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The isotropi
 random walk of a parti
le with a 
onstant speed is 
onsidered in the d{dimensional

spa
e. This pro
ess is des
ribed by the kineti
 equation whi
h has expli
it solutions in terms of

quadratures or spe
ial fun
tions only in the 
ases d = 1 and 2. For d > 2, the two redu
ed

forms of the equation are used: the telegraph equation and the di�usion equation. The latter is

usually 
onsidered as a rougher approximation than the telegraph one. The numeri
al investigations

performed in this arti
le show that a
tually the situation is diametri
ally opposed: for d � 2 the

simple di�usion result turns out to be 
loser to the exa
t one than the more 
omplex solution of the

telegraph equation. The results are appli
able to surfa
e transport and volume transport problem

and 
an be useful for des
ribing the 
haoti
 dynami
s of a system in terms of random walks in the

phase spa
e.
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I. INTRODUCTION

As is noted in [1℄, the telegraph equation with the di-

mensionless time t having the form

�
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�t
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�x

2

(1)

was written down by Lord Kelvin in 
onne
tion with the

�rst transatlanti
 submarine telephone 
able [2℄. Then

it was revealed that Eq. (1) exa
tly des
ribes a one{

dimensional walk of a parti
le with a 
onstant speed

and with the random free path distributed a

ording

to the exponential law [3,4℄. Moreover, the telegraph

equation des
ribes the time{dependent distribution of

one of the 
oordinates of a parti
le walking isotropi-


ally in a three{dimensional spa
e [5{7℄ but this time

it gives an approximate solution of the problem known

as P

1

{approximation [8℄. In this 
ase, Eq. (1) is often

regarded as a better approximation than the di�usion

equation [9,10℄

�f

�t
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�
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f

�x

2

: (2)

It is really so in the one{dimensional 
ase when Eq. (1)

is fully equivalent to the Boltzman equation exa
tly de-

s
ribing the distribution of a walking parti
le.

If the parti
le starts its walk from the origin x = 0 at

the moment t = 0, then the distribution f(x; t) given by

the solution of Eq. (1) is di�erent from zero in the do-

main ��t < x < �t broadening linearly with time. The

x = ��t are points of the di�usion "wave" front beyond

f(x; t) = 0 be
ause the parti
le with the speed of a free

motion being equal to � 
an not rea
h the point x until

t � jxj=�.

However, when the dimension d > 1 the situa-

tion 
hanges. Now � means root-mean-square proje
tion

� =

p

V

2

x

of the velo
ity V on the x{axis [5℄ and

Eq. (1) gives the solution equal to zero beyond the inter-

val (��t; �t), while in reality the parti
le may be revealed

in the wider domain (�vt; vt), v = jVj. The two results

lead to the natural question: how a

urate is the tele-

graph approximation (1) inside the interval as 
ompared

with the di�usion approximation (2)? The aim of this

arti
le is to answer the question.

II. THE PROBLEM STATEMENT

Let us de�ne the random walk problem with expo-

nential pausing time more exa
tly. Some parti
le walk-

ing in the d{dimensional spa
e with the 
onstant speed

v = 1 starts its motion from the origin of 
oordinates at

the time t = 0 in random dire
tion distributed isotropi-


ally over the whole solid angle so that the x{proje
tion

of the velo
ity has the probability density W

d

(v

x

) (see

App. A). The random time T up to the next s
attering

is distributed a

ording to the density

p

T

(t) = e

�t

; 0 � t <1:

As a result of the 
ollision, the parti
le 
hanges its mo-

tion dire
tion and the new dire
tion is isotropi
ally dis-

tributed again independently of the previous one; then

the pro
ess is repeated.

