m

j

(r) dr, and the spectrum

E

�

of the system is assigned by the distribution function

w

�

= w(E

�

). In Lorentz quantum model, the function

P (") characterizes the distribution of energy levels of the

nonoverlapping scatterers, and the system spectrum de-

�ned by the relationship w(E) describes the test particle

which is in the �eld of the interfering scatterers.

When there is no overlapping (J

lm

ij

= 0), the wave

function �

E

(r) of the state E = E

�

takes the form:

�

E

(r) =

X

i

a

i

E

'

l

i

(r): (1)

The localized state is realized therewith in which the test

particle initially placed in the site l stays therein for in-

de�nitely long time. It means that only one coe�cient

a

i

E

= �

E"

i

out of all coe�cients in (1) is not of a zero

value. Consequently, both distributions P (") and w(")

coincide.

The overlapping of the wave functions '

l

i

(r) leads to

the qualitative rearrangement of the system. To clear

up a situation, consider two adjacent sites r

1

and r

2

with the "

1

and "

2

levels and the overlapping integral

J

12

12

� J . Applying the variation principle for the energy

E =

R

�

�

(r)H�(r)dr where H = H

1

+H

2

, H

i

'

i

= "

i

'

i

,

i = 1, 2, it is easy to show that the states of the test

particle in these sites are de�ned by the wave functions

�

0

= u'

1

� v'

2

;

�

1

= u'

2

+ v'

1

;

u

2

v

2

�

=

1

2

�

1�

"

1

� "

2

�

�

; (2)

� �

�

("

1

� "

2

)

2

+ J

2

("

1

+ "

2

)

2

�

1=2

;

to which the energies E

0;1

= (1=2) [("

1

+ "

2

)� �] cor-

respond. Here, at normalization of the functions �

0;1

,

the condition J � 1 is accounted for, and the designa-

tions u � a

1

E

0

= a

2

E

1

, v � �a

2

E

0

= a

1

E

1

; '

1

� '

l

1

(r),

'

2

� '

l

2

(r), l = 1, 2 are introduced for brevity sake.

At j("

1

� "

2

) = ("

1

+ "

2

)j � J , the site function overlap-

ping can be neglected, and the test particle states at the

pair of sites reduce to the states at the isolated scatter-

ers. In the opposite case of j("

1

� "

2

) = ("

1

+ "

2

)j � J ,

the site representation loses its signi�cance, and we have

to do only with the states at the pair of coupled sites

(PCS). Regarding the isolated PCS, the wave function

�

0

corresponds to the low{energy state E

0

, and the func-

tion �

1

does to the high{energy state E

1

. It is appar-

ent that, under transition from the Lorentz quantum

model to the equivalent two{particle problem with the

absence of interaction, the functions �

0

, �

1

within the

limits of "

1

= "

2

are transformed into the antisymmetric

and symmetric combinations of the single site functions

'

l

i

(r). This suggests that the basic state of fermions cor-

responds to the low{energy region characterized by the

value E

0

while, with respect to bosons, it is realized in

the high{energy region which corresponds to the value

E

1

. As discussed in Section IV, this fact essentially af-

fects the delocalization picture.

This conclusion which will be strengthened further on

the basis of the standard scheme of the quantum theory

of many{particle systems seems to be quite unexpected

at �rst glance. Indeed, since there is no interaction, the

system behaviour (in particular, the situation with the

mobility threshold), as might appear, should not be sen-

sitive to the type of statistics. With such a line of reason-

ing, however, completely disregarded is the phenomenon

of the quantum interference which, as is known, leads to

the e�ective interaction of an exchange type. In the dis-

cussed two{site problem, this makes itself evident in the

fact that expression for the spectrum of noninteracting

particles is formally in agreement with the correspond-

ing expression for the spectrum of the degenerate system

the interaction potential of which has matrix elements

V

11

= "

1

, V

22

= "

2

, jV

12

j = jV

21

j = J("

1

+ "

2

)=2 (see

Ref. [26]). Thus, it turns out that consideration of the

quantum interference of noninteracting particles gives

rise to the e�ective interaction which is dependent on

the spectrum of the system. It is the cause of the critical

behaviour of the one{particle system including various

kinds of behaviour of Fermi and Bose particles.

The problem presented makes it apparent that the

presence of the PCSs radically changes the nature of the

system. So, if in their absence to each site corresponds

a unique value "

i

, the appearance of the PCS results in

splitting the "

i

into two levels E

�

, and a pair of com-

ponents �

�

(E; r) corresponding to them separates out

of the one{particle function (1), where the low{energy

state � = 0 relates to fermions and the high{energy state

� = 1 | to bosons. At the given values of the overlap-

ping integral I � J �" and the energy scattering W the

speci�c number of PCSs apparently amounts to � I=W

with respect to the total number of sites N

0

!1. How-

ever, the delocalization process reduces to the formation

of an in�nite cluster of the PCSs, hence, not all of the

(I=W )N

0

!1 contribute to this process. In accordance
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with Refs. [27, 28] at I=W = const, the system represents

a set of clusters various in size and shape an adequate de-

scription of which requires the application of the fractal

representation. To elucidate the qualitative aspect of the

problem, however, it will su�ce to make use of the mean{

�eld approximation within the frameworks of which the

fractal set reduces to a collection of N

c

optimal clusters

each of which contains N

c

of PCSs (according to the

Anderson concept [1], the most probable Green function

corresponds to such clusters). Physically speaking, tran-

sition from a complete ensemble of clusters to a set of

the optimal ones (as the I=W increases, the lattices re-

duce to the maximal cluster) is based on that fact that

the formation of small{sized clusters corresponds to the

short{range order of the system while the delocalization

process is associated with the appearance of the long{

range order. Therefore, in spite of the fact that the total

number of the PCSs � (I=W )N

0

is in�nite, at small val-

ues of I=W , their overwhelming majority are contained

in small clusters, and the number of PCSs N = N

c

N

c

in the optimal clusters is negligible in comparison with

the total number of sites N

0

! 1 (N=N

0

= 0). As the

I=W parameter increases, ever more PCSs are incorpo-

rated into optimal clusters, and with the formation of

the in�nite one (N ! 1) the ratio N=N

0

takes the �-

nite value. It means that the value 2N=N

0

� �

2

de�ning

the speci�c part of sites which found themselves in the

optimal clusters can be considered as the delocalization

parameter.

Consider now in which manner the presence of the

PCSs clusters a�ects the wave function of the localized

state (1). According to (2), the formation of the isolated

PCS results in separating out the two{site term �

�

(E; r)

from the sum (1). Uni�cation of N PCSs into clusters is

responsible for the increase in the number of terms (1)

appearing in the cluster component �

�

(E; r) from 2 to

2N . For N � 1 the site states '

l

i

(r) rearranges into the

quasi{Bloch states '

k

� �(r) exp(ikr) where the form

function �(r) = 1 inside the clusters and �(r) = 0 out-

side the clusters. As a result, the wave function of the

state E assumes the form:

�

E

(r) =

X

0

i

a

i

E

'

l

i

(r) +

X

k

b

k

�

(E)'

k

(r) (3)

� �

0

E

(r) + �

�

(E; r); � = 0; 1;

where the wave vector k runs through N

c

values corre-

sponding to the number of PCSs in the given cluster,

the prime by the i sum sign means that the summa-

tion is performed with respect to the uncoupled sites

only. In correspondence with (4), the distribution func-

tion w(E) =

R

j�

E

(r)j

2

dr is written as follows

w(E) = AP (") + 2S(E); (4)

where the term 2S(E) =

P

�

R

j�

�

(E; r)j

2

dr describes

the distribution of PCSs, and the dependence P (") de-

scribes the distribution of isolated sites; coe�cient A and

form of dependence S(E) are determined by the relation

between the level scattering width W and characteris-

tic value I of the overlapping integral. At I=W ! 0,

when the speci�c number of PCSs is insigni�cant, we

have A � 1, and the function S(E) describing the ef-

fects of the short range order appears as a highly dif-

fused bell characterized by the width � W and height

� I=W . Thus, within the limit I=W ! 0, the distribu-

tion w(E) � P (") is primarily set by the superposition

(1) of the site states; accordingly, the ground state energy

is determined by the sum of the levels "

i

and amounts

to �"N

0

. As the level scattering decreases, the number

of PCSs increases and they form coupled clusters. This

leads to an increase in the height and to the width nar-

rowing of the bell{shaped dependence S(E), though in

the localized state when there is only short{range order,

the height of the S(E) is always �nite. With formation of

an in�nite cluster of PCSs, in (4) the appearance is made

by the �{like term with the �

2

= 2N=N

0

factor determin-

ing the speci�c number of the PCSs which fell into the

Bose{Einstein condensate of extended states (see below

eq. (16)). The ground state energy, therewith, decreases

by the macroscopic value of IN = (IN

0

=2)�

2

which is

de�ned by the long{range order parameter �.

The argument brought forward refers to the Fermi case

where the delocalization process requires a preliminary

formation of the PCSs the condensation of which is re-

sponsible for delocalization. The distinction of the Bose

system lies in the fact that the single particles themselves

can be condensed. Therefore, the delocalization parame-

ter � = (2N=N

0

)

1=2

is proportional to the square root of

the number of the condensate bosons but not the PCSs,

as with fermions. Taking into account the present fact,

the fermion system will be meant in what follows, as in

the initial Anderson model [1]. For the boson system, by

the value of 2N should be meant the number of con-

densed bosons.

Pass on now to the development of the quantitative

picture. According to Ref. [1], the description of the An-

derson transition requires summation of the in�nite se-

ries of the divergent terms resulting from the ergodicity

breaking. In the framework of the Edwards approach,

this di�culty is resolved by separating out the ladder se-

quence [19] | [23] or initial changing the pole structure

of the relaxation function with the subsequent procedure

of self{consistancy by the mode{coupling method [2,3].

In other words, allowance is initially made for the rear-

rangement of the system phase space. A similar situation

exists in the theory of superconductivity where the rear-

rangement of the ground state results from the presence

of the Cooper pairs [29]. In this connection, an idea sug-

gests itself that, in the context of the Anderson locator

approach as well, the phase space rearrangement associ-

ated with the presence of PCSs should be initially taken

into account. In accordance with Ref. [22], within the

framework of the site representation, this can be achieved

in the same manner as in the Edwards approach | by

summation of the ladder sequence. Below is shown that

the mentioned rearrangement of the phase space is most
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naturally represented by replacement of the initial An-

derson's Hamiltonian by a certain e�ective Hamiltonian

de�ned over the functions conforming to the rearranged

ground state.

The above outlined qualitative picture shows that the

state E delocalization is manifested as the separation

(4) of the corresponding wave function �

E

(r) into the

components �

�

(E; r) and �

0

E

(r) of the coupled and un-

coupled sites. The former represents the superposition

of quasi{Bloch states '

k

(r), the latter | site states

'

l

i

(r). At the given number N of PCSs contained in

the optimal clusters, the fraction of the former is of

the order of 2N=N

0

= �

2

, and that of the latter |

1 � 2N=N

0

= 1 � �

2

. The characteristic feature of the

component �

0

E

(r) =

P

0

i

�

i

E

'

l

i

(r) lies in the presence of

the free nonsummable index l at the site functions '

l

i

(r).

