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Attenuation of the acoustic wave which is polarized and propagates along the normal to the

layer of the quasi{two{dimensional conductor in su�ciently strong magnetic �elds, when the elec-

tron radius is much smaller than the sound wavelength, i.e. kr � 1, is investigated theoretically.

The electroacoustic coe�cients strongly depend on the orientation of the magnetic �eld. For certain

values of the angle between the direction of the magnetic �eld and a normal to the layer, an anoma-

lous acoustic transparency occurs. The role of the Fermi{liquid interaction between conduction

electrons on the acoustic transparency e�ect is studied.

Key words: quasi-two-dimensional conductor, acoustic wave, Fermi{liquid interaction, acoustic

transparency.
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In quasi-two-dimensional conductors, a number of spe-

ci�c e�ects take place due to a sharp anisotropy of charge

carriers velocity v on the Fermi surface [1, 2].

An analysis of acoustic waves propagating in metals

in a magnetic �eld resulted in successfully solving the

inverse problem of reconstructing the electron energy

spectrum from experimental data which was formulated

by I. M. Lifshits. The concept of quasiparticles, viz.,

elementary excitations above the ground state of con-

densed media, is undoubtedly e�ective in the study of

physical properties of various conductors, including low{

dimensional ones.

Evidently, sharp anisotropy of the electrical conduc-

tivity is connected with the anisotropy of charge carriers

velocity v = @"=@p on the Fermi surface "(p) = "

F

, i.e.

their energy

"(p) =

1

X

n=0

"

n

(p
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; p
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) cos

�

anp

z

�h

�

(1)

is weakly dependent on the quasi{momentum projection

p

z

= pn. The Fermi surface of such conductors is a

mildly corrugated cylinder or a system of weakly cor-

rugated cylinders and strongly stretched cavities in the

momentum space.

Here, a is the separation between the layers, h = 2��h

is Planck's constant. The maximum value of the func-

tion "

1

(p

x

; p

y

) on the Fermi surface is �"

F

� "

F

, and

the maximum values of "

n

(p

x

; p

y

) with n � 2 are even

smaller.

The elementary excitations in the conductors form a

Fermi liquid, and their energy spectrum is determined by

the distribution function for quasiparticles. As a result,

the response of the electron system in solids to an exter-

nal perturbation depends essentially on the correlation

functions which describe the electron{electron interac-

tion.

The analysis of the galvanomagnetic phenomena when

the charge carriers are assumed to form a Fermi{gas

without concretizing the electron energy spectrum, is

equivalent to the consideration of the problem in Fermi{

liquid theory.

The inclusion of the Fermi{liquid interaction of charge

carriers leads to a renormalization of kinetic coe�cients

calculated under the assumption that conduction elec-

trons form a Fermi gas.

The current interest in low{dimensional structures is

mainly due to the need in new superconducting mate-

rials. However, the speci�c properties of such supercon-

ductors in the normal (nonsuperconducting) state can

undoubtedly be used in various �elds of acoustoelectron-

ics.

In the case of a small deformation of crystal lattice,

including the Fermi{liquid e�ects, the energy of elemen-

tary excitations has the form

"(p; r; t) = "

0

(p) + �

ij

(p)u

ij

+ 	(p; r; t); (2)

where "

0

(p) is the charge carriers energy in undeformed

crystal in the gas approximation, u

ij

= @u

i

=@x

j

is the

strain tensor of the crystal, u the displacement of ions,

and �

ij

(p) the deformation potential tensor. The last

term in this formula takes into account the correlation

e�ects associated with electron{electron interaction

	(p; r; t) =

2

(2��h)

3

Z

�(p; p

0

)�f(p

0

; r; t)d

3

p: (3)

Here �f = f(p; r; t)� f

0

("

0

) is the nonequilibrium cor-

rection to the equilibrium Fermi distribution function

f

0

("

0

) for charge carriers in the undeformed conductor.

The charge carrier distribution function f(p; r; t) re-

quired for calculating electroacoustic coe�cients can be
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found from the kinetic Boltzmann equation
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where W

col

ffg is the collision integral which will be

taken into account below in the �{approximation, i.e.,

W

col

ffg = [f

0

(") � f ]=� ; � = l=v is the mean free time

for charge carriers, v their velocity, and E andH are the

electric and magnetic �eld.