�
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Let X(t) be a random value of one of the 
oordinates

of the walking parti
le at the time t under 
ondition

X(0) = 0:

A

ording to the law of total probability

Probfx � X(t) < x+ dxg

= Probfx � X(t) < x+ dx j T � tgProbfT � tg

+Probfx � X(t) < x+ dx; T < tg: (3)

The �rst 
onditional probability des
ribes the uns
at-

tered parti
le (X(t) = X

(0)

(t) = V

x

t). It is 
onne
ted to

the probability density W

d

(v

x

) via relation

Probfx � X(t) < x+ dx j T � tg

= Probfx=t � X

(0)

(t)=t < x=t+ dx=tg = W

d

(x=t)dx=t:

Taking into a

ount that

ProbfT � tg =

1

Z

t

e

��

d� = e

�t

and passing to distribution densities

p

d

(x; t) = Probfx � X(t) < x+ dxg=dx;

p

(0)

d

(x; t) = Probfx � X

(0)

(t) < x+ dxg=dx

= e

�t

W

d

(x=t)=t (4)

we rewrite Eq. (3) in the form

p

d

(x; t) = p

(0)

d

(x; t) + S

d

(x; t): (5)

Here, S

d

(x; t) is the 
ollision integral the expli
it expres-

sion for whi
h 
an be obtained regarding X(t) as the

sum X

0

(T ) + X(t � T ) of two independent (by �xed

T < t) random variables with the densities W

d

(x=T )=T

and p

d

(x; t�T ) 
orrespondingly. Convoluting the densi-

ties and averaging over T leads to the following expres-

sion:

S

d

(x; t) =

t

Z

0

d�

�

Z

��

d� e

��

[W

d

(�=� )=� ℄p

d

(x� �; t� � ): (6)

Colle
ting (4){(6) we arrive at the integral kineti
 equa-

tion being the basis for further analysis:

p

d

(x; t) = p

(0)

d

(x; t)

+

t

Z

0

d�

�

Z

��

d� p

(0)

d

(�; � )p

d

(x� �; t� � ): (7)

III. REDUCED EQUATIONS

It is 
onvenient for our purposes to rewrite equation

(7) in the Fourier{Lapla
e spa
e:

~p

d

(k; �) = ~p

(0)

d

(k; �)[1 + ~p

d

(k; �)℄; (8)

where

~p

d

(k; �) =

1

Z

0

dt e

��t

t

Z

�t

dx e

ikx

p

d

(x; t):

Equation (8) readily yields

~p

d

(k; �) =

~p

(0)

d

(k; �)

1� ~p

(0)

d

(k; �)

:

The Fourier{Lapla
e transform of the uns
attered par-

ti
le distribution is redu
ed to the form

~p

(0)

d

(k; �) =

1

k

1

Z

0

e

�(�+1)q=k

~

W

d

(q) dq (9)

with

~

W

d

(q) = 2

1

Z

0

W

d

(v

x

) 
os(qv

x

) dv

x

= 2

d=2�1

�(d=2)J

d=2�1

(q)q

1�d=2

(10)

(see (A.9)). Substituting (10) into (9) gives

~p

(0)

d

(k; �) = F (1=2; 1; d=2;�k

2

=(�+ 1)

2

)=(� + 1); (11)

where

F (1=2; 1; d=2;�z) =

1

p

�

�

�

d

2

�

1

X

m=0

�(1=2 +m)

�(d=2 +m)

(�z)

m

is a hypergeometri
al fun
tion [11℄. In parti
ular

~p

(0)

1

(k; �) =

� + 1

(�+ 1)

2

+ k

2

; (12)

372



TELEGRAPH EQUATION IN RANDOM WALK PROBLEM

~p

(0)

2

(k; �) =

1

p

(� + 1)

2

+ k

2

;

~p

(0)

3

(k; �) =

1

k

ar
tg

k

� + 1

;

~p

(0)

4

(k; �) =

2

(� + 1) +

p

(�+ 1)

2

+ k

2

:

IV. FROM THE TELEGRAPH TO THE

DIFFUSION EQUATION

It is readily seen that in the one{dimensional 
ase the

substitution of (12) in (8) leads to the equation

(�

2

+ �+ k

2

)~p

1

(k; �) = �+ 1: (13)

Let g

(�)

(x; t) be the solution of the telegraph equation

under initial 
onditions

g

(�)

(x; 0) = Æ(x)

and

[�g

(�)

