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The isotropic random walk of a particle with a constant speed is considered in the d-dimensional

space. This process i1s described by the kinetic equation which has explicit solutions in terms of
quadratures or special functions only in the cases d = 1 and 2. For d > 2, the two reduced
forms of the equation are used: the telegraph equation and the diffusion equation. The latter is

usually considered as a rougher approximation than the telegraph one. The numerical investigations
performed in this article show that actually the situation is diametrically opposed: for d > 2 the

simple diffusion result turns out to be closer to the exact one than the more complex solution of the

telegraph equation. The results are applicable to surface transport and volume transport problem

and can be useful for describing the chaotic dynamics of a system in terms of random walks in the

phase space.
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I. INTRODUCTION

As is noted in [1], the telegraph equation with the di-
mensionless time ¢ having the form

Of of  L0°f
T (1)

was written down by Lord Kelvin in connection with the
first transatlantic submarine telephone cable [2]. Then
it was revealed that Eq. (1) exactly describes a one—
dimensional walk of a particle with a constant speed
and with the random free path distributed according
to the exponential law [3,4]. Moreover, the telegraph
equation describes the time—dependent distribution of
one of the coordinates of a particle walking isotropi-
cally in a three-dimensional space [5-7] but this time
it gives an approximate solution of the problem known
as Pj—approximation [8]. In this case, Eq. (1) is often
regarded as a better approximation than the diffusion
equation [9,10]

af 0% f
Ezl/zw. (2)

It is really so in the one-dimensional case when Eq. (1)
is fully equivalent to the Boltzman equation exactly de-
scribing the distribution of a walking particle.

If the particle starts its walk from the origin = 0 at
the moment ¢ = 0, then the distribution f(x,t) given by
the solution of Eq. (1) is different from zero in the do-
main —vt < x < vt broadening linearly with time. The
z = zvt are points of the diffusion ”"wave” front beyond

f(z,t) = 0 because the particle with the speed of a free
motion being equal to v can not reach the point « until
t> Jz|/v.

However, when the dimension d > 1 the situa-
tion changes. Now v means root-mean-square projection
V2 of the velocity V on the z—axis [5] and
Eq. (1) gives the solution equal to zero beyond the inter-
val (—vt, vt), while in reality the particle may be revealed
in the wider domain (—vt, vt), v = [V|. The two results
lead to the natural question: how accurate i1s the tele-
graph approximation (1) inside the interval as compared
with the diffusion approximation (2)? The aim of this
article 1s to answer the question.

v =

II. THE PROBLEM STATEMENT

Let us define the random walk problem with expo-
nential pausing time more exactly. Some particle walk-
ing in the d-dimensional space with the constant speed
v = 1 starts its motion from the origin of coordinates at
the time ¢ = 0 in random direction distributed isotropi-
cally over the whole solid angle so that the z—projection
of the velocity has the probability density Wy(v,) (see
App. A). The random time T up to the next scattering
is distributed according to the density

pr(t) =" 0<t< oo

As a result of the collision, the particle changes its mo-
tion direction and the new direction is isotropically dis-
tributed again independently of the previous one; then
the process is repeated.

*This work is partially supported by Russian Foundation for Basic Research (grants 00-01-00284 and 00-02-17507).
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Let X (t) be a random value of one of the coordinates
of the walking particle at the time ¢ under condition

X (0) =0.
According to the law of total probability
Prob{z < X(t) <  + dx}

=Prob{z < X(t)<x+dx | T >t}Prob{T >t}

+Prob{z < X(t) < x4+ dx, T < t}. (3)

The first conditional probability describes the unscat-
tered particle (X (1) = X (¢) = V,t). Tt is connected to
the probability density Wy (v,) via relation

Prob{z < X(t) <z +dx | T >t}

= Prob{z/t < XO 1)/t < 2/t + dx/t} = Wa(z/t)dz/t.