Physically, it means that the set of levels "

i

can be dis-

tributed, in an ambiguous fashion, by sites r

l

in which

connection the system of noncoupled sites display sym-

metry with respect to the group G

0

consisting of the N

0

!,

N

0

= N

0

� 2N = N

0

(1 � �

2

) permutations of the sites

r

l

by the levels "

i

. Collection of functions �

0

E

(r) com-

plying with various arrangements of r

l

by the "

i

levels

is e�ected by the basis of the group G

0

. In the absence

of overlapping, it reduces to the total group G of N

0

!

permutations, and the con�guration space of the system

is determined by the set of N

0

! functions (1). Coupling

2N = �

2

N

0

sites into optimal clusters results in the re-

duction of the total groupG to its subgroupG

0

the power

of which is determined by the parameter �: at � = 0 in

the macroscopic approximation (i.e. correct to the terms

of N

�1

0

! 0), groups G

0

and G coincide, and at � = 1

the G

0

group reduces to an one element. The parame-

ter � taking the value � = 0 in the localized state and

0 < � � 1 in the extended state conforms to the ordi-

nary determination of the order parameter in the phase

transition theory. The localized state marked by the total

group G is of high symmetry and complies with the dis-

ordered phase (� = 0), and the extended state de�ned by

its subgroup G

0

conforms to the ordered low symmetry

phase (� 6= 0).

Thus, the overlapping of site wave functions results in

partition of the complete con�guration space f�g gener-

ated as a result of N

0

! permutations of sites l in (1), into

subspaces f�

0

g, f�

�

g. The �rst subspace corresponds to

uncoupled sites and, consequently, represents the single

excitations. The pair of subspaces f�

�

g, � = 0, 1 for-

mation of which results from the clusterization of PCSs

corresponds to the collective excitations. As may be seen

from the example of two coupled sites, when the energies

"

i

completely coincide, the wave function of the state �

0

is antisymmetric, and that of the state �

1

is symmetric.

Consequently, the ground state of fermions is realized in

the �rst case, and that of bosons | in the second case.

It is convenient to express the present fact entering the

following projection operators:

j�

0

i = P j�i ; j�

1

i = Q j�i for fermions;

j�

1

i = P j�i ; j�

0

i = Q j�i for bosons. (5)

Here, P separates out the subspace of real states, Q =

1�P does that for virtual states. The physical meaning

of the performed partition of the con�guration space lies

in the fact that, in the case of fermions, the zone of real

collective states corresponds to the low{energy subspace

f�

0

g, and the zone of virtual states corresponds to the

high{energy subspace f�

1

g; in the case of bosons, the

reverse situation is observed. In what follows we observe

that the given fact resulting from the various permuta-

tion symmetry of particles is responsible for the opposite

signs of the exchange interaction of fermions and bosons.

The Anderson's site Hamiltonian

H =

X

i

"

i

 

i+

l

 

i

m

+

X

l6=m

I

lm

ij

 

i+

l

 

j

m

� H

0

+ U

0

(6)

is symmetric with respect to the permutations [49] of

the total group G. Thus, here again one is up against

the ordinary situation inherent in the phase transi-

tion theory | the symmetry of the con�guration space

f�

0

g 
 (f�

0

g � f�

1

g) proves to be below the Hamilto-

nian symmetry. To eliminate this degeneration, separate

out of (6) the e�ective Hamiltonian de�ned on the ap-

propriate basis. Taking the operator U

0

in (6) to be per-

turbation, we come to the following series [30]:

H

e�

= PH

0

P +

1

X

n=0

PU

0

�

QU

0

E �H

0

�

n

P; (7)

where E is the energy of the system in the ground

state. Hence, taking into consideration only the overlap-

ping of the z nearest neighbours, for the Hamiltonian

H

0

= H

e�

� �N

0

written in view of the E = � � �" shift

from the center of the band, in the second order by the

parameter zI=W , we obtain

H

0

=

X

l

("

l

� �)a

+

l

a

l

+

V

N

0

X

lm

a

+

l

b

+

�

l

b

�m

a

m

: (8)

It is generally agreed here that the overlapping inte-

gral I

lm

ij

� I does not depend on i, j, l, m; � is

the chemical potential of localized particles (for the ex-

tended particles it reduces to the Fermi energy E

F

),

V � �N

0

(zI)

2

=(

e

E�E) the e�ective coupling constant,

e

E

is the energy of the system in the virtual state. Operators

a

+

l

and a

l

of creation and annihilation of particles in the

ground state and operators b

+

l

and b

l

of the appropriate

\antiparticles" in the virtual state are determined by the

following equations:

a

+

l

=

X

i

P

i

 

i+

l

; a

l

=

X

i

 

i

l

P

i

;

b

+

l

=

X

i

 

i

l

Q

i

; b

l

=

X

i

Q

i

 

i+

l

; (9)
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where P

i

and Q

i

are the projection operators at the level

i appearing in the complete operators P and Q in the

form of products; the operators in the \site"

�

l adjacent

to the given l appears as a

�

l

= z

�1

P

m

a

l+m

where sum-

mation is performed by z of the nearest neighbours.

So, the spontaneous symmetry breaking with respect

to the permutations of the levels "

i

by the sites r

l

con-

sisting in transition from group G in the localized state

to its subgroup G

0

in the extended state, results in the

problem of the e�ective system of interacting particles

and antiparticles [50]. Notice that origination of e�cient

interaction in the systems where from the very beginning

provision was made only for the wave function overlap-

ping inherent not only in the Anderson model but in the

spin glass [32] as well where e�ective interaction results

from averaging the overlapping integral values. The dis-

tinctive property of our model lies in the fact that the

nature of e�ective interaction does not depend on the

sign of the overlapping integral and is de�ned only by

the sign of the di�erence �E �

e

E � E of the energies of

the system in the virtual and real states. According to

(5), for fermions the zone of virtual collective states is

located above the zone of real states (

e

E � E

1

, E � E

0

).

Consequently, here �E �

e

E � E = E

1

�E

0

> 0, and the

e�ective interaction of fermions is of the attraction na-

ture (V < 0). For bosons the roles of the indicated bands

are interchanged (

e

E � E

0

, E � E

1

), and the situation is

reversed (V > 0). It follows herefrom that consideration

of the interference e�ects should most essentially in
u-

ence the behaviour of fermions since their ground state,

as in superconductors, proves to be unstable.

Leaving the statement of the formalism based on the

e�ective Hamiltonian (8) for Section IV, notice that it

coincides, in its form, with the model Hamiltonian BCS,

with the distinction lying in the fact that the site repre-

sentation �gures instead of a momentum one, and the

role of electrons with opposite momenta and spins is

played by the particles and antiparticles at the adjacent

sites (in addition, the sign of interaction is changed for

bosons). Since Hamiltonian (8) hereinafter plays a lead-

ing part, it seems necessary to discuss the legitimacy of

the in�nite series approximation (7) used, when Hamil-

tonian is obtained, by the second order term over zI=W .

Strictly speaking, the indicated series is convergent only

in the limit of zI=W � 1 associated with the high local-

ization region. Close to the threshold of mobility and par-

ticularly in the extended state where the value of zI=W

can be arbitrarily large, the series (7) becomes asymp-

totic by nature. This means that at its approximation by

the �nite number of terms the best approximation is ob-

tained if this number does not exceed a certain optimal

value n

0

which grows as the zI=W parameter increases.

At transition from (7) to (8), it is agreed that n

0

= 1, i.e.

we restrict ourselves to the �rst nonvanishing term of the

asymptotic series. It follows that Hamiltonian (8) can be

a satisfactory approximation of the exact expression (7)

only at not very large values of the expansion parameter

zI=W . Below is shown (see (36)) that zI=W

c0

= 0:744

at the critical point. Thus, even in the extended state

(W < W

c0

), the value zI=W near the critical point is of

the order of one, and the �nite series (8) is a good ap-

proximation of the exact expression (7). Physically, such

approximation means that the two{particle e�ects of the

exchange interaction are responsible for the critical be-

haviour of the system de�ned by Hamiltonian (8). In the

next Section, this conclusion will be con�rmed on the

basis of the diagram techniques.

Notice that the represented situation with the asymp-

totic series is also characteristic to the microscopic the-

ory of phase transitions based on both the quantum sta-

tistical [33] and renormalization group [34] approaches

(the role of the expansion parameter therewith is played

by the ratio between the characteristic value of the in-

teraction energy and the temperature). Therefore, it is

quite natural that within the framework of the localiza-

tion scheme being stated which is constructed by anal-

ogy with the phase transition theory, we are facing all the

problems of the latter. Among other things, since the ex-

pansion parameter zI=W is not always small, the results

of the theory (type of the mobility threshold) are semi-

quantitative by nature. The main advantage of the sys-

tem being developed is the possibility of self{consistent

description re
ecting the critical behaviour of the sys-

tem.

Let us take up, �nally, the question of the type of

statistics of particles and antiparticles corresponding to

the operators a

�

l

, b

�

l

(for the sake of convenience here

a

l

and b

l

are redenoted as a

�

l

and b

�

l

). According to

the determination (9), they are obtained from the oper-

ators  

i�

l

of bare particles by way of projecting onto

the subspaces f�

0

g and f�

1

g. It means that the op-

erators a

�

l

and b

�

l

anticommutate with one another in

the Fermi case and commutate in the Bose case. For

each of the subspaces we have got [a

�

l

; a

+

m

]

�

= �

lm

,

[b

�

l

; b

+

m

]

�

= �

lm

where the signs � at the square brack-

ets mean the anticommutator for fermions and the com-

mutator for bosons; the commutation relations for the

other combinations give zero. Introducing the '

l0

� a

l

and '

l1

� b

l

, we come to the canonical relations:

h

'

l�

; '

+

m�

i

�

= �

lm

�

��

;

['

l�

; '

m�

]

�

=

h

'

+

l�

; '

+

m�

i

�

= 0; (10)

where indices �; � = 0, 1 indicate the subspaces f�

�;�

g

of the real and virtual states.

III. DEVELOPMENT OF THE

SELF{CONSISTENT SCHEME

Since it is convenient, when describing the single and

collective excitations, to proceed from di�erent (site or

wave) representations, we shall �rst make recourse to

the diagram method making no use of the explicit form

of the appropriate Hamiltonian. This will permit to get

the general view of equations for the required set of the

Green functions.
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As elucidated in Section II, a fundamentally impor-

tant fact is the separation, resulted from the permutation

symmetry breaking, of the pair of the subspaces f�

�

g,

� = 0, 1 corresponding to the bands of real and virtual

collective states. Therefore, the sites are to be charac-

terized by not only their numbers l and m but by these

bands indices � and � as well. The presence of the lat-

ter results in the division of the ensemble of the orig-

inal particles into the excitations of the particle{ and

vacancy/hole{type the operators of which are obeyed to

commutation relations (10). As indicated in Introduc-

tion, the approach being proposed is based on the con-

cept of the system with the quenched disorder within

the framework of a standard thermodynamic scheme. It

is illustrated in Appendix that, in spite of the nonequi-

librium character, such a system, when in the steady

state, is described by the quasi{Gibbs distribution for

which the role of temperature is played by the level scat-

tering halfwidth W=2. Description of the present sys-

tem is ensured by the use of Matsubara's Green func-

tion G

��

lm

(t) = �

D

b

T'

l�

(t)'

+

m�

(0)

E

where '

l0

� a

l

and

'

l1

� b

l

are the operators of particles and holes deter-

mined by the relationships (9), t is the imaginary time,

the angular brackets mean averaging over the quantum

states, the other symbols are standard [9]. Making use

of the commutation relations (10), it is easy to illustrate

that the normal (diagonal) and anomalous (o�{diagonal)

components possess the following properties:

�G

11

ml

(�t) = G

00

lm

(t) � G

lm

(t);

G

10�

ml

(t) = G

01

lm

(t) � F

lm

(t); (11)

where the upper sign refers to fermions, the lower one

| to bosons. Thanks to this, it is su�cient to exam-

ine the behaviour of only two components | the nor-

mal G

lm

(t) (see �g. 1a) and the anomalous F

lm

(t) (see

�g. 1b). Further, when making general computations, it

is also convenient to use the matrix representation of the

type

b

G

lm

(t) where the cap signi�es the exhaustive search

for the � and � indices.