(x; t)=�t℄

t=0

= 0:

Expli
it expressions for g

(�)

(x; t) and its moments are

given in Appendix B. The Fourier{Lapla
e transform of

g

(�)

(x; t) obeys the equation

(�

2

+ � + �

2

k

2

)~g

(�)

(k; �) = �+ 1; (14)

so the 
omparison of (13) with (14) yields

p

1

(x; t) = g

(1)

(x; t):

Thus, in the one{dimensional 
ase the kineti
 equation

(7) has exa
tly the same solution as the telegraph equa-

tion (1), they both are stri
tly equivalent.

In a spa
e with d > 1, the stri
t equivalen
e does not

take pla
e any more. Using the expansion of the fun
tion

1=F (1=2; 1; d=2;�z) in terms of z:

F (1=2; 1; d=2;�z)�

1

1� z=d

; z ! 0;

and setting this into (11) yields the asymptoti
 relation

~p

(0)

d

(k; �) �

� + 1

(� + 1)

2

+ k

2

=d

; k! 0

and then

(�

2

+ � + k

2

=d)~p

T

d

(k; �) = � + 1:

This is the Fourier{Lapla
e transform of the equation

�

2

p

T

d

(x; t)

�t

2

+

�p

T

d

(x; t)

�t

�

1

d

�

2

p

T

d

(x; t)

�x

2

= 0; t > 0 (15)

with the 
ondition

p

T

d

(x; 0) = Æ(x); [�p

T

d

(x; t)=�t℄

t=0

= 0;

where p

T

d

(x; t) denotes solution of the telegraph equation.

So

p

T

d

(x; t) = g

(�)

(x; t); (16)

where g

(�)

(x; t) is given by (B1) and

� = 1=

p

d: (17)

A

ording to the Tauberian theorem [12℄ only the re-

gion of small � plays an essential role in forming the

solution of (15) at a large time. As a result we have

�~p

D

d

(k; �) = �(k

2

=d)~p

D

d

(k; �) + 1

whi
h is nothing but the Fourier{Lapla
e transform of

the ordinary di�usion equation

�p

D

d

(x; t)

�t

=

1

d

�

2

p

D

d

(x; t)

�x

2

; p

D

d

(x; 0) = Æ(x) (18)

with the solution

p

D

d

(x; t) =

1

p

4�t=d

expf�x

2

=(4t=d)g: (19)

V. ANALYTICAL SOLUTIONS

Three types of equations des
ribing the pro
ess of the

random walker with exponential pausing time are in-

trodu
ed above: approximate the di�usion equation (18)

with the solution (19), the telegraph equation (15) that is

exa
t for d = 1, approximate for d � 2 and that has solu-

tion (16), and the kineti
 equation (7) exa
tly des
ribing

the pro
ess for all d. We 
onsider here its solution.

As we saw above, in the one{dimensional 
ase

p

1

(x; t) = g

(1)

(x; t):
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In the two{dimensional 
ase the distribution density

p

2

(x; t) 
an be expressed through the two{variate den-

sity p

2

(x; y; t) as follows

p

2

(x; t) =

1

Z

�1

p

2

(x; y; t) dy: (20)

The density p

2

(x; y; t) is found in [13℄ and has the form

p

2

(x; y; t) = e

�t

�

Æ(r � t)

2�r

(21)

+

1

2�

p

t

2

� r

2

exp

�

p

t

2

� r

2

�

H(t� r)

�

;

where r =

p

x

2

+ y

2

and

H(t) =

n

0; t < 0

1; t � 0

is the Heaviside fun
tion. Substitution of (21) into (20)

yields

p

2

(x; t) =

1

�

e

�t

(22)

�

2

6

4

1

p

t

2

� x

2

+

p

t

2

�x

2

Z

0

e

p

t

2

�x

2

��

2

d�

p

(t

2

� x

2

) � �

2

3

7

5

:

In the three{dimensional 
ase the density p

3

(x; t) has a

form in
luding a double integral of an os
illating 
om-

plex fun
tion (see formula (17) from se
tion 7.4 of book

[8℄) and for this reason it is more diÆ
ult for 
al
ula-

tions. It is more 
onvenient to use the moment method

well developed in the transport theory.