Taking into account that

Prob{T >t} = /e_TdT =et

¢
and passing to distribution densities
pa(z,t) = Prob{z < X(¢) <  + dz}/dz,

PP (@, 1) = Prob{z < XO(t) < & + da}/d

= e " Walz/t)/t (4)
we rewrite Eq. (3) in the form

pa(e,t) = pi (z, 1) + Salw,1). (5)

Here, S4(x,1) is the collision integral the explicit expres-
sion for which can be obtained regarding X (¢) as the
sum X%(T) 4+ X(t — T) of two independent (by fixed
T < t) random variables with the densities Wy(x/T)/T
and pq(z,t —T) correspondingly. Convoluting the densi-
ties and averaging over T leads to the following expres-
sion:

Sa(z,t) :/dr/d&’e_T[Wd(E’/T)/T]pd(x—5,15—7'). (6)

Collecting (4)—(6) we arrive at the integral kinetic equa-
tion being the basis for further analysis:

pal, 1) = p{(,1)
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t T

+ / dr / d¢ p0(€, Ppale — €.t — 7). (7)
0 -7
III. REDUCED EQUATIONS

It is convenient for our purposes to rewrite equation
(7) in the Fourier-Laplace space:

Balk, A) = 5y (k, N1+ pa(k, A)], (8)
where
[e%e) t
palk,A) = /dt e_M/dx e, ).
0 s

Equation (8) readily yields

Y (k,N)

Palk,n) = L A
alk Y 1 5Ok, \)

The Fourier—Laplace transform of the unscattered par-
ticle distribution is reduced to the form

oQ

/6_(>\+1)q/kV~Vd(Q) dq (9)
0

ﬁElO)(k’ /\) =

o =

with

1

Walq) = 2/ Wa(vz) cos(quy) dug

=247710(d/2) Jasa-1(g)g" = (10)

(see (A.9)). Substituting (10) into (9) gives
Py (k) = F(L/2,15d/2 =k /(A+ 1))/ (A + 1), (11)
where

e 1 d\ = L(1/2+m), .
F(1/2,1;d/2;—z) = ﬁr (2) mZ::O Tz m)(—z)
is a hypergeometrical function [11]. In particular

5O (ko A) = _ A+l 19

pl(’) (A+1)2+k2’ ( )
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TAL(% W S—

pe(hA) A+ D24k

_ 1 k

Pk, 2) = EarCtg/\—-pl’

_ 2

7 (k) = —
A+ D)+ VOAF D)2+ k

IV. FROM THE TELEGRAPH TO THE
DIFFUSION EQUATION

It is readily seen that in the one—dimensional case the
substitution of (12) in (8) leads to the equation

(A + A+ k)pr(k,A) = A+ 1. (13)

Let g®)(x,1) be the solution of the telegraph equation
under initial conditions

9" (2,0) = §(z)

and
[0g%) (,1))9t]i=0 = 0.

Explicit expressions for g(”)(x,t) and its moments are
given in Appendix B. The Fourier-Laplace transform of
g (x,t) obeys the equation

A2+ X+ 23 (ke N) = A+ 1, (14)
so the comparison of (13) with (14) yields

p1(e,t) = g(l)(x,t).

Thus, in the one—dimensional case the kinetic equation
(7) has exactly the same solution as the telegraph equa-
tion (1), they both are strictly equivalent.

In a space with d > 1, the strict equivalence does not
take place any more. Using the expansion of the function

1/F(1/2,1;d/2,—z) in terms of z:

1

F(1/2,1;d/2;—z) ~ =2/

z— 0,

and setting this into (11) yields the asymptotic relation

A+1

~(0) N
Dy (kA A+ 1)2+k2/d’

k—0

and then

A2+ A+ k2 /)T (R, A) = A4 1.

This is the Fourier—-Laplace transform of the equation

32p§(x,t) 3p§(x,t)
at? ot
1321)5(1‘,15)
i A (15)

with the condition

p§($’ 0) = (5(1‘), [3p§(l‘,t)/3t]t:0 =0,

where p? (z,t) denotes solution of the telegraph equation.
So

py (e, 1) = g") (x,1), (16)
where g (z,1) is given by (B1) and

v=1/Vd. (17)

According to the Tauberian theorem [12] only the re-
gion of small A plays an essential role in forming the
solution of (15) at a large time. As a result we have

/\ﬁg) (k’ /\) = _(kz/d)ﬁg)(k’ /\) +1

which is nothing but the Fourier-Laplace transform of
the ordinary diffusion equation

opL (z,1)

_ 1 9pP(xt)
ot T d

2 ) pg)($,0) = (5(l‘) (18)

with the solution

P (x,1) = exp{—z?/(4t/d)}. (19)

drt/d

V. ANALYTICAL SOLUTIONS

Three types of equations describing the process of the
random walker with exponential pausing time are in-
troduced above: approximate the diffusion equation (18)
with the solution (19), the telegraph equation (15) that is
exact for d = 1, approximate for d > 2 and that has solu-
tion (16), and the kinetic equation (7) exactly describing
the process for all d. We consider here its solution.