Fig. 1. Diagram representation of single and collective ex-

citations.

In addition to the matrix nature of the Green func-

tion, the presence of the subspaces � = 0, 1 results in

two types of bare vertices depicted in �g. 1c and 1d

where the solid line corresponds to the components of

the Green locator function of a particle or vacancy, the

dashed line corresponds to the overlapping integral. As

in the theory of superconductivity [9], it is technically

more convenient to switch from three{tail vertices to the

appropriate four{tail vertices (see �g. 1e) of the e�ec-

tive interaction. Since the interaction between particles

belonging to di�erent bands is responsible for delocaliza-

tion, we shall consider as non{zero only the components

V

01;01

� V

00

, V

10;10

� V

11

, V

01;10

� V

01

, V

10;01

� V

10

producing the

b

V matrix of the second rank. The

b

� ma-

trix (see �g. 1f) of the vertex function is structured in the

similar manner. However, while the

b

V matrix of the bare

interaction is evidently diagonal, the complete vertex

b

�

has, as will be seen below, all nonzero{components.

In the diagram representation the Dyson matrix equa-

tion takes an ordinary form [9] (see �g. 1g) where the

double line corresponds to the exact Green function, and

the single line corresponds to the bare one (the matrix

of the latter is diagonal). The self{energy function (see

�g. 1h) is expressed by the equation illustrated in �g. 1i.

Thus, the problem reduces to the self{consistent deter-

mination of the vertex function

b

�. Similar to Ref. [9], it

can be shown that, at the expansion in terms of

b

V , the

main contribution is made by the terms containing the

polarizer

b

� (see �g. 1j) the matrix components �

��

of

which are determined in a similar way to the V

��

and

�

��

. Then the appropriate series reduces to the ladder

sequence which can be represented in the form of the

Bethe{Salpeter equation (�g. 1k). It closes the system of

equations for the self{consistent description of a particle

in a random �eld.

In the analytic representation, this system is written

as follows:

b

G

�1

(!

s

) = i!

s

b

� � ("� �)b�

3

�

b

�(!

s

); (12a)

�

��

(t) = G

��

(�t)�

��

(t); (12b)

b

�

�1

(


S

) =

b

V

�1

�

b

�(


S

); (12c)

�

��

(t) = [G

��

(t)]

2

: (12d)

Here, the frequencies !

s

and 


S

of single and collec-

tive excitations are determined by the expressions !

s

=

�(2s + 1)W=2 and 


S

= �(2S + 1)W=2 in the case of

the Fermi particles, and by the equations !

s

= �sW

and 


S

= �SW in the case of the Bose particles;

s; S = 0;�1; : : : are integers; " is the bare energy of a par-

ticle; � is a chemical potential;

b

� is a unit matrix; b�

3

is a

diagonal Pauli matrix with the elements �

00

3

= ��

11

3

= 1.

The matrix structure of the Green function (12a) taking

into account conditions (11) conforms to the Fermi case;

in the Bose case, the matrices

b

� and b�

3

are to be inter-
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changed. With the derivation of the equation (12c) for

the vertex function

b

� where the upper sign is in agree-

ment with fermions, the lower one conforms to bosons,

it is generally taken that the bare potential reduces to

the constant

b

V . A distinctive feature of the system ob-

tained consists in the fact that the explicit expressions

(12a), (12c) for the Green functions

b

G,

b

� of the single

and collective excitations are obtained in the frequency

representation while the expressions (12b) and (12d) for

the self{energy function

b

� and polarizer

b

� require the

application of the time representation. As far as the site

and wave representations are concerned, their choice de-

pends on the type of excitations meant.

IV. SINGLE EXCITATIONS

Further discussion essentially depends on the fact by

what type of statistics the progenitor gas is character-

ized. At �rst, examine the case of fermions, and then |

that of bosons.

a. Fermi case. If we are interested only in the be-

haviour of the single excitations [11], their description is

obtained in the simplest way within the framework of the

quasi{mean{value method [35]. Applying the standard

procedure, it can be shown on the basis of the expres-

sion (8) that at N

0

! 1 the behaviour of the system

is asymptotically de�ned by the approximating Hamil-

tonian which takes, in the self{consistent �eld approxi-

mation, the following form:

H =

X

l

("

l

� �)a

+

l

a

l

�

jV j

2

X

l

�

�

�

b

�

l

a

l

+ �a

+

l

b

+

�

l

�

+

jV j

4

j�j

2

N

0

: (13)

Anomalous quasi{mean values

� = (2=N

0

)

X

l

hb

�

l

a

l

i � (2=N

0

)

X

il




Q

i

 

i+

�

l

 

i

l

P

i

�

;

�

�

= (2=N

0

)

X

l




a

+

l

b

+

�

l

�

(14)

� (2=N

0

)

X

il




P

i

 

i+

l

 

i

�

l

Q

i

�

;

determining the amplitude of the particle transfer from

the state �

0

at the site l to the state �

1

at the \neigh-

bouring" site

�

l (and vice versa for the �

�

) represent the

order parameter corresponding to the extended state.

With an accuracy of the multiplier (N

0

=2)

1=2

, the val-

ues of �

�

and � coincide with the condensate part of the

PCS operators 	

+

l

= a

+

l

b

+

�

l

and 	

l

= b

�

l

a

l

determining

the collective excitation mode at zero quasi{momentum:

	

0

� h	(K = 0)i = (2=N

0

)

1=2

X

l

hb

�

l

a

l

i ;

	

+

0

�




	

+

(K = 0)

�

= (2=N

0

)

1=2

X

l




a

+

l

b

+

�

l

�

: (15)

It follows herefrom that Bose condensation of N PCSs

implying 	

0

= N

1=2

brings to the order � �

(N

0

=2)

�1=2

	

0

= (2N=N

0

)

1=2

. In so doing, the function

of PCSs distribution by quasi{momentum

(N

0

=2)S(K) �




	

+

(K)	(K)

�

� jh	(K)ij

2

= j	

0

j

2

�

K0

(16)

develops a �{shaped peak of height S(0) = 2N=N

0

= �

2

.

It is characteristically that this feature appears just

in the two{particle Green function associated with the

PCSs distribution but not in the single particle func-

tion. This is consistent with the results of the scaling

theory [36] in accordance with which, close to the mo-

bility threshold E

c

, not the �eld variables '

�

a

(� = 0, 1;

a = 1, : : : , n, n! 0 is the dimensionality of the replica

space) themselves exhibit a critical behaviour but the

tensor Q

��

ab

= '

�

a

'

�

b

caused by the spontaneous sym-

metry breaking (transition from the group O(2n) to the

noncompact group O(n; n)). Such a tensor plays a role

of the order parameter in the �eld approach [4,8]. It is in

agreement with the de�nition (14) of the order parame-

ter in the form of the average of the pair of operators a

l

,

b

�

l

.

Diagonalization of Hamiltonian (13) is achieved

through the transformation (compare with (2))

�

l+

= u

l

a

l

� v

l

b

+

�

l

; �

l�

= u

l

b

l

+ v

l

a

+

�

l

; (17)

where, by virtue of (10), u

2

l

+v

2

l

= 1. It results in giving:

H = U +

1

2

X

l

�

l

�

�

+

l+

�

l+

+ �

+

�

l�

�

�

l�

�

(18)

+

1

2

X

l

("

l

� �)

�

�

+

l+

�

l+

� �

+

�

l�

�

�

l�

�

;

where

U =

N

0

2

(

jV j

2

j�j

2

�

1

N

0

X

l

[�

l

� ("

l

� �)]

)

;

�

l

=

p

("

l

� �)

2

+�

2

; (19)

� = jV j�; � = �

�

;

u

2

l

v

2

l

�

=

1

2

�

1�

"

l

� �

�

l

�

:

The quantity U represents the energy of the ground state
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the wave function of which is:

j	

0

i =

Y

l

�

u

l

+ v

l

a

+

l

b

+

�

l

�

j0i ; (20)

where j0i is the wave function of the Fermi vacuum. At

the noncoincidence of excitations de�ned by the opera-

tors �

l+

and �

�

l�

, they relate to the gapless law of disper-

sion �

(�)

l

= (1=2) [�

l

� ("

l

� �)], and the phase transition

is not possible. For the phase transition to be achieved

within the framework of the developed scheme, it is nec-

essary to postulate the coincidence of the behaviour of

elementary excitations in the states �

0

and �

1

(physi-

cally, it means that creation of excitation at the site l

in the state �

0

results in excitation appearance at the

\neighbouring" site

�

l in the state �

1

). Then the en-

ergy �

l

of elementary excitations de�ned by the operator

�

l

� �

l+

= �

�

l�

is characterized by the presence of the

gap � which is proportional to the order parameter �.

To further develop the theory, it is appropriate to

assign a physical meaning to the averaging operation

h: : :i �

R

: : : P (")d" that is achieved by assigning the

probability P (") to have the energy ". For the reasons

stated in Appendix, we shall apply the standard quasi{

Gibbs distribution (A.1) characterized by the constant

W . Then the statistic theory of the system under con-

sideration with the quenched disorder can be achieved

by analogy with the appropriate theory [37] of thermo-

dynamic systems with temperature W=2. In this theory,

the distribution �

l

=




�

+

l

�

l

�

of the elementary excita-

tion gas is de�ned by the Fermi function (A.2), and the

corresponding distributions p

l

=




a

+

l

a

l

�

, h

l

=




b

+

l

b

l

�

of interacting particles and antiparticles are associated

with the �

l

by formulae

2p

l

= 2h

�

l

= 1 + n

l

; (21)

n

l

�

�� "

l

�

l

(1� 2�

l

) =

�� "

l

�

l

tanh

�

l

W

;

following from (17). Making use of the identity

X

i




 

i+

l

 

i

m

�

=




a

+

l

a

m

�

+




b

l

b

+

m

�

+ hb

l

a

m

i+




a

+

l

b

+

m

�

;

(22)

resulting from the relation P

i

+ Q

i

= 1, we get, as ex-

pected,

P

i




 

i+

l

 

i

l

�

= 1 for the number of levels at the

given site. Transition from the obtained site functions

to the corresponding energy distributions is performed

through multiplying by the level density P (") speci�ed

by the equality (A.1).

The equation for the gap width is obtained by substi-

tution of the inverted equalities (17) in the de�nitions

(14):

jV j

W

1

Z

�1

tanh

�

p

(x� e)

2

+ d

2

=2

�

e

�jxj

p

(x� e)

2

+ d

2

dx = 1: (23)

Applied here is the transition

P

l

: : : ! N

0

R

: : : P (") d",

d � 2�=W , e � 2E=W , E = � � �" | shift from the

band center. As contrasted to the BCS model, the inter-

action parameter V = �N

0

�

2

0

=�E , where �

0

� zI , is

not a constant, its magnitude is determined by the dif-

ference �E of the system energies in the states �

1

and

�

0

. For the isolated PCS, it is equal to �

l

, and with the

presence of the extended phase, �E =

P

l

�

l

. So, for V

we get:

jV j

�1

=

W

(2�

0

)

2

1

Z

�1

p

(x � e)

2

+ d

2

e

�jxj

dx: (24)

At transition to the extended state, the jump of the

complete energy (analog of the thermodynamic poten-

tial) �F = F

d

� F

l

is determined by the formula

�F =

N

0

4

V

Z

0

�

2

V

2

dV ; (25)

following from the equalities (dF=dV )

W;�

= h@H=@V i =

@U=@V and (17) where � = �=V . According to (25)

during delocalization, as it usually is during transition

to the low{symmetry phase, value F decreases (recall

that V < 0).