VI. SPATIAL MOMENTS METHOD

The spatial moment of the order 2k, k = 0; 1; 2; : : : is

de�ned by the integral

m

2k

(t) =

t

Z

�t

x

2k

p

d

(x; t)dx = 2

t

Z

0

x

2k

p

d

(x; t)dx:

The moments of odd orders are equal to zero be
ause of

the symmetry. It follows from (7) that the moments obey

the integral equation

m

2k

(t) = m

(0)

2k

(t) +

k

X

l=0

�

2k

2l

�

t

Z

0

m

(0)

2l

(� )m

2(k�l)

(t � � )d�:

Using the Lapla
e transformation

~m

2k

(�) =

1

Z

0

e

��t

m

2k

(t)dt

we arrive at the following re
urrent relation

~m

2k

(�) =

8

>

<

>

:

�

�1

; k = 0;

(�+1)

2

�

2

~m

(0)

2

(�) ; k = 1;

(�+1)

2

�

2

~m

(0)

2k

(�) +

�+1

�

P

k�1

l=1

�

2k

2l

�

m

(0)

2l

(�)m

2(k�l)

(�) ; k � 2;

where (see (A.10))

~m

(0)

2k

(�) = 2

1

Z

0

dt e

�(�+1)t

t

2k

�

1

Z

0

v

2k

x

W

d

(v

x

)dv

x

=

�(2k + 1)�(d=2)�(k + 1=2)

p

��(k + d=2)(�+ 1)

2k+1

:

In parti
ular

~m

2

(�) =

2

d�

2

(� + 1)

; ~m

4

(�) =

(72�+ 24)d+ 48

(2 + d)d

2

�

3

(�+ 1)

3

and so on. On inverting the transforms by means of the residue theorem one obtains the momentsm

2k

(t). In parti
ular

374



TELEGRAPH EQUATION IN RANDOM WALK PROBLEM

m

0

(t) = 1;

m

2

(t) =

2

d

[t� 1 + e

�t

℄; (23)

m

4

(t) =

12

(d+ 2)d

2

�

6(4� d)� 12t+ (d+ 2)t

2

� [6(4� d)� 6(d� 2)t � 2(d� 1)t

2

℄e

�t

	

:

The moments m

2

(t) and m

4

(t) 
onform to hr

2

i and hr

4

i

obtained in [1℄ (see formulas (29) and (35) there) be
ause

m

2k

(t) = hr

2k

ihV

2k

x

i

d

:

It is 
onvenient to pass from the x{distribution density

p

d

(x; t) to the � = x=t{distribution density

'

d

(�; t) � p

d

(t�; t)t; �1 � � � 1; (24)

with the moments

1

Z

�1

�

2k

'

d

(�; t) d� = �

2k

(t):

We use the moments for the re
onstru
tion of the den-

sity (24) by means of a system of orthogonal on [�1; 1℄

polynomials f

m

(�), m = 0; 1; 2; : : :M :

'

d

(�; t) � '

(M)

d

(�; t) = w(�; t)

M

X

m=0

C

m

(t)f

m

(�): (25)

Here C

m

(t) is given by the expression

C

m

(t) =

1

Z

�1

f

m

(�)'

d

(�; t) d� (26)

following from the orthogonality of f

m

(�):

1

Z

�1

w(�; t)f

m

(�)f

n

(�) d� = Æ

mn

:

Substituting

f

m

(�) = a

0

+ a

1

� + : : :+ a

m

�

m

into (26) one 
an express C

m

(t) through the moments �

m

and re
onstru
t '

d

(�; t) by Eq. (25) (noti
e that �

m

= 0

for the odd values of m).

It is known that the 
loser the weight fun
tion w(�) to

the sought fun
tion of � the more e�e
tive the moment

method is, i.e. a lesser number of moments is needed for

the re
onstru
tion of the fun
tion. To raise the e�e
tive-

ness we separate the time{axis into the domains: (0; t

�

)

and (t

�

;1), where t

�

is of the order 1, and use di�erent

polynomials in di�erent domains.