As we saw above, in the one—dimensional case
p1(e,t) = g(l)(x,t).
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In the two—dimensional case the distribution density
pa(x,t) can be expressed through the two-variate den-
sity pa(z,y,t) as follows

oQ

pa(z,t) = / pa(z,y,t) dy. (20)

The density ps(z,y,t) is found in [13] and has the form

d(r—1)

2nr

pa(z,y,t) = e [ (21)

1
+ ———ex ( tz—rz)Ht—r],
2m/1?2 — r? P ( )
where r = /22 + y* and

t<0

0,
H(t):{l, >0

is the Heaviside function. Substitution of (21) into (20)
yields

pa(a,t) = %e‘t (22)

1 Vii—z . ﬁ2—l‘2—§2d€
it | e

In the three-dimensional case the density ps(z,t) has a

Mmag (A)

where (see (A.10))

771(2%)(/\) = Q/dt e_(>‘+1)tt2k~/vide(vx)dvx

0 0

In particular

2

7712(/\) = m,

form including a double integral of an oscillating com-
plex function (see formula (17) from section 7.4 of book
[8]) and for this reason it is more difficult for calcula-
tions. It is more convenient to use the moment method
well developed in the transport theory.

VI. SPATIAL MOMENTS METHOD

The spatial moment of the order 2k, k = 0,1,2,...1s
defined by the integral

t t
may (1) I/l‘kad(l‘,t)dl‘I Q/kapd(x,t)dx.
It 0

The moments of odd orders are equal to zero because of
the symmetry. It follows from (7) that the moments obey
the integral equation

A ¢
2k
mag (1) = m(z(;) (t) + Z (21) /m(z?)(r)mz(k_l)(t — T)dr.
=0 0

Using the Laplace transformation

oQ

mak(\) = /e‘“m%(t)dt

0

we arrive at the following recurrent relation

T2k 4 )T/ (k +1/2)
T VAT + A (A )

(T2) + 24)d + 48

) = B ERO 1)

and so on. On inverting the transforms by means of the residue theorem one obtains the moments ma (¢). In particular
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mo(t):1,
2 —t
ma(t) = Sft—1+e7'], (23)
= 12 6(4—d)—12 d+ 2)t?
m4(¢)—m{(—)— t+ (d+2)t

— [6(4—d)—6(d—2)t —2(d—1)t*]e”"} .

The moments ms(t) and m4(t) conform to (r?) and (r?)
obtained in [1] (see formulas (29) and (35) there) because

mak (t) = (r*F)(V)a.

It is convenient to pass from the x—distribution density
pa(z,t) to the & = z/t-distribution density

with the moments
1
[ €eatet) e = )
-1

We use the moments for the reconstruction of the den-
sity (24) by means of a system of orthogonal on [—1,1]
polynomials f,, (), m =0,1,2,...M:

M

pal€, 1) m oM (€ ) = w(E 1) Y Con()fm(€). (25)

m=0
Here Cl, () is given by the expression

1

Conlt) = / Fon (E)pal€, 1) de (26)

-1

following from the orthogonality of fi, (&):

[ € 0 (€150(6) dE = G

Substituting

fm(g) :a0+a1€+~~~+am€m

into (26) one can express C, (t) through the moments ji,
and reconstruct ¢4(£,1) by Eq. (25) (notice that g, =0
for the odd values of m).

Tt is known that the closer the weight function w(£) to
the sought function of £ the more effective the moment
method is, 1.e. a lesser number of moments is needed for

the reconstruction of the function. To raise the effective-
ness we separate the time—axis into the domains: (0,¢)
and (%, 00), where t* is of the order 1, and use different
polynomials in different domains.

At small ¢, the unscattered particles dominate and ac-
cording to (4)

pa(&,t) ~ Wa(€)

T(d/2)
(

I e et S _ ¢2N(d-3)/2
vArd-n) ) =2

bl

Therefore, it is reasonable to take here the Gegenbauer
(ultraspherical) polynomials

[m/2]
1 Ta+m—k) _
(@) - 1)k m—2k
that have the weight function
w(&’) — (1 _62)04—1/2.