The elementary excitation energy E

ex

=

P

l

�

l

�

l

is of

the form:

E

ex

=

N

0

4

W

1

Z

�1

p

(x� e)

2

+ d

2

e

�jxj

1 + exp

p

(x � e)

2

+ d

2

dx: (26)

The obtained formulae contain, as a free parameter,

in addition to the level scattering width W , the shift

E = �� �" from the center of the band of localized states.

It should be distinguished from the usual Fermi energy

E

F

. Really so, within the framework of the locator ap-

proach applied, the Lagrange multiplier � incorporates

the condition of conservation of the total number of lo-

calized fermions, and, thus, is subtracted from the energy

"

l

. Appearance of the magnitude E

F

in the framework

of the propagator approach is associated with taking ac-

count of the condition of conservation of the total num-

ber of extended fermions. In this connection use is made

of the wave representation, and the Lagrange multiplier

E

F

= k

2

F

=2m is subtracted from the space Fourier{form

of the overlapping integral [2,3] I(k) = k

2

F

=2m+ k

2

=2m

where k

F

is the Fermi wave number,m is a particle mass,

Planck constant �h = 1.

To determine the relation between E and E

F

, we shall

measure all the energy dimensional magnitudes in the

units of �

0

= k

2

D

=2m, k

D

is the Debye wave num-
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ber. Then at the given value of concentration n = N=N

0

of the localized particles (N is their total number), the

Fermi energy of the d{dimensional degenerated system

E

F

= (k

F

=k

D

)

2

is determined by the evident equality

E

F

= (1� n)

2=d

: (27)

On the other hand, the chemical potential � in the equal-

ities (18) and (19) is given by the condition [37]

@F

@�

= �N

0

p; (28)

F � �

W

2

ln

�

exp

�

�

2H

W

��

= U +

W

2

X

l

ln(1� �

l

);

where p = N

�1

0

P

p

l

is the concentration of particles

speci�ed by the operators (9). Taking into account the

equalities (21), we obtain the relation p = (1+n)=2, and

condition (28) reduces to the equality

n = N

�1

0

X

l

�� "

l

�

l

tanh

�

l

W

; (29)

n � N

�1

0

X

l

n

l

:

Expressions (27) and (29) o�er the required relation

E

F

(E), the shift E = �� �" itself is determined through

the equality (29) by the assigned values n and W .

Previously, we applied the quasi{mean{value method

bringing in shortest ways to the description of single ex-

citations. Needless to say, the illustrated results can also

be obtained by means of the Green method which al-

lows for determining the Fermi function

b

G(!

s

) from the

system (12a){(12d). Keeping in mind the fact that the

Green procedure allows for describing not only each of

the types of excitations but for taking into account their

coupling, we shall demonstrate at �rst the way it repro-

duces the results of the quasi{mean{value method.

In the context of the locator approach, the functions

b

G, " and

b

� in the equation (12a) and functions

b

�,

b

V

and

b

� in the equation (12c) should be corresponded the

lattice index l, and splitting of the appropriate contribu-

tion (12b) and (12d) is achieved in transition to the wave

representation. Due to the site and wave representation

inversion of this kind, the applied locator approach radi-

cally di�ers from the Edwards propagator representation.

To de�ne the explicit form of the Green function (12a),

we shall consider that, as in the case of the theory of su-

perconductivity, the self{energy function

b

� acquires, un-

der delocalization, the o�{diagonal components �

01

=

�

�

10

= � corresponding to the gap � in the energy spec-

trum of the single excitations [9]. The matrix

b

G diago-

nalization then leads to the following expressions:

G

l

(!

s

) = �

i!

s

+ ("

l

� �)

!

2

s

+ �

2

l

; (30)

F

l

(!

s

) = �

�

!

2

s

+ �

2

l

;

�

l

=

�

("

l

� �)

2

+�

2

�

1=2

;

!

s

= �(2s+ 1)W=2; s = 0;�1; : : :

Substituting them into eq. (12b) for the o�{diagonal

components, and assuming that here the vertex

b

� re-

duces to the bare potential

b

V , we arrive at the self{

consistency equation which, as would be expected, co-

incides with eq. (23) for the gap �. Dependence of the

chemical potential E = � � �" on the localized parti-

cle concentration n = N=N

0

follows from the relation

N =W

P

s

P

l

G

l

(!

s

) which, with the application of the

�rst one from the equalities (30), leads to eq. (29).

Polarizer (12d) has the following Fourier{form:

�

��

l

(


S

) = (31)

�W

1

X

s=�1

N

�1

0

X

m

G

��

l+m

(


S

� !

s

)G

��

m

(!

s

):

Substituting the Green functions (30) here, upon sum-

ming over s, we shall arrive at the expressions:

�

00

(0) = �

11

(0) = �N

�1

0

X

l

�

�1

l

tanh(�

l

=W ) +A�

2

;

�

01

(0) = �

10

(0) = �A�

2

; (32)

A �

1

2N

0

X

l

�

�3

l

�

tanh(�

l

=W )� (�

l

=W )cosh

�2

(�

l

=W )

�

;

where, in view of the macroscopic equivalence of sites,

there is no dependence on their number l. Making use of

(32), it is easy to �nd the inverse vertex function (12c)

responsible for the behaviour of the collective excitations

of fermions (see Section Va).

The system of equations (23), (24) and (29) that o�ers

the self{consistent description of the single excitations

a�ords �nding, by the assigned values of the level scat-

teringW and concentration n, the value V of the e�ective

interaction potential, gap width � and chemical poten-

tial shift E from the band center. Numerical solution to

these equations results in the dependencies displayed in

�gs. 2 and 3. From these �gures we notice that, as W in-

creases, the value of jV j �rst rises (for more details, see

what is preceding (39)) and then, after a cusp, monoton-

ically decays; an increase in the concentration n brings

about a decrease in jV j. The gap width � monotoni-

cally decays as the level scattering W and concentration
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n increase, and the shift E does as they decrease. Let us

examine the form of these dependencies in detail.

Fig. 2. a | Relationship between the e�ective interaction

potential jV j and the level scattering widthW and concentra-

tion n; b | Relationship between the gap width � of single

excitations andW , n; c|Relationship between the chemical

potential shift E from the band center and W , n.

The ground system state de�ned by the wave function

(20) is achieved at W = 0 where all the levels coincide

(P (") = �("� �")), and elementary excitations are absent

(�

l

= 0). In the center of the band (E = 0, n = 0), the

order parameter and gap width take maximum values

� = 1, � = 1, the ground state energy and the total

energy jump take minimum values U = �F = �N

0

=4,

and the interaction parameter jV j = 1 (hereinafter, un-

less otherwise speci�ed, the energy has dimensionality

�

0

= zI). Zones �

0

and �

1

are half full of particles and

antiparticles (p

l

= h

�

l

= 1=2). With the �nite concen-

tration n 6= 0, a shift from the band center is E = n,

and �

2

= �

2

= 1�E

2

, jV j = 1, �F = �(N

0

=4)(1�E

2

),

Fig. 3. a | Relationship between the e�ective interaction

potential jV j and the level scattering widthW at various val-

ues of the chemical potential shift from the band center E:

0.0 (curve 1), 0.4 (2), 0.6 (3), 0.7 (4), 0.8 (5), 0.9 (6), 0.98

(7), 1.02 (8); b | Relationship between the extended state

band width E

c

(dotted line), order parameter � (solid lines)

and W at various values of E: 0.0 (curve 1), 0.6 (2), 0.8 (3),

0.9 (4), 0.95 (5), 0.98 (6), 1.0 (7), 1.01 (8), 1.02 (9); c | Con-

centration relationships between the values E

c

at which the

extended state band expands (dashed line), the critical level

scattering W

c

(dotted line) and the values of E (solid lines)

at various values of W : 0.0 (curve 1), 0.6 (2), 0.8 (3), 1.0 (4),

1.2 (5), 1.4 (6).

p

l

= h

�

l

= (1 +E)=2. Thus, as the value E increases, the

order parameter, gap width and absolute value of the
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system total energy change under delocalization mono-

tonically decay going into zero at the boundary value

E

c

= 1. The numbers of particles and antiparticles ac-

cordingly increase from 1/2 to 1.

There is no di�culty in understanding that the de-

scribed ground state of a stochastic system corresponds

to the ordinary spreading of the coincident energy levels

"

l

= �" into the extended state band of width (in conven-

tional units) 2E

c

= 2zI . The order parameter, therewith,

determines the density of extended states in accordance

with the following equality:

g(E) � (2=�)�(E) = (2=�)

p

1�E

2

: (33)

Taking into account then that, in accordance with (30),

the gap width determines the value of the anomalous

Green function F

l

(!

s

) the summation of which over fre-

quencies !

s

and sites l gives the number of extended

particles, it can be concluded that, in the general case

W 6= 0, the dependence �(W;E) de�nes the density of

extended states [51] of an imperfect crystal with the en-

ergy E.

As the levels are scattered, originated are the elemen-

tary excitations the number of which �

l

� exp(�2=W )�

1. With a precision of the �rst non{zero terms over

W � 1 , we obtain:

�

2

= �

2

= (1�E

2

)�W

2

=2; (34)

jV j = 1;

�F = �(N

0

=4)

�

(1�E

2

)�W

2

=2

�

;

E

ex

= N

0

exp(�2=W );

E = n(1 +W

2

=2);

E

c

= 1 +W

2

=4;

2p

l

= 2h

�

l

=

�

(1 +E)� (1�E

2

)("

l

� �") at j"

l

� �"j �W=2;

1 +E at j"

l

� �"j �W:

The power character (as di�erentiated from the expo-

nential one usually observed under phase transitions)

of the dependence of the values of �, �, �F on the

level scattering W results from the dependence of the

interaction parameter V on the spectrum of the system

which accounts for the site resonating [38]. According

to (34), the last dependence displays only with the con-

siderable level scattering (W � 1). For the subcritical

shifts E < E

cr

, the level scattering results in decreasing

the values of �, �, �F . Here the di�erence of the in-

teraction parameter jV j from unit resulting in the diver-

sity in the boundary values of E

cr

for the dependencies

�(W ) (E

cr

= (5

1=2

� 1)=2 = 0:618) and �(W ), �F (W )

(E

cr

= 2

�1=2

= 0:707).

The excitation energy E

ex

and the value of C

ex

=

dE

ex

=dW which de�nes its rate of increase as the level

scattering increases (an analog of the heat capacity in

thermodynamics) are, according to (26), of the following

form:

E

ex

= N

0

(1�E

2

)

�1

e

�2=W

;

C

ex

= 2N

0

(1�E

2

)

�1

W

�2

e

�2=W

; (35)

W � 1; E < 1:

Shift from the band center results in a power increase

in the values of E

ex

and C

ex

an exponential smallness of

which results from the presence of a gap.

As viewed in �gs. 2 and 3, the characteristic feature

of the system behaviour consists in turning the values of

� and � into zero, and cusp of the dependence V (W )

under the critical scattering W

c

the maximum value of

which (in conventional units)

W

c0

= 2

p

ln(�=2) zI = 1:344 zI (36)

is obtained at n = 0. The derived value of W

c0

=zI is

in satisfactory agreement with the value 3.3 obtained by

Ref. [21] within the framework of the Edwards approach,

and with the result 2.4 of the coherent potential approx-

imation [39], and the result 1.8 in the diagram method

[22]. The G�otze approach [3] o�ers the value of W

c0

de-

pendent on the Fermi level E

F

: with the value of E

F

= 1

corresponding to the center of the band E = 0, we have

W

c0

=zI = 1:2. The shift from the band center caused by

an increase in concentration n results in a monotonous

decay of the critical value of W

c

in compliance with the

chart shown in �g. 3c with a dotted line. In the limiting

cases with a logarithmic accuracy, we have [52]

W

c

=W

c0

(1� an

2

) at n� 1;

W

c

= 2= ln(1� n)

�1

at 1� n� 1; (37)

a

�1

� 8(ln 4� 1)

2

ln(�=2) = 0:539:

As regards the critical value of E

c

, unlike the dependence

of the critical �eld on temperature usually observed un-

der phase transformations, in our case, the dependence

E

c

(W ) of the extended state band width on the level

scattering (see the dashed curve in �g. 3b) is not mono-

tonically dropping | at W < W

m

' 0:35, the scattering

slightly expands the band (for W

2

� 1, see (34)), and

at 0 < (W

c0

�W )=W

c0

� 1, quickly narrows it:

E

c

= 2

�1=2

W

2

c0

(1�W=W

c0

)

1=2

(38)

= 1:277(1�W=W

c0

)

1=2

:

The nonmonotonic nature of the dependence E

c

(W ) co-

incides with the one obtained in Ref. [39].