At small t, the uns
attered parti
les dominate and a
-


ording to (4)

'

d

(�; t) � W

d

(�)

=

�(d=2)

p

��((d� 1)=2)

(1� �

2

)

(d�3)=2

; d � 2:

Therefore, it is reasonable to take here the Gegenbauer

(ultraspheri
al) polynomials

G

(�)

m

(�) =

1

�(�)

[m=2℄

X

k=0

(�1)

k

�(�+m� k)

k!(m � 2k)!

(2�)

m�2k

that have the weight fun
tion

w(�) = (1� �

2

)

��1=2

:

The symbol [m=2℄ denotes an integer part of m=2. As a

result we get for t < t

�

'

(M)

d

(�; t) = (1� �

2

)

��1=2

M

X

m=0

C

m

(t)G

(�)

m

(�); (27)

where

C

m

(t) =

m!(m + �)

�2

1�2�

�(�)

�(m+ 2�)

�

[m=2℄

X

k=0

(�1)

k

�(�+m� k)

k!(m � 2k)!

2

m�2k

�

m�2k

(t)

and � = d=2� 1.

At large t the di�usion regime arises

'

d

(�; t) �

1

p

2��

2

e

��

2

=(2�

2

)

: (28)

Hen
e, the Hermitian polynomials

H

m

(�) = m!

[m=2℄

X

k=0

(�1)

k

�

�2(m�k)

k!2

k

(m � 2k)!

�

m�2k

are more appropriate here sin
e their weight fun
tions

are just (28). In this 
ase

'

(M)

d

(�; t) =

1

p

2��

e

�

�

2

2�

2

M

X

m=0

C

m

(t)H

m

(�) (29)
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with

C

m

(t) =

[m=2℄

X

k=0

(�1)

k

�

2k

2

k

k!(m� 2k)!

�

m�2k

(t)

and

�

2

= �

2

(t):

The results of our 
al
ulations of '

d

(�; t), d = 3; 4; 5,

by formula (27) for t = 3 and by formula (29) for

t = 10; 30 and 100 are presented in Figs. 1{4. The re-

sults of the telegraph approximation and of the di�usion

approximations are shown there too.

VII. CONCLUSION

What did we expe
t to see from the 
omparison? Re-

member that

i) the di�usion equation is derived from the tele-

graph equation omitting the term with the se
ond time{

derivative (
ompare (15) with (18));

ii) like the kineti
 solution the telegraph solution has

a di�usion front beyond whi
h the walking parti
le 
an-

not appear, whereas the di�usion solution stret
hes up

to in�nity at any time t;

iii) the se
ond moment of the telegraph solution ex-

a
tly 
oin
ides with the kineti
 solution at any time,

whereas the se
ond di�usion moment di�ers from the ex-

a
t one and 
oin
ides with it only in asymptoti
 t!1

(see (23), (B.4) and (17));

iv) in the one{dimensional 
ase (d = 1) the telegraph

equation gives the exa
t solution of the kineti
 problem

whereas the di�usion equation stays approximate.

Thus it was natural to expe
t for d � 2 the telegraph

equation to give the results that are more exa
t, i.e.


loser to the solution of the kineti
 equation than the

di�usion result.

However, the numeri
al results presented in Figs. 1{4

lead to quite opposite 
on
lusion for d > 2. The solution

of the telegraph equation turns out to be farther from the

exa
t result than the solution of the di�usion equation.

The 
ause lies in the stru
ture of the telegraph equa-

tion a

ording to whi
h the front of the distribution is

situated in the point 1=

p

d 
orresponding to the mean{

square{root velo
ity proje
tion on the x{axis, whereas

the exa
t position of the front is t. Thus the higher the

dimension d the more the two positions di�er.

To obtain an approximate solution 
loser to the exa
t

solution than di�usion approximation one have to use

P

N

{approximations of higher orders (N > 1) whi
h will

be investigated in our next works.