The equation of charge carriers motion in this case has

the form

dp

dt

= eE + e�

0

[v �H]�

@�"

@r

(5)

where

�" = (�

ij

(p)�

e

�

ij

)u

ij

+ 	(p; r; t) �

e

	(r; t) (6)

is the renormalization of the charge carriers energy spec-

trum, and the bar over a symbol indicates the averaging

over the Fermi surface

eg = hgi=h1i : (7)

We assume that the wave is monochromatic with the fre-

quency ! so that the di�erentiation with respect to time

is equivalent to the multiplication of the functions being

di�erentiated by { i!.

In the linear approximation in a weak perturbation of

conduction electrons under the action of deformation of

the crystal the kinetic equation takes the form
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where the notations are

e
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:

Here t

H

is the time of the charge carriers motion in the

magnetic �eld.

Sound attenuation rate can be obtained by means of

the solution of the elasticity theory equation for the ionic

displacement u:

�!

2
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i
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ijlm

@u

lm

@x

j

+ F

i

; (9)

where % and �

ijlm

are density and elastic tensor of the

crystal. The force exerted by the electrons on the vibrat-

ing lattice in the case of small deformations has the form

F

i

=
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and the electric current density j

i

can be represented as

follows:

j

i

= �

2

(2��h)

3
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i
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The electric �eld E accompanying the acoustic wave

must be de�ned with the help of Maxwell equations

�E+ i!�

0

j = 0 (12)

and the electroneutrality condition for the conductor,

which is equivalent to the continuity condition for the

current, i.e.

divj = 0: (13)

This system of equations in the most general form in

the case of small deformations for an arbitrary energy{

momentum relation for charge carriers was obtained by

Kontorovich [3].

Attenuation of longitudinally and transversally polar-

ized acoustic wave which propagates in the layer plane,

in the presence of external magnetic �eld when the ra-

dius of curvature of the charge carrier trajectory is much

smaller than the mean free path, but considerably larger

than the acoustic wavelength has been investigated the-

oretically [4, 5].

In the present work we investigate an acoustic wave

which propagates along the normal to the layer of the

quasi-two-dimensional conductor. We direct the z{axis

along the wave vector k = f0; 0; kg. The solution of the

kinetic equation in Fourier representation is given by

�(k) =

^

R

n

e

e

E

j

(k) v

j

+k!�

jz

u

j

(k)�i!

�

	(k;p)�

e

	(k)

�

o

;

(14)

where

^

Rg =

t

Z

�1

dt

1

g(t

1

) expfik[z(t

1

)� z(t)] + �̂(t

1

� t)g

is the resolvent of Eq. (8) which allows us to determine

the function 	(k; p) with the help of relation (3).

The function 	(k; p; t) satis�es the integral equation
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The Landau correlation function �(p; p
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) can be expanded in the complete set of orthonormal functions �
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For brevity of computations only, we can limit ourselves to the �rst two functions �
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n

(p) with n > 2 are equal to zero.

So, using equation (14) we obtain the following expression for the integral equation (15):
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The solution of this equation can be represented as follows:
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where the vectors �; � and the scalars �
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Using equations (14) and (18), it is convenient to represent the quantities j

i

(k) = hev

i

�(k)i and h�(k)�

iz

i, which

characterize the response of the electron system to the perturbation caused by the acoustic wave, in the form

j

i

(k) = �
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(k)

e

E

j
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ij
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j
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where the Fourier transforms of the electrical conductivity tensor �

ij

(k) and electroacoustic tensor a

ij

(k), b
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(k) and

c
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(k) are described by the following expressions:
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a

ij

(k) = e

n

hv

i

^

R�

jz

i � i!�

1

hv

i

^

R�

1

i�

j

� i!�

2

hv

i

^

R�

2

i �

j

o

;

b

ij

(k) = e

n

h�

iz

^

Rv

j

i � i!�

1

h�

iz

^

R�

1

i�

j

� i!�

2

h�

iz

^

R�

2

i �

j

o

;

c

ij

(k) =

n

h�

iz

^

R�

jz

i � i!�

1

h�

iz

^

R�

1

i�

j

� i!�

2

h�

iz

^

R�

2

i �

j

o

: (21)

For kr� 1 electroacoustic coe�cients strongly depend on the orientation of the magnetic �eld and retaining only

the �rst term in the expansion in kr� 1 of the resolvent
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one can easily see that the functions �
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In the main approximation in the small parameters kr � 1 and 
 � �̂=
 � 1, electroacoustic coe�cients �
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and c
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(0) take the form
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where

�g =

1

T

T

Z

0

dt g(t) :

The magnetic �eld H = f0; H sin �; H cos �g is per-

pendicular to x{axis so that v

x

= 0 and the components

of the electrical conductivity tensor with one or both in-

dices x are equal to zero.