According to (24), an increase in the interaction pa-

rameter jV j is caused by a decrease in the energy of ele-
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mentary excitations as the level scattering increases (at

the expense of dropping of d = 2�=W ), and its decrease

is connected with the trivial integral increase in the right-

hand side of eq. (24) occurring while the shift from the

band center increases (at W < W

c

, the �rst factor pre-

vails, and at W > W

c

, the second one predominates).

In the center of the band (E = 0), the level scattering

W < W

c

brings about a slow increase in the interaction

parameter from the value of jV j = 1; under the �nite

shift E < 1, the decline 1 � jV j / W

n

with a power of

n > 2 takes place �rst (see (34)), and then an elevation

occurs (see �gs. 2a, 3a). At 1 < E < E

m

, E

m

' 1:02

in the domain 0 � W < W

0

where W

2

0

' 2(E

2

� 1),

there is a constant value of jV j = E

�1

; in the point

W = W

0

, a break occurs after which jV j slightly drops

at �rst and then rises. Close to the critical scattering

(0 < (W

c0

�W )=W

c0

� 1, (E=W

c0

)

2

� 1), we have

jV j =

2

W

c0

"

1�

W

c0

�W

W

c0

� 2

�

E

W

c0

�

2

#

: (39)

Above the critical point (W > W

c

)

jV j

�1

= E + (W=2) exp(�2E=W ): (40)

A jump of the derivative djV j=dW stipulated by the

spectrum rearrangement reaches at W = W

c

the maxi-

mum value of 4=W

2

c0

= 2:214 at E = 0, and decreases to

zero as E increases.

By virtue of the described dependence of the poten-

tial V on the system spectrum, observed is a di�erent

behaviour of the gap width � and the order parame-

ter � = �=jV j: as it usually is under phase transitions,

the gap width monotonically decreases as the level scat-

tering W increases (see �g. 2b), but the order parame-

ter can change in a nonmonotonic manner as well (see

�g. 3b). This nonmonotony is found beginning from the

critical value of E

cr

= 2

�1=2

of the chemical potential

shift from the band center. At E

cr

< E < 1, a small

scattering W does not cause a decrease in the value of

� but does its square{law increase which changes to lin-

ear at the very point of E = 1. Even greater change

of the �(W ) dependence kind occurs over the interval

1 < E < E

m

, E

m

� 1:02; the order parameter acquires

the �nite values not at zero{scattering but at W > W

0

,

W

0

' 2

1=2

(E

2

� 1)

1=2

. Thus the region of existence of

the extended state W

0

< W < W

c

is restricted here

both from above and from below, the order parameter

�(W ) changing with an in�nite derivative at each of the

boundaries (see �g. 3b). As indicated above, these fea-

tures show up in a nonmonotonic change of the extended

state band width E

c

(W ) (see the dotted line in �g. 3b).

Mathematically speaking, the nonmonotonic nature of

the dependencies �(W ) and E

c

(W ) is associated with

the fact that �xed is not the concentration n but energy

E when they are being determined. With allowance made

for the relation (24), it means that the chemical poten-

tial of extended particles E

F

= (1�n)

2=d

can change but

corresponding value � = E+ �" for the localized particles

is �xed. The physical reason for such a choice is the fact

that the extended state density g = (2=�)� is determined

in relation to the Fermi energy E

F

.

Now, de�ne the behaviour of the values � and � close

to the critical point W

c0

in the center of the band. Elim-

inating the parameter jV j from eqs. (23) and (24), with

a precision of the �rst non{zero terms over �=W

c0

� 1,

we obtain (E = 0)

(W

c0

=W )

2

=

1

Z

0

p

x

2

+ d

2

e

�x

dx (41)

= (�=2)d [H

1

(d)� Y

1

(d)] ;

where H

1

(d) is the Struve function; Y

1

(d) is the Bessel

function of the second kind [40]. At d � 1, we have

H

1

(d) � (2=3�)d

2

, Y

1

(d) � �2=�d+ (d=�) ln(d=2), and

it follows from (41):

�

�

W

c0

�

2

ln

�

�

W

c0

�

=

W �W

c0

W

c0

: (42)

Accordingly, for the order parameter we obtain:

�

�

0:903

�

2

ln

�

�

0:903

�

=

W �W

c0

W

c0

: (43)

Hence, in comparison with the ordinary phase transition

of the second order where there is no logarithm in the

formulae of the (42) and (43) type, a decay of the values

of � and � close to W

c

is slower: if, in the �rst case, the

rate of decay d�

2

=dW is constant, in the second case

d�

2

=dW = W

c0

= ln(�=W

c0

) and at W ! W

c0

it slowly

tends to zero. This di�erence does not a�ect the chart

of the gap width �(W ) itself but manifests itself with

respect to its square �

2

(W ) which graph is tangent with

the axis of abscissa is observed at W =W

c

.

As pointed out above, the extended state density g =

(2=�)� should be determined with a �xed value of the en-

ergy E. To determine the compressibility g(E) measured

in the experiment, the value of this energy should by

�xed by the condition (29). The form of the appropriate

dependence E(W;n) is illustrated in �gs. 2b and 3b. As

is seen therefrom, the dependence E(n) in the extended

region (W < W

c

) is nearly linear and characterized by

the asymptotic form depicted for W � 1 in (34). In the

localized state, we get a relationship

n = � ln(1 + �

�1

)� �

�1

ln(1 + �); (44)

� � exp(2E=W );

applicable at any value W � W

c

. The transition from

practically directly proportional dependencies E(n), typ-

ical of the extended state, to the curves in the localized

region which possess an appreciable nonlinearity is car-
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ried out as consistent with the dashed line of the depen-

dence E

0

(n) which determines the value of the energy

beginning from which, at the assigned concentration of

n, the extended state is formed. According to �g. 3b, the

curve E

0

(n) is convex{shaped with a monotonic energy

increase over all the concentration values, exclusive of

the region n � 1. In analytical form with a logarithmic

accuracy, we have

E

0

= bn at n� 1;

E

0

= 1 + jln(1� n)j

�2

at 1� n� 1; (45)

b �

p

ln(�=2)=(ln 4� 1) = 1:739:

As is evident from the foregoing, the shift E from

the center of the localized state band plays the role of

the �eld conjugate with the order parameter. Its non{

zero values are realized under the shift E which does

not exceed the critical value of E

c

(see the dotted curve

in �g. 3b). The value proper of the chemical potential

� = E+�", therewith, is determined by the concentration

n of the localized particles and the level scattering W in

accordance with the dependencies displayed in �gs. 2b

and 3b and relationships (34) and (44). The typical val-

ues of E

c

and E

0

have the appearance of (38) and (45).

The change of the total energy �F = F

d

�F

l

caused by

the delocalization reaches its minimum value (in conven-

tional units) �(N

0

z=4)I for the regular system (W = 0)

in the band center E = 0. The value of �F increases, as

the levels are scattered, remaining negative below the

critical point W

c

. What is mentioned last means the

above{indicated instability in the localized state resulted

from the presence of PCSs. In the vicinity ofW

c0

, we ob-

tain the following expression

�F =

N

0

2

�

W

c0

2

�

3

�

�

W

c0

�

4

ln

�

�

W

c0

�

(46)

= 0:228N

0

�

4

ln(1:107�);

di�ering from an ordinary one by the presence of log-

arithm. This distinction is crucial in the sense that

the di�erence of the \scattering capacities" �C =

�W @

2

�F=@W

2

, in the critical point, takes the value

zero in compliance with the following equality

�C = �(N

0

=2) (W

c0

=2)

2

= ln(�=W

0

) (47)

= �0:226N

0

= ln(1:107�);

and its derivative with respect to the value W tends to

�1. By convention, this fact can be expressed by refer-

ring the transition to the extended state to the 2+� order

where � ! 0 is a addition resulted from logarithm. Log-

arithms of this sort appear also in the expressions (37),

(42){(48). They owe their presence to the dependence of

the e�ective interaction parameter V on the system spec-

trum, and their presence stipulated by the site resonating

e�ect [38]. We shall point, in this connection, to the pa-

per [41] where also appeared logarithms associated with

the renormalization of the e�ective interaction. In our

case, such a renormalization results from a change in the

bare spectrum of the system discussed within the frame-

work of the mean{value �eld theory. In Ref. [41], how-

ever, under investigation was considered the in
uence

of the critical 
uctuations. In the diagram representa-

tion, this is expressed by the fact that our self{consistent

scheme (see Section III) is based on the ladder sequence

summation, but in Ref. [41] under consideration was the

parquet sequence. Therefore, the logarithmic corrections

obtained here are not so intrinsic as in the theory [41]

where their contribution proves to be nonperturbative.

And that is the case, one can see from expressions (43)

and (46) that the only distinction of the scheme being

set forth from the Landau theory consists in replacing

the value �

2

with the value �

2

ln � which can be consid-

ered, in the vicinity of W

c

, as the smallness parameter.

By contrast, the appropriate parameter W

2

ln(1 � n)

�1

in Ref. [41] can take arbitrary values in the region of

W � 1, 1 � n � 1 (the value (1 � n)

�1

in Ref. [41] is

denoted as

�

�

2

=E

�

2K

4

where � is the cuto� parameter,

K

4

= (8�

2

)

�1

).

It should be pointed out that similar to the transition

to the spin glass, the found feature of the \scattering

capacity" (47) can be perceived as a break of the depen-

dence C(W ) at W = W

c

. While, in the spin glass, the

jump of the derivative dC=dT in the cusp point is �nite

[32], in our case, however, �(dC=dW ) = �1, and, this

break can be perceived, in the experiment, as a jump of

the value C itself but not one of its derivative.

The analytical expression for the total energy of ele-

mentary excitations E

ex

can be obtained only in the lim-

iting cases. At W

2

� 1, we have (34), and at W �W

c0

,

E = 0

E

ex

=

�

2

� 9

24

N

0

W = 0:036N

0

W : (48)

Accordingly, for the \capacity" C

ex

= dE

ex

=dW we get

C

ex

= 0:036N

0

.

b. Bose case. In conformity with (21), for fermions

the distribution functions p

l

and h

l

coincide, and, macro-

scopically, Fermi particles and antiparticles correspond-

ing to the operators a

l

and b

l

behave in like manner.

The operators �

l+

and �

�

l�

of the elementary Fermi ex-

citations, however, represent, according to (17), the an-

tisymmetric and symmetric combinations of the initial

operators a

l

and b

l

. Hence, in a microscopic sense the

latter cannot be identi�ed. The situation for bosons is

quite di�erent since in this case the particles and an-

tiparticles are identical not only in a macroscopic sense

but in a microscopic one as well. It means that b

l

� a

l

should be assumed low everywhere. The pair of equalities

(17) then will be reduced to a single transform

�

l

= u

l

a

l

+ v

l

a

+

�

l

; (49)
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where, in view of Bose commutation rules (10), u

2

l

�v

2

l

=

1. Along with the condition of positiveness of the e�ec-

tive interaction potential V , the given fact plays a leading

part on further consideration of the system being de�ned

by Hamiltonian (8).