Fig. 1. Distribution density '

d

(�; t) = p

d

(t�; t)t for di�er-

ent t. Filled 
ir
les present the solution of the kineti
 equation

(7) obtained by (22) for d = 2; the dashed lines are the so-

lution of the di�usion equation (18) and the solid lines show

the solution of the telegraph equation. The verti
al arrows in-

di
ate the position of the singularity in (16) 
oin
iding with

the front positions.

Fig. 2. Distribution density '

d

(�; t) = p

d

(t�; t)t for di�er-

ent t. Filled 
ir
les present the solution of kineti
 equation (7)

re
onstru
ted from the moments �

0

; �

2

; : : : ; �

10

, for d = 3;

the dashed lines are the solution of the di�usion equation

(18) and the solid lines show the solution of the telegraph

equation. The verti
al arrows indi
ate the position of the sin-

gularity in (16) 
oin
iding with the front positions.
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Fig. 3. Same as Fig. 2 for d = 4.

Fig. 4. Same as Fig. 2 for d = 5.
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APPENDIX A. CALCULATION OF W

d

(v

x

)

AND hV

2k

x

i

d

The two known integrals

Z

R

d

f(x

2

) dx =

2�

d=2

�(d=2)

1

Z

0

t

d�1

f(t

2

) dt (A.1)

and

Z

R

d

f(x

2

)h(ax) dx =

2�

(d�1)=2

�((d� 1)=2)

�

1

Z

0

dtt

d�1

f(t

2

)

1

Z

�1

h(jajt�)(1� �

2

)

d�3

2

d� (A.2)

will be used below.

The distribution density p

d

(x) of the unit isotropi
 d{

dimensional ve
tor is written as follows:

p

d

(x) = C

d

Æ(x

2

� 1); (A.3)

where Æ(z) is the one{dimensional Dira
's fun
tion and

C

d

is a 
onstant found from normalization

Z

R

d

p

d

(x) dx = 1: (A.4)

On substituting (A.3) in (A.4) and using (A.1) we obtain

C

d

=

�(d=2)

�

d=2

: (A.5)

It is evident that for d = 1

W

1

(v

x

) = (1=2)[Æ(v

x

� 1) + Æ(v

x

+ 1)℄:

For d > 1 we 
al
ulate the distribution fun
tion

F

d

(v

x

) =

v

x

Z

�1

W

d

(v

0

x

) dv

0

x

: (A.6)

A

ording to its de�nition

F

d

(v

x

) =

Z

R

d

p

d

(x)H(v

x

� ex) dx; (A.7)

where e is the unit ve
tor dire
ted along one of the axes.

Setting (A.3) with (A.5) into (A.7) and using (A.2) we

have got
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F

d

(v

x

) =

�(d=2)

p

�� ((d� 1)=2)

1

Z

0

d� �

(d�1)=2

(A.8)

�

1

Z

�1

Æ(� � 1)H(v

x

�

p

��)(1 � �

2

)

(d�3)=2

dv

x

=

�(d=2)

p

�� ((d� 1)=2)

1

Z

�1

H(v

x

� �)(1� �

2

)

(d�3)=2

dv

x

:

Di�erentiating (A.8) with respe
t to v

x

and taking into

a

ount (A.6) and the relation

dH(t)=dt = Æ(t);

we get

W

d

(v

x

) =

�(d=2)

p

�� ((d� 1)=2)

(1� v

2

x

)

(d�3)=2

(A.9)

and

hV

2k

x

i

d

=

�(d=2)

p

�� ((d� 1)=2)

2

1

Z

0

v

2k

x

(1� v

2

x

)

(d�3)=2

dv

x

=

�(d=2)�(k+ 1=2)

p

��(k + d=2)

: (A.10)

APPENDIX B. SOLUTION OF THE

TELEGRAPH EQUATION AND ITS MOMENTS

We denoted above by g

(�)

(x; t) the solution of the tele-

graph equation (1) satisfying the initial 
onditions

g

(�)