The symbol [m/2] denotes an integer part of m/2. As a
result we get for ¢ < ¢*

() = (1-)2 N 0t G(E),  (27)

where
Con(l) mli(m+a) T(a)
m2t=2« T(m+ 2a)
[m/2]
Tla+m—4Fk)_,,_
k m—2k
— 2 m—ak (t
k=0
and o« = d/2 — 1.
At large t the diffusion regime arises
wa(,1) ~ #6—5 /(2pa) (28)
’ V2T
Hence, the Hermitian polynomials
[n/2] . o meh) .
H,,(€) = m! 1) ="
(&) =m l;) R T TAT

are more appropriate here since their weight functions
are just (28). In this case

SME ) = eI S () mle)  (29)

2ro

m=0
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with

O.Zk

[m/2]
Cm(t) = Z (‘Ukmﬂm—zk(ﬂ

and

The results of our calculations of ¢4(&,t), d = 3,4,5,
by formula (27) for ¢t = 3 and by formula (29) for
t = 10,30 and 100 are presented in Figs. 1-4. The re-
sults of the telegraph approximation and of the diffusion
approximations are shown there too.

VII. CONCLUSION

What did we expect to see from the comparison? Re-
member that

i) the diffusion equation is derived from the tele-
graph equation omitting the term with the second time—
derivative (compare (15) with (18));

i7) like the kinetic solution the telegraph solution has
a diffusion front beyond which the walking particle can-
not appear, whereas the diffusion solution stretches up
to infinity at any time t;

i14) the second moment of the telegraph solution ex-
actly coincides with the kinetic solution at any time,
whereas the second diffusion moment differs from the ex-
act one and coincides with 1t only in asymptotic ¢ — oo

(see (23), (B.4) and (17));

iv) in the one-dimensional case (d = 1) the telegraph
equation gives the exact solution of the kinetic problem
whereas the diffusion equation stays approximate.

Thus it was natural to expect for d > 2 the telegraph
equation to give the results that are more exact, i.e.
closer to the solution of the kinetic equation than the
diffusion result.

However, the numerical results presented in Figs. 1-4
lead to quite opposite conclusion for d > 2. The solution
of the telegraph equation turns out to be farther from the
exact result than the solution of the diffusion equation.
The cause lies in the structure of the telegraph equa-
tion according to which the front of the distribution is
situated in the point 1/\/3 corresponding to the mean—
square—root velocity projection on the z—axis, whereas
the exact position of the front is ¢. Thus the higher the
dimension d the more the two positions differ.

To obtain an approximate solution closer to the exact
solution than diffusion approximation one have to use
Pn—approximations of higher orders (N > 1) which will
be investigated in our next works.
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Fig. 1. Distribution density ¢a4(&,t) = pa(t, t)t for differ-
ent t. Filled circles present the solution of the kinetic equation
(7) obtained by (22) for d = 2; the dashed lines are the so-
lution of the diffusion equation (18) and the solid lines show
the solution of the telegraph equation. The vertical arrows in-
dicate the position of the singularity in (16) coinciding with
the front positions.
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Fig. 2. Distribution density ¢a4(&,t) = pa(t, t)t for differ-
ent ¢. Filled circles present the solution of kinetic equation (7)
reconstructed from the moments po, iz, ..., o, for d = 3;
the dashed lines are the solution of the diffusion equation
(18) and the solid lines show the solution of the telegraph
equation. The vertical arrows indicate the position of the sin-

gularity in (16) coinciding with the front positions.
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APPENDIX A. CALCULATION OF Wy(v,)
AND (V7*),

The two known integrals

/2 F
/f(xz) dx = r2(d/2) /td‘lf(tz) dt (A1)
and
, 9 (d=1)/2
/f(a: Yh(ax) dx = 7F((d— 072)
<[ ant @) [t - (a2)

will be used below.
The distribution density pq(x) of the unit isotropic d—
dimensional vector 1s written as follows:

pa(x) = Cad(a® — 1), (A.3)

where 6(z) is the one—dimensional Dirac’s function and
C'y 1s a constant found from normalization

/pd(x) dx = 1.