A di�erent sense is acquired by the delocalization pa-

rameter as well the microscopic nature of which is de-

�ned by formation of the Bose{condensate of collective

excitations. While, in the Fermi case, the condensation

process resulted from formation of PCSs, the Bose parti-

cles can condensate even without preliminary pairing.

It means that now the anomalous quasi{mean values

a � ha

l

i =




a

+

l

�

are non{zero not for pairs of operators

but for each of them. Consequently, for the delocalization

parameter instead of (14), we have

� � N

�1=2

0

a = N

�1=2

0

ha

l

i = N

�1=2

0




a

+

l

�

: (50)

Physically, it means that with delocalization the boson

operators a

+

l

and a

l

acquire the condensate component

that is independent of the site number l. It is evident

that the total number of bosons obeys the conservation

condition

a

2

+

X

l

a

+

l

a

l

= N

0

: (51)

In accordance with the standard procedure for inves-

tigation of the degenerate Bose system [42] in order to

obtain the approximating Hamiltonian it is necessary to

carry out the formal expansion by powers of the num-

ber of the condensate particles a

2

in the expression (8)

where a

l

� b

l

, and because of the nonconservation con-

dition of the total number of the localized particles (see

(51)), the Lagrange multiplier � = 0. As a result, we get

the approximating Hamiltonian in following form:

H = N

0

V �

4

+

X

l

�

"

l

+ 2V �

2

�

a

+

l

a

l

(52)

+ V �

2

X

l

�

a

�

l

a

l

+ a

+

l

a

+

�

l

�

;

where the chemical potential addition � = �2V �

2

is

completely conditioned by ordering. Substitution of the

inverted relation (49) into (52) gives

H = U +

X

l

�

l

�

+

l

�

l

; (53)

U = N

0

(

V �

4

�

1

2N

0

X

l

��

"

l

+ 2V �

2

�

� �

l

�

)

;

�

l

=

�

"

2

l

+ 4V �

2

"

l

�

1=2

;

u

2

l

v

2

l

�

=

1

2

�

"

l

+ 2V �

2

�

l

� 1

�

:

The obtained dispersion law �(") di�ers from the cor-

responding Fermi relation (19) primarily in its gapless

nature. Their resemblance consists in the coincidence of

the elementary excitation energy �

l

with the bare value

of "

l

in the limit "

l

!1. In the opposite limit "

l

� V �

2

,

we have the square{root singularity �

l

' 2�V

1=2

p

"

l

the

coe�cient of which is determined by the values of the or-

der parameter � and e�ective interaction V . This feature

accounts for the rearrangement of the Bose spectrum as

a result of delocalization.

Inverting the equality (49), for the normal mean value

of p

l

=




a

+

l

a

l

�

with the use of (A.2), we obtain

2p

l

=

"

l

+ 2V �

2

�

l

cotanh

�

l

W

� 1: (54)

Substituting this equality into eq. (51) averaged over the

level scattering, we �nd the equation for the order pa-

rameter (compare with (23))

2�

2

+

1

Z

b

#(x; d)e

�x

dx = 3; (55)

#(x; d) �

(x+ 2d)cotanh

�

p

x

2

+ 4dx=2

�

p

x

2

+ 4dx

;

d � 2V �

2

=W:

By virtue of the Bose character of distribution (54),

the integrand #(x; d) possesses an unintegrable singu-

larity in the lower limit b ! 0. This singularity is

also present in the localized state when d � 0 and

#(x; d) = cotanh(x=2). Therefore, it is necessary to in-

troduce the cuto� parameter b which is assigned by the

normalization rule in the disordered state:

1

Z

b

cotanh (x=2) e

�x

dx = 3: (56a)

Elementary integration gives the equation

2 ln

�

1� e

�b

�

+e

�b

+3 = 0 the root of which is b = 0:157.

Performing the term{by{term subtraction of eq. (55) and

(56a), we obtain

�

2

=

1

2

1

Z

b

�

cotanh

x

2

� #(x; d)

�

e

�x

dx: (57a)

This equation is applicable in the region associated with

small values of the parameter d. In the opposite limit

d � 1 at (xd)

1=2

� 1 we have the asymptotic form

#(x; d) ' x

�1

substitution of which into (55) produces

a nonphysical result � = 0:844 at W = 0. To avoid such
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an occurrence, write the condition (55) in a completely

ordered state where � = 1 and d =1:

1

Z

b

x

�1

e

�x

dx = 1: (56b)

Performing the term{by{term subtraction of eq. (55) and

(56b), we obtain the following expression

�

2

= 1�

1

2

1

Z

0

�

#(x; d) � x

�1

�

e

�x

dx; (57b)

substituting (57a) over the region d� 1. Since the inte-

grand loses divergence here, the cuto� at the lower limit

becomes unnecessary (b = 0). In the intermediate region

d � 1, the solutions of eqs. (57a,b) are sewed together.

For the e�ective interaction parameter V =

N

0

�

2

0

=

P

l

�

l

we have instead of (24) (here, as in (57b),

divergence is absent and b = 0)

V

�1

=

W

2�

2

0

1

Z

0

p

x

2

+ 4dx e

�x

dx: (58)

The set of eqs. (57a,b) and (58) a�ords by the assigned

level scattering W �nding the values of parameters �

and V . As the levels are scattered, the order parameter

� monotonically decreases from the value 1 at W = 0

to zero at W � W

c

, W

c

= 5:617. At �rst, the e�ective

interaction parameter V monotonically decreases from

in�nite values, then, at W

m

< W

c

, a minimum value of

V

m

< V

c

is reached. Thereafter (W

m

< W < W

c

), the

value of V increases to the value of V

c

= 0:356 in the

critical point W

c

in which a cusp is observed, as in the

case with fermions. In the localized state (W > W

c

), the

dependence V (W ) monotonically decays. So, the major

distinction from the Fermi case consists in the in�nite

increase of the e�ective interaction potential at a small

scattering of levels of bosons. This is associated with the

gapless character of their dispersion law �(") (see (53)).

In the limiting case W �W

c

, the major contribution

to the values of integrals in eqs. (57b) and (58) is made

by the small x, so that, in the former, cotangent can be

approximated by the use of their inverse argument. On

the other hand, since here we have the parameter d� 1,

it is possible to perform expansion in the degrees of the

relation x=d. As a result, we have

� ' 1�AW

4=3

; A � (�=2)

1=3

2

�5

= 0:036; (59)

V ' BW

�1=3

; B � (2=�)

1=3

= 0:860: (60)

Close to the localization point (0 < W

c

�W �W

c

), pa-

rameter d takes small values, and expansion in (57a) and

(58) can be performed over it. The appropriate limiting

expressions are of the following forms:

� ' C

p

1�W=W

c

; C � (I=2)

1=2

= 2:808; (61)

V ' DW; D � I

�1

= 0:063; (62)

I �

1

Z

b

sinh

�2

(x=2)e

�x

dx = 15:773:

The critical scattering of levels

W

c

= (2I)

1=2

= 5:617 (63)

is far above the corresponding value (36) for fermions.

That is also stipulated by the gapless character of the

boson dispersion law. The exponent in the diminution

law (59) at W � W

c

is reduced from 2 (see (34)) to

4/3 for the same reason. In the critical region, however,

the logarithmic singularity (43) inherent in fermions is

missing for bosons, and the dependence �(W ) takes the

usual square{root form (61).

The stated behaviour of the order parameter (50) re-

sults, by virtue of the condition (51), from the change

in the concentration of the noncondensate bosons p =

N

�1

0

P

l

p

l

. Making use of (54), (59){(63), we obtain the

following:

p ' EW

4=3

; (64)

E � (�=2)

1=3

2

�4

= 0:073 at W �W

c

;

p ' 1� F (1�W=W

c

); (65)

F � I=2 = 7:886 at 0 �W

c

�W �W

c

:

Thus, at an increase in the level scattering below the crit-

ical value (63), we obtain the linear decrease of the local-

ized boson concentration from the limiting value 1, then

the slowing down to the power law with exponent 4/3

occurs. With a complete coincidence of levels (W = 0)

all bosons, as it must, are extended (p = 0).

The system total energy jump is determined by anal-

ogy with the Fermi case, and it results in (compare with

(25))

�F = �N

0

Z

�

2

(V )

�

1� �

2

(V )

�

dV: (66)

In the limiting cases, it follows therefrom

�F ' �(N

0

=48)W at W �W

c

; (67)

�F ' GN

0

(1�W=W

c

)

2

; (68)

G � I

1=2

=2

3=2

= 1:404 at 0 �W

c

�W �W

c

:

And so, as in the case of the e�ective potential V (W ), at
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the level scattering decrease the energy �F (W ) exhibits

nonmonotonic behaviour: at �rst, the rise of the value

�F in the region 0 < W

c

�W �W

c

occurs according to

(68), then it drops to negative values, and, in the limit

W ! 0, linearly increases to 0 (see (67)). A conclusion

follows herefrom that, in the Bose case, delocalization

represents a phase transition of the �rst order. Atten-

tion is drawn to the linear behaviour of the dependence

�F (W ) at W � W

c

and the square{law in the vicinity

of the critical point W

c

. According to eq. (53) the in-

ternal energy U behaves in a like manner: in the region

W �W

c

we have U ' �(N

0

=8)W , and atW

c

�W �W

c

obtained is the dependence (68) where G = 21:147.

Excitation energy E

ex

=

P

l

�

l

�

l

monotonically rises as

the scattering W increases. In the limit of W �W

c

, we

have

E

ex

' HN

0

W

7=3

; H � (�=2)

1=3

2

�2

= 0:290: (69)

At W =W

c

, we obtain E

ex

= 1:811N

0

.

Let us show now in what way the results obtained can

be reproduced within the framework of the Green formal-

ism. We shall proceed from the equality (12a) in which

we should interchange the matrices

b

� and b�

3

and assume

that the self{energy function reduces to the anomalous

component

b

� = 2V �

2

b�

1

where matrix b�

1

has non{zero

elements �

01

1

= �

10

1

= 1. In conformity with this, the

chemical potential also takes the anomalous form [42]

� = �2V �

2

, and, instead of (30), we get

G

l

(!

s

) = �

i!

s

+ ("

l

+ 2V �

2

)

!

2

s

+ �

2

l

; (70)

F

l

(!

s

) =

2V �

2

!

2

s

+ �

2

l

;

�

l

=

�

"

2

l

+ 4V �

2

"

l

�

1=2

;

!

s

= 2�Ws; s = 0;�1; : : :

Substituting the �rst one of these equalities into the

determination of the number of noncondensate bosons

N

0

= �(W=2)

P

s

P

l

G

l

(!

s

) and taking into ac-

count that summation over the even frequencies !

s

=

2�(W=2)s, s = 0;�1; : : : produces the function cotanh

[43], we obtain N

0

=

P

l

p

l

where distribution p

l

appears

as eq. (54). Then the application of N

0

as the second

term in the condition (51) averaged over the distribution

(A.1) brings, as one would expect, to eq. (55) for the or-

der parameter. The boson polarizer (31) comprises the

matrix elements

�

00

(0) = �

11

(0)

= �N

�1

0

X

l

�

�1

l

cotanh(�

l

=W )� 4AV

2

�

4

;

�

01

(0) = �

10

(0) = �4AV

2

�

4

; (71)

A �

1

2N

0

X

l

�

�3

l

[cotanh(�

l

=W )

+ (�

l

=W )sinh

�2

(�

l

=W )

�

:

They will be used in obtaining the inverse vertex func-

tion (12c) responsible for the behaviour of the collective

Bose excitations (see Section Vb).