(x; 0) = Æ(x); [�g

(�)

(x; t)=�t℄

t=0

= 0

and the 
onditions at in�nity

lim

jxj!1

g

(�)

(x; t) = 0;

lim

jxj!1

[�g

(�)

(x; t)=�x℄ = 0:

The solution di�ers from zero only on the segment

[��t; �t℄ where it has the form

g

(�)

(x; t) =

1

2

[Æ(x� �t) + Æ(x + �t)℄e

�t=2

+

1

4�

h

I

0

(

p

(t

2

� x

2

=�

2

)=4)

+tI

1

(

p

(t

2

� x

2

=�

2

)=4)

.

p

t

2

� x

2

=�

2

i

e

�t=2

: (B.1)

Here I

0

and I

1

stand for the Bessel fun
tions of imagi-

nary argument:

I

�

(z) = (z=2)

�

1

X

k=0

(z=2)

2k

k!�(�+ k + 1)

: (B.2)

Even moments

m

(�)

2k

(t) = 2

�t

Z

��t

x

2k

g

(�)

(x; t) dx


an be 
al
ulated by means of (B.2) and of the integral

t

Z

0

(t

2

� z

2

)

k

z

2n

dz =

�(n+ 1=2)�(k+ 1)

2�(n+ k + 3=2)

t

1+2(k+n)

:

They have the form

m

(�)

2k

(t) = (2�)

2k

t

k+1=2

e

�t=2

�(k + 1=2)[I

k+1=2

(t=2)

+ I

k�1=2

(t=2)℄=2: (B.3)

In parti
ular

m

(�)

0

(t) = 1;

m

(�)

2

(t) = 2�

2

[t� 1 + e

�t

℄ � 2�

2

t; t!1: (B.4)

m

(�)

4

(t) = 12�

4

[6� 4t+ t

2

� 2(3 + t)e

�t

℄:

At large t

g

(�)

(x; t) �

1

2�

p

�t

e

�x

2

=(4�

2

t)

(B.5)

and the moments (B.3) take the asymptoti
al form

m

(�)

2k

(t) �

(2�)

2k

p

�

�(k + 1=2)t

k

: (B.6)

In parti
ular

m

(�)

2

(t) � 2�

2

t (B.7)

and

m

(�)

4

(t) � 12�

4

t

2

: (B:8)

The results (B.5){(B.8) relate to the di�usive approxi-

mation based on the di�usion equation (2).
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TELEGRAFNE R�VN�NN� V ZADAQ� PRO VIPADKOV� BLUKANN�

V. V. Uqa�k�n, V. V. Sa
nko

Ul~�novs~ki� der�avni� un�versitet, �nstitut teoretiqnoÝ f�ziki,

Ul~�novs~k, 432700, Ros��

e-mail: u
haikin�sv.uven.ru

Rozgl�nuto �zotropne vipadkove blukann� qastinki z� stalo� xvidk�st� v d{vim�rnomu prostor�. Ce�

pro
es opisani� k�netiqnim r�vn�nn�m, wo rozv'�zu
t~s� v term�nah kvadratur qi spe
��l~nih funk
��

lixe pri d = 1 ta 2. Dl� d > 2 vikoristovu�t~s� dv� skoroqen� formi r�vn�nn� | telegrafne r�vn�nn�

ta r�vn�nn� difuz�Ý. Druge z nih zviqa�no vva�a�t~ g�rxim nabli�enn�m, n�� perxe. Proveden� qis-

lov� dosl�d�enn� naspravd� vkazu�t~ na protile�nu situa
��: dl� d � 2 prosti� rezul~tat difuz��nogo

r�vn�nn� vi�vl�
t~s� bli�qim do toqnogo rezul~tatu, n�� skladn�xi� rezul~tat telegrafnogo r�vn�nn�.

Otriman� rezul~tati zastosovan� do zadaq� poverhnevogo ta ob'
mnogo perenosu. Voni pridatn� dl� opisu

haotiqnoÝ dinam�ki sistemi v term�nah vipadkovih blukan~ u fazovomu prostor�.
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