R4

(A.4)

On substituting (A.3) in (A.4) and using (A.1) we obtain

I'(d/2)

Cy= pryp (A.5)
It 1s evident that for d =1
Wi(oe) = (1/2)B(vr — 1)+ 8(vs + 1)].
For d > 1 we calculate the distribution function
Fylvg) = /Wd(v/x) dvl,. (A.6)
-1
According to its definition
Falvg) = /pd(x)H(vx — ex) dx, (A7)

R4
where e 1s the unit vector directed along one of the axes.

Setting (A.3) with (A.5) into (A.7) and using (A.2) we
have got
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oQ

LU Ry

0

Fylvg) = (A.8)

1

x/é(r—l) (s

-1

— V(1= ) du,

F(d/2) / b _ =372 g,

-1

Differentiating (A.8) with respect to v, and taking into
account (A.6) and the relation

H(t)/dt = 3(1),

we get
Wter) = eGPy ag)

and

(V") N (YD) d/_21/2 2/1 (1 — 02)4=2/2 gy,

APPENDIX B. SOLUTION OF THE
TELEGRAPH EQUATION AND ITS MOMENTS

We denoted above by ¢(*)(x,t) the solution of the tele-
graph equation (1) satisfying the initial conditions

gV (2, 0) = d(x), [0g®) (, 1)/ 0t]i=0 = 0

and the conditions at infinity

lim ¢ )(l‘,t) =0,

|#]—= o0

lim [0g")(2,t)/0x] = 0.

|#]—= o0

The solution differs from zero only on the segment
[—vt, vt] where it has the form

gV (e 1) = %[5(93 —vt) +8(x + vt)]et/?

o [V =)
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L (V= xz/yz)/él)/\/tz - xz/yz} e~t2. (B.1)

Here Iy and I; stand for the Bessel functions of imagi-
nary argument:

(2/2)
= (=/2)" Zk'F /+1<:+1) (B:2)

Even moments

vt

m(zl,;) (t) =2 / x%g(”)(x,t) dx

—vt

can be calculated by means of (B.2) and of the integral

t

/(tZ _ ZZ)kZZn dz =

0

L(n+1/2)I(k+ 1)t1+2(k+n)
T(n+k+3/2) '

They have the form

miD () = ()22 (k4 1/2) L g /2(1/2)
+ Te—1/2(t/2)]/2. (B.3)
In particular
my) () =1,
my () = 2t — 1+ e~ 202, oo (BA)
m () = 12016 — 4t + 12 — 2(3 + 1)e~1].
At large ¢
v) 1 —z?/(4v%t)
9" (@, 1) ~ e (B.5)

v/t

and the moments (B.3) take the asymptotical form

. 9 2k
mf) (1) ~ ;3? Tk + 1/2)¢* (B.6)
In particular
mi” (1) ~ 2% (B.7)
and
m{ (1) ~ 120%°. (B.8)

The results (B.5)—(B.8) relate to the diffusive approxi-
mation based on the diffusion equation (2).
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MpoIeC OMMCAHUHI KIHETUYHUM PIBHAHHAM, L0 PO3B’A3YETHCA B TEPMIHAX KBaApaTyp UM CIEIAIbHUX OYHKINH

sgumre ipu d = 1 1a 2. [Ima d > 2 BUKOPHUCTOBYIOTBCA OBl CKOpOUeH! (bOPMH PIBHAHHA — TeserpadiHe PIBHAHHA

Ta piBHAHHA audys3ii. Hpyre 3 HEMX 3Bm4ailHO BBaxKaloTh TipmmM HabIMmKeHHAM, HDK mepime. [IpoBemeni dmc-

JIOBl JTOCJTIIXKEHHA HACIpaBll BKa3yIOTh Ha MPOTUJIEXKHY CHUTYalfio: mjs d > 2 mpoctuii pesyabrar audysiiiHoro

DIBHAHHSA BUABIAECTHCA OJIMZKYUM IO TOYHOTO PE3YJIbTATY, HIXK CKIIATHINWA pe3yTbTaT TeaerpadHOTo PIBHAHHLA.

OrpuMaH] pe3yabTaTh 3aCTOCOBaHI [0 3aJa4l MOBEPXHEBOro Ta 06’€MHOTO HepeHocy. BoHM mpumaTHi [ ommcy

XAO0TUYHOl JUHAMIKM CHCTEMH B TE€pMIHaX BHUIIAIKOBUX OJyKaHb y (pa3soBOMY IIPOCTOPI.
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