The dispersion equation for an acoustic transversally

polarized wave propagating along the normal to the layer

in a magnetic �eldH = f0; H sin �; H cos �g assumes the

form

�

e�

yy
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k

2

i!�

0
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�

!

2

% � k

2

%s

2

`

+ ik

2

! c

zz

(0)

�

= 0; (25)

s

2

`
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�

zzzz

%

; e�

��

= �

��

� �

�z

�

z�

�

zz

which excludes the interaction between the electromag-

netic and acoustic waves.

One of the roots of the dispersion equation (25) close

to !=s

`

determines the attenuation length for the acous-

tic wave and the renormalization of its velocity due to

the interaction with conduction electrons. Such renor-

malizations are normally insigni�cant, and the asymp-

totic expression for k

1

for small k

1

= k � !=s

`

has the

form

k

1

'

ik

2

2%s

`

c

zz

(0)

jk=

!

s

`

: (26)

The electroacoustic coe�cient c

zz

(0) has been calculated

in the case of the simplest energy{momentum relation for

charge carriers in an unperturbed crystal, i.e.,

"(p) =

p

2

x

+ p

2

y

2m

�

+ �

�h

a

v

0

cos

ap

z

�h

; (27)

248



ABOUT THE ROLE OF THE FERMI{LIQUID EFFECTS ON THE ACOUSTIC TRANSPARENCY : : :

and taking into account that the magnetic �eld is in yz

plane so that

p

z

=

p

H

cos �

� p

y

tan�: (28)

When � = �

c

the electroacoustic coe�cient c

zz

(0) goes to

zero, and for tan� � 1 these zeros are repeated with the

period �(tan�) =

2��h

D

p

, where D

p

is the extremal diame-

ter of the Fermi surface along the axis p

y

. The condition

tan� � 1 allows calculations to be done by using the

stationary phase method.

We also assume for brevity, that each section of the

Fermi surface by the plane p

H

= const contains only two

stationary{phase points at which kv(t

1;2

) = !.

To an accuracy to terms of the order �

2

we obtain the

following expression for k

1

k
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=

i!

2
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o
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where the term

L=
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1

1+�
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�

�

1
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�
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1

i

D

�

�

1
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H
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EhD

�

1
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H
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E
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i!

�
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1

cos
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H
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(30)

determines the contribution of Fermi{liquid interaction

between the charge carriers.

The imaginary part of the root of the dispersion equa-

tion k

1

determines the coe�cient of absorption of acous-

tic energy in the conductor and the real part describes

the renormalization of the velocity of sound.

The inclusion of the next term which is linear in the

small parameter kr � 1 gives only a small correction in

k

1

.

The result (29) shows that the attenuation length of

the acoustic wave polarized along the normal is �

�2

times

that for the wave polarized in the layer plane [5].

One can easily see that in strong magnetic �elds when

the electron path between two points of a stationary

phase changes by half the wavelength, i.e.,

aD

p

tan�

�h

= �

�

2n�

1

2

�

the conductor becomes transparent for the acoustic wave.

In that case the next terms in the expansions in the

small parameters kr; 
 � 1 should be taken into account

and the absorption coe�cient for the acoustic wave ob-

tains the form

�

tra:

= �

2

�

0

�

a

1




2

+ a

2

(kr)

2

�

;

where a

1

and a

2

are functions of �

1

and �

2

respectively,

and �

0

coincides in order of magnitude with the absorp-

tion coe�cient in zero magnetic �eld.

The maxima of the absorption coe�cient are deter-

mined with the conditions

aD

p

tan�

�h

= �

�

2n+

1

2

�

:

The conditions of maximum attenuation of acoustic

wave energy as well as the conditions of acoustic trans-

parency are periodically repeated which allows to deter-

mine the diameter D

p

of the Fermi surface.

The inclusion of the Fermi{liquid interaction of charge

carriers has a signi�cant in
uence on the form of the

resonance curves. This interaction does not destroy the

conditions for the maximum attenuation of the sound

energy, as well as those for acoustic transparency.
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