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The dynamics of the expansion of the Universe and evolution of scalar perturbations are discussed
for the quintessential scalar fields () with the classical Lagrangian L = %Q;iQ‘i — U(Q) satisfying
the additional condition w = const or ¢2 = 0. Both quintessential fields are studied for the same
cosmological model. It is shown that the accelerated expansion of the Universe is caused by the
effect of the rolling down of the field to the minimum. At the early epoch the contribution to
dynamics of the quintessence with w = const is negligible (like that of the cosmological constant)
while the quintessence with ¢2 = 0 mimics dust matter. In the future a scalar field with ¢2 = 0 will
mimic the cosmological constant.

The systems of evolution equations for gauge-invariant perturbations of metric, matter and
quintessence have been analysed analytically for the early stage of the Universe life and numerically
up to the present epoch. It is shown that amplitudes of the adiabatic matter density perturbations
grow similarly in both models (likewise in the ACDM-model), but time dependences of different
amplitudes of quintessence perturbations are varied: gauge-invariant variables Df,Q) and DgQ) de-
cay from the initial constant value after the particle horizon entry while D(?) and V(? grow at
an early stage before the horizon entry and decay after that in the quintessence-dominated epoch
when the gravitational potential starts to decay so that at the current epoch they are approximately
two orders lower than the matter ones on supercluster scales. Therefore, on the subhorizon scales
quintessential scalar fields are smoothed out while the matter clusters.

It is also shown that both quintessential scalar fields suppress the growth of matter density
perturbations and the amplitude of gravitational potential. In these QCDM-models — unlike ACDM
ones — such a suppression is scale dependent and more visible for the quintessence with ¢2 = 0.
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I. INTRODUCTION

Cosmological observations of the last decade suggest
that the main part of the energy density of the Uni-
verse — more than 70% — belongs to the unknown
essence, called “dark energy”. Its cosmological mission
is to provide the accelerated expansion of the Universe,
revealed from exploration of SN Ia’s in distant gala-
xies and temperature fluctuation power spectrum of cos-
mic microwave background. The cosmological ACDM-
model, based on the Einstein equations with the cos-
mological constant (see [1,24,43] and references there-
in), describes very well almost the whole set of the ob-
servational data on the dynamics of expansion of the
Universe and formation of its large-scale structure. But
physical interpretation of the cosmological constant is
rather problematic [7,8, 34, 35,37, 42]. Therefore alter-
native approaches — new physical fields (classical scalar
field — quintessence, tachyon field, k-essence, phantom
field, quintom field), Chaplygin gas, gravity and gen-
eral relativity modifications, multidimensional gravity,
branes and others — are being thoroughly studied (see
reviews [6,8,11,19,33,35,37] as well as special issue of
Gen. Relativ. Gravit., 2008, v.40). Up till now none of
them has a crucial preferability from observational or
theoretical point of view. Therefore each of them must

be comprehensively studied. Here we restrict ourselves
to quintessential scalar fields with classical Lagrangian
L =Q.;Q"/2—U(Q) in the dark energy — matter dom-
inated Universe.

The quintessence model can be defined by setting the
appropriate potential U(Q) or equation of state (EoS)
parameter wg = pg/c?pg. There is a dozen or more
physically-motivated shapes of the potential U(Q): ex-
ponential, double exponential, exponential with inverse
power, power-law, etc. The dynamics of such scalar fields
has been discussed (see review [11]). The EoS param-
eter of dark energy completely defines the background
dynamics as well as the evolution of cosmological per-
turbations [21, 22, 28|. Since observational data on SN
Ta magnitude — redshift relation and cosmic microwave
anisotropy give relatively narrow ranges of dark energy
density and EoS parameter values, it looks quite attrac-
tive to establish the potential U(Q) using these data and
analyse the background dynamics and perturbative prop-
erties of such a scalar field which have not been studied
sufficiently.

In our previous papers we constructed the potentials
of scalar fields with classical and tachyonic Lagrangian
leading to the constant EoS parameter wg = const [40]
and analysed the background dynamics and perturba-
tive properties of such scalar fields [41]. It was shown

1902-1



B. NOVOSYADLYJ, O. SERGIJENKO

that cosmological model with cold dark matter and such
types of the scalar field (the QCDM-model) agrees slight-
ly better with the now accessible observable data than
the ACDM-model. But difference of quantitative merits
of appropriateness is not large enough to pick out one of
them at the confidence level of 1o. Since the degeneracies
between model parameters of dark energy and cosmolog-
ical parameters [16,20,26,28,47] exist for the background
dynamics, the complete analysis of linear density pertur-
bations in both dark matter and dark energy components
is important for the improvement of dark energy observa-
tional tests. Among a large number of free quintessence
parameters and unknown initial values of quintessence
perturbation modes there are few models for which the
evolution of perturbations has been studied. The gener-
al conclusion is that magnitudes of dark energy density
perturbations on scales smaller than horizon are essen-
tially lower than the corresponding magnitudes of matter
density ones. But the nature of their evolution depends
strongly on the scalar field model (its potential, time
variation of the EoS parameter, sound speed, etc.), ini-
tial conditions, scale of perturbations and gauge (see for
example [3,4,12-14,17,25,29,44]).

In this respect special attention should be paid to the
EoS parameter of dark energy wq, which can be constant
or varying in time. The temporal variation of the dark
energy EoS parameter is often presented by linear fitting
formula with two [10] or three [24] parameters to be esti-
mated. Other functional dependences of wg on the scale
factor or redshift can be found in [11,27,38|. Here we
study the parametrization of the equation of state, which
needs only one additional quantity with clear physical
meaning — the adiabatic speed of sound ¢ = pg/c?po
(the analysis of