V. COLLECTIVE EXCITATIONS

a. Fermi case. As is seen from Sections II and IV, the

fermion delocalization process results from the fact that,

as the levels "

l

of neighbouring sites are drawn closer to

one another, they form coupled pairs corresponding to

the collective excitations of the Bose type. If the number

of such pairs N makes up the �nite part N=N

0

= �

2

=2

with respect to the total number of sites N

0

! 1, the

delocalization process assumes the macroscopic charac-

ter and is determined by the long{range order parameter

� = j�j=V . In the representation of single excitations,

the delocalization is re
ected through the appearance of

the o�{diagonal components / j�j in the matrix of the

self{energy function

b

�.

Let us show now how the delocalization manifests it-

self in the representation of the collective excitations.

Application of the quasi{mean value method, therewith,

turns to be insu�cient, and a recourse should be made to

the self{consistent scheme developed in Section III and

taking account of the behaviour of the Green functions

of both single and collective excitations. The latter is

related to the vertex function

b

�(K;
) acquiring a con-

densate component under delocalization (in this Section,

the gap � is supposed complex for generality)

b

�

0

(K;


S

) = (N

0

=W )

b

�

0

�

K0

�

S0

; (72)

b

�

0

= �

�

j�j

2

�

2

(�

�

)

2

j�j

2

�

;

which, unlike the 
uctuation function

b

�

0

(K;
), takes, in

the static limit 


S

= 0, the �nite value determined by

the gap width �. Substituting (72) into the Fourier time

transform of eq. (12b) and passing on to the Matsub-

ara frequency !

s

, after inversion of the matrix (12a), we

obtain, as expected, the expressions (30) for the compo-

nents of the Green function

b

G

l

(!

s

) and energy spectrum

�

l

. Their application in the determination of the polar-

izer (31) brings to the expressions (32) the substitution

of which into (12c) produces

b

�

�1

0

=

�

B �Aj�j

2

A�

2

A(�

�

)

2

B �Aj�j

2

�

; (73)
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B � V

�1

+N

�1

0

X

l

�

�1

l

tanh (�

l

=W ) ;

where account is taken of the diagonal structure of the

interaction matrix

b

V , the parameter A is determined by

the last equality (32). Inverting the matrix

b

�

�1

0

, we ob-

tain, in the limit B ! 0, the postulated expression (72),

with the constraint B = �W=2N

0

j�j

2

. In the thermo-

dynamic limit N

0

! 1, we thus arrive at the equality

B = 0 which, with allowance made for the last relation

(73) and determination (24) of the e�ective potential V ,

brings, as we might expect, to eq. (23) for the gap j�j.

The simplest way to determine the hydrodynamic

expression (K;
 ! 0) for the 
uctuation component

b

�

0

(K;
) of the vertex function is to apply the method

developed in Refs. [20, 22]. Its main point consists in

the fact that instead of the equation

b

G

�1

=

b

G

�1

0

��

0

b

�,

�

0

= zI for the Green function

b

G, use is made of its

analog

D

b

G

E

�1

= b�

�1

��

0

b

� for the function

D

b

G

E

aver-

aged over the level scattering and locator b� =

D

b

G

0

E

.

In addition, inserted is the e�ective interactor

b

U =

�

0

b

�+�

2

0

D

b

G

E

which, unlike the above{used potential V ,

contains the term in the �rst order over the overlap in-

tegral I . The Dyson equation replacing (12a) therewith

assumes the form

b

U

�1

= �

�1

0

b

� � b�. The two{particle

Green function [15] | [23]

'(E;K;
) = �

1

2�i

X

k;k

0




G

R

(k

+

;k

0

+

;E +
)G

A

(k

�

;k

0

�

;E)

�

(74)

appears, in the ladder approximation, as (compare with (12c))

'(E;K;
) = �

1

2�i

"




�1

�

X

k

U

R

(k

+

;E +
)U

A

(k

�

;E)

#

�1

; (75)

where k

�

= k�K=2; 
 is an irreducible four{tail vertex, indices R and A of the retarded and advanced functions

correspond to the selection of the components � = 0, 1 in various subspaces of the system states. Hence, taking into

account the Dyson equation and Ward identity, [22] we have

�

R

k

+

(E +
)� �

A

k

�

(E) = 


X

k

0

�

U

R

(k

0

+

;E +
)� U

A

(k

0

�

;E)

�

� e

 ; (76)

where the irreducible vertex e
 has, contrary to the 
, two coinciding tails appropriate to the same sites. As a result

we come to the conventional expression for the 
uctuation component of the two{particle Green function [15] | [23]

'

0

(K;
) = �

�(K)


 + iD(K;
)K

2

; (77)

where �(K) is the thermodynamic susceptibility equal, in the hydrodynamic limit K ! 0, to the density of states

g(E) at the level E, D(K;
) is the dispersing di�usion coe�cient which at K, 
 = 0 is as follows [22]

D =

1

�g

X

k

�

k

m

Im




G

A

k

�

�

2

; (78)

where k is the k projection on K, m is a particle mass. As a result of the above, for the 
uctuation component of

the vertex function

b

�

0

(K;
) = �2�ib'

0

(K;
) we obtain [20,22]

�

b

�

0

(K;
)

�

�1

=

1

2�g

�

�i
+DK

2

0

0 i
+DK

2

�

; (79)

where the matrix structure re
ects the presence of two poles 
 = �iDK

2

.
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The sum of the expression (73) where B = 0 and eq. (79) produces, after the matrix inversion, the complete Green

function of collective excitations:

b'(K;
) =

g

D(K;
)

�

�
� i

�

(1=2)SK

0

�DK

2

�

�(i=2)(�=j�j)

2

SK

0

�(i=2)(�

�

=j�j)

2

SK

0


� i

�

(1=2)SK

0

�DK

2

�

�

; (80a)

D(K;
) = 


2

+

�

(1=2)SK

0

�DK

2

�

2

� (1=4)S

2

K

2

0

; (80b)

S

2

= 4�gAj�j

2

D; (80c)

K

2

0

= 4�gAj�j

2

=D: (80d)

Condition D(K;
) = 0 brings to the dispersion law


 = �DK

q

K

2

0

�K

2

: (81)

As may be seen from �g. 4, its characteristic feature con-

sists in the fact that the collective mode is of a reactive

nature in the long{wave region K < K

0

limited by the

wave number (80d), and a relaxation nature in the short{

wave region K > K

0

. At K � K

0

, we obtain, as we

might expect, the ordinary di�usion mode 
 = �iDK

2

.

Fig. 4. Law of collective mode dispersion (the solid line

corresponds to the real value of frequency 
, the dashed |

imaginary value, the dotted | di�usion mode).

In this way, the self{consistent consideration of single

and collective excitations leads to the conclusion that

apart from the di�usion regime realized in the meso-

scopic regionK > K

0

, possible in the system is the prop-

agation of oscillations characterized by the phase velocity

S determined by the equality (80c). The dispersion law

(81) acquiring the acoustic form in the limiting long{

wave region K � K

0

is appropriate to the variations of

density of extended fermions, that is to say, usual sound.

It stands to reason that in the case fermions carry the

charge e, as it is true with electrons, and density � the

relaxation time � = (m=4��)

1=2

e

�1

conditioned by the

Coulomb interaction is found to be much less than the

inverse value 


�1

0

of the characteristic sound frequency




0

= SK

0

. Therefore manifestation of the present mode

can be expected only for the uncharged fermions of the

atoms He

3

type.

Such a situation is realized in quantum crystals [25]

where the found sound mode results from the zero{

oscillations. The level scattering halfwidth W=2 there-

with reduces to the real temperature T (because of the

smallness of the degeneracy temperature T

F

/ �

2=3

=m

of the quantum crystals T � 1), concentration n of

the localized atoms determines the value of the quan-

tum dilatation parameter � = 1 � n, the fermion den-

sity � = N

0

=V gives the value of overlapping inte-

gral I / exp

�

�const � �

�1=3

�

determining the de Bour

parameter. The curve of the temperature dependence




0

(T ) of the typical sound frequency at the �xed values

of � is shown in �g. 5. By and large, it repeats the form

of the appropriate dependence �(W ) of the gap width

(see �g. 2b). The exception is provided by the behaviour

in the vicinity of the critical temperature of delocaliza-

tion T

c

where the singularity of �(W ) is transformed

into the linear dependence 


0

/ T

c

� T . Since the di�u-

sion coe�cient D(W ) itself behaves in the critical region

in a radical manner [3] it means the presence of singu-

larities S / (T

c

� T )

3=4

for the sound velocity (80c) and

K

0

/ (T

c

�T )

1=4

for the boundary wave number (80d). In

the quantum{crystal{essential limit of the weak coupling

T � T

c

, the formulae (80c), (80d), (32) and (34) lead to

the result of 


0

= 4. Then, taking into account that the

di�usion coe�cient diverges here according to the rela-

tion D / T

�2

[3], one can see that the sound velocity

S / T

�1

increases inde�nitely as well, and the boundary

value of the wave vector K

0

/ T , on the contrary, de-

creases. Shown in �g. 6 are the curves of the temperature

dependencies of the values 


0

, S and K

0

throughout the

interval 0 � T � T

c0

at � = 1 (the temperature depen-

dence of the di�usion coe�cient is taken from the paper
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[3]). At T � T

c

the sound mode dispersion law appear-

ing as a bell with a slanting long{wave side is realized on

the narrow interval K < K

0

and over the wide frequency

domain 
 < 


0

=2 (velocity S therewith is very high). As

the temperature rises the frequency domain 


0

=2 and ve-

locity S monotonically decrease, and the bell width K

0

increases at the beginning and then quickly decreases. A

decrease in the quantum dilatation parameter causes a

decrease in the values 


0

, S and K

0

.

Fig. 5. Temperature dependence of the characteristic fre-

quency of zero-oscillations at various values of the quantum

dilatation parameter �: 0.05 (curve 1), 0.1 (2), 0.2 (3), 0.3

(4), 0.4 (5), 0.5 (6), 0.6 (7), 0.7 (8), 1.0 (9).

Fig. 6. Temperature dependence of the characteristic fre-

quency 


0

of the sound mode (solid line), phase velocity S

(dashed line) and boundary value of the wave number K

0

(dotted line) at quantum dilatation � = 1.

It follows herefrom that the most preferable (in terms

of detection of the zero{sound mode) is the tempera-

ture region over the interval 0 < T < min(T

F

; T

m

; T

c

)

the upper limit of which is given by the least value of

degeneracy temperature T

F

, melting point T

m

or criti-

cal temperature T

c

. Along with it, it is well to bear in

mind that the Landau theory considering the interac-

tion of fermions makes prediction about the zero{sound

mode existence only at the high frequency 
 [9]. With

consideration for the falling nature of the dependence




0

(T ) in �g. 5, it means that the zero{sound appearance

should be expected in the extremely low temperature re-

gion T � min(T

F

; T

m

; T

c

) at the quantum dilatation

� = 1.

b. Bose case. In Section IVb, we have considered ap-

proximation of the degenerate Bose{gas and we have

shown that the e�ective interaction V conditioned by

the quantum interference results in the delocalization of

bosons in a random �eld. A real system of bosons with

density � and mass m always possesses a repulsive inter-

action V

0

= 2��h

2

�a=m the value of which is determined

by the scattering amplitude a. Therefore, in the absence

of the e�ective interaction (V = 0), the collective be-

haviour of bosons is characterized by the presence of the

acoustic phonon branch 
 = �S

0

K with the sound ve-

locity S

0

=

�

4��h

2

�a=m

2

�

1=2

[42]. Evidently, the delo-

calization of bosons resulting, on the one hand, in soft-

ening the e�ective springs of the interatomic interaction

and, on the other hand, in their transformation into pis-

tons which simulate the viscosity forces should facilitate

a decrease in the sound velocity S

0

and appearance of

dissipation. Below is given a corresponding quantitative

picture. Furthermore, it will be shown that the mode of

the second sound appears the velocity of which is pro-

portional to the delocalization parameter.

As is the case with fermions, we shall proceed from

the assumption that, in the extended state, the vertex

function acquires the form (compare with (72))

b

�

0

(K;


S

) = (N

0

=W )

b

�

0

�

K0

�

S0

; (82)

b

�

0

=

�

��

2

�

2

�

2

��

2

�

; � � 2V �

2

:

Performing further the same mathematical treatment as

for fermions, and making use of the polarizer (71), in-

stead of (73) we obtain

b

�

�1

0

=

�

B �A�

2

�A�

2

�A�

2

B �A�

2

�

; (83)

B � V

�1

�N

�1

0

X

l

�

�1

l

cotanh (�

l

=W ) ;

where the parameter A is determined by the last equal-

ity (71). Inversion of the matrix (83) brings, as it might

be expected, to the postulated expression (82) with the

constraint B = W=2N

0

�

2

. In the thermodynamic limit

N

0

!1, we obtain B ! 0 whence follows the equation

V

�1

= N

�1

0

X

l

�

�1

l

cotanh(�

l

=W ); (84)
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which plays the part of the condition of self{consistency of type (23). Adding up the condensate component (83) to

the inverted 
uctuation vertex

b

�

0

(
;K) = �2�ib'

0

(
;K) given by the Green function of phonons [42]

'

0

(
;K) =

�K

2S

0

�

1


� S

0

K + i0

�

1


 + S

0

K � i0

�

; (85)

and inverting the matrix obtained, we arrive at the complete Green function of the collective Bose excitations

(compare with (80))

b'(
;K) =

�K

2S

0

D

�1

(
;K)

�


+ (S

0

+ iS

1

)K iS

1

K

iS

1

K 
� (S

0

� iS

1

)K

�

; (86a)

D(
;K) = 


2

� S

2

0

K

2

+ 2i
S

1

K; (86b)

S

1

= ��A�

2

=S

0

: (86c)

According to equation D(
;K) = 0, they possess the dispersion law


 = �iS

1

K � (S

2

0

� S

2

1

)

1=2

K; (87)

which is of the acoustic form with the e�ective velocity (S

2

0

� S

2

1

)

1=2

and relaxation time (S

1

K)

�1

. As may be seen

from the determination (86c), in the localized state S

1

= 0, and the relationship (87) reduces to the usual law of

phonon dispersion. The delocalization taking place as the level scattering W < W

c

decreases brings about a increase

of the parameter S

1

, which results in relaxation of the sound and reduction of its e�ective velocity. Beginning from

a certain value W , ful�lled is the condition S

1

= S

0

, and as the value W decreases further, the phonon mode (87) is

taking a pure dissipative nature.

In order to separate out the second sound mode, one should take into account the space{time dispersion when

determining the polarizer (12d). In the wave representation, it is written as

�

��

(
;K) = �i

X

k

Z

d!

2�

G

��

(k

+

;
� !)G

��

(k

�

; !); (88)

where k

�

= k�K=2. Substituting here the Green functions of free bosons (Planck constant �h = 1)

G

��

(!; k) =

h

!�

��

3

� (k

2

=2m)�

��

i

�1

; (89)

we obtain the following expression:

�

��

(
;K) = �

X

k

h


�

��

3

� (K

2

=4m+ k

2

=m)�

��

i

�1

: (90)

Its form shows that, in the hydrodynamic limit 
;K ! 0, the parameter B in the inverse vertex (83) acquires the

matrix structure and takes the value 0 in accordance with the following asymptotic form [24]

B

��

(
;K) = 
�

��

3

� (K

2

=4m)�

��

: (91)

As a result of this, the vertex function is written as following:

b

�(
;K) = D

�1

(
;K)

�

�
+K

2

=4m+A�

2

A�

2

A�

2


+K

2

=4m+A�

2

�

; (92a)

D(
;K) = 


2

� (K

2

=4m)

2

� 2A�

2

(K

2

=4m): (92b)
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The dispersion law


 =

�

S

2

2

K

2

+ (K

2

=4m)

2

�

1=2

; (93a)

S

2

2

= A�

2

=2m (93b)

derived from here takes the acoustic form in the long{

wave limit K

2

� 8mA�

2

and the parabolic form in the

short{wave limit. The second sound velocity S

2

di�ers

from zero only in the extended state where it increases

as the level scattering decreases.

It is not di�cult to understand that the represented

picture of delocalization is realized in the quantum 
uid

He

4

where the level scattering halfwidth W=2 reduces to

the usual temperature. The speci�c velocities (86c) and

(93b) therewith behave in a critical manner in the vicin-

ity of the critical point W

c

, and diverge at W �W

c

.

VI. CONCLUSION

The main prerequisites that allowed the theory pre-

sented to be developed include the consideration of

the system ground state rearrangement resulted from

the quantum interference and the assumption of the

quasi{Gibbs character of the quenched disorder. The for-

mer provides for reduction of the one{particle problem

Hamiltonian to the BCS form, and the latter reduces

averaging to the standard procedure applied in the sta-

tistical physics.

The consideration given shows that for fermions the

single excitation theory can be constructed by analogy

with the microscopic theory of superconductivity [29] in

which the role of the order parameter is played by the

square root of the ratio between the number of the cou-

pled sites and their total number, and the role of the

conjugate �eld is played by the shift from the band cen-

ter. A signi�cant distinction from the theory [29] lies in

the dependence of the e�ective interaction parameter on

the spectrum of the system. This results in the anoma-

lous behaviour of the order parameter in the vicinity of

the critical level scattering that can be expressed refer-

ring the transition to the extended state to the 2 + �

order where � ! 0 is the addition re
ecting the pres-

ence of the logarithmic factor. The total energy of the

system therewith is a nonanalytic function of the order

parameter, and the energy series expansion in terms of

its powers is not possible.

In the Bose case the single excitations do not reduce

to PCSs but to the particles themselves, and the delo-

calization parameter reduces to the density of the Bose{

Einstein condensate. An important distinction of the de-

veloped approach from the standard theory [42] results,

as in the case of fermions, from the dependence of the

e�ective interaction on the system spectrum. In partic-

ular, at W ! 0 it assumes a diverging nature. Another

feature consists in the fact that the delocalization pro-

cess is realized by the mechanism of the �rst order phase

transition.

Description of the collective excitations requires their

self{consistent consideration along with single ones. The

hydrodynamic behaviour of the system therewith is pre-

sented as the result of interference of the condensate and


uctuation components. For fermions, the former cor-

responds to the PCS ensemble, the latter describes the

quantum di�usion process. Interference of these compo-

nents results in appearance of the reactive mode corre-

sponding to the oscillations of the density of extended

fermions (zero{sound). In the Bose case delocalization

brings about the �rst sound relaxation which results, as

the level scattering decreases, in the pure dissipative be-

haviour of the quantum 
uid. In addition, the mode of

oscillations of the density of extended bosons (second

sound) reveals itself.
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APPENDIX [53]

As is known, the choice of a speci�c kind of bell-shaped

distribution P (") does not in
uence the qualitative pic-

ture of localization. So, use was made of the Anderson

step-like dependence, Gaussian distribution, Lorentzian

(Lloyd model), etc [44]. For reasons of convenience only

we, therefore, have the right to adopt the quasi{Gibbs

distribution

P (") =

1

W

exp

�

�

2j"� �"j

W

�

; (A.1)

symmetrized about the mean energy �" and attaining a

width W .

The formal convenience of such a choice is associated

with the fact that it o�ers possibilities of application of

the standard quantum statistics techniques for the ther-

modynamic system with a temperature W=2. So, for the

distribution function �

l

=




�

+

l

�

l

�

of elementary excita-

tions with energy �

l

in the regular way we obtain

�

l

= [exp(2�

l

=W )� 1]

�1

; (A.2)

where the upper sign corresponds to the Fermi statistics,

the lower one | to the Bose excitations. AtW = 0, when

the dependence (A.1) assumes the form P (") = �("� �")

realized is the ground state in which the elementary ex-

citations are not present (�

l

= 0). At small valuesW , the

dependence (A.2) takes the form of the Boltzmann distri-

bution �

l

' exp(�2�

l

=W ). As the scatteringW continues

to grow, the type of statistics is beginning to take e�ect.
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So, the number of Fermi elementary excitations tends,

at W � �

l

, to the value of �

l

= 1=2, then as in the Bose

case an inde�nite accumulation by the law �

l

' W=2�

l

takes place.

In addition to the safety reasons, the arguments of

a fundamental character can be advanced in favour of

the quasi{Gibbs distribution (A.1). The exponential dis-

tribution of such a type is truly realized not only for

the thermodynamic systems but for the nonequilibrium

ones also (including the strong nonequilibrium systems),

provided that they are in the steady state (i.e., the dis-

tribution function does not depend on time) [45]. For

the equilibrium case under the exponent curve, there is

an energy divided by temperature. For the steady{state

system, there is a synergetic potential divided by the

intensity of the noise determining the degree of nonequi-

librium.

Since the Anderson model is compatible with the

zero temperature [1], the level distribution �xed as a

result of the disordered system quenching remains un-

changed, and the system under discussion is stationary.

Consequently, its distribution function is described by

the exponential dependence (A.1) where the exponent

numerator approximates the synergetic potential, and

the denominator de�nes the intensity of the noise in

the nonequilibrium system �xed due to the quenching

(quenched disorder).
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SAMOUZGOD�ENA TEORI� DELOKALIZACIÕ KVANTOVOÕ QASTKI U

VIPADKOVOMU POLI

O. I. Ol
msko�

Sums~ki� der�avni� universitet,

vul. Rims~kogo{Korsakova, 2, Sumi, UA{244007, UkraÝna

Na p�dstav� analizu konfi�uraci�nogo prostoru odnoqastkovoÝ sistemi pokazano, wo na�vnist~ kvantovoÝ

interferenciÝ privodit~ do efektivnoÝ vza
modiÝ obminnogo tipu. Zagartovani� bezlad podano za analogi
�

z termodinamiqnimi fl�ktuaci�mi, dl� �kih rol~ temperaturi vidigra
 pivxirina rozkidu rivniv qastki.

Dl� fermioniv u ramkah lokatornogo pidhodu Andersona pokazano, wo wilina v spektri odnoqastkovih

zbud�en~, zumovlena kondensaci
� par zv'�zanih vuzliv, viznaqa
 gustinu delokalizovanih staniv. Zna�-

dena ÝÝ zale�nist~ vid xirini rozkidu rivniv i zmiwenn� hempotenci�lu z centru zoni. Viznaqeno zakon

dispersiÝ kolektivnoÝ modi. Dl� zar�d�enih fermioniv vona ma
 zviqni� difuzi�ni� vigl�d, a dl� ne�-

tral~nih (kvantovi kristali) u dovgohvil~ovi� me�i z'�vl�
t~s� zvukova moda nul~ovih kolivan~ gustini

delokalizovanih fermioniv. Doslid�ena zale�nist~ xvidkosti nul~ovogo zvuku i harakternih znaqen~ �ogo

qastoti ta hvil~ovogo qisla vid temperaturi � parametra kvantovoÝ dilataciÝ. Dl� bozevs~kogo vipadku vi-

znaqeno zale�nist~ gustini kondensatu delokalizovanih staniv � efektivnoÝ vza
modiÝ vid xirini rozkidu

rivniv W . Pokazano, wo kolektivni zbud�enn� bozoniv zvod�t~s� do perxogo zvuku, �ki� zi zmenxenn�m W

transformu
t~s� v qisto disipativnu modu, i drugogo zvuku, xvidkist~ �kogo kritiqnim qinom zale�it~

vid W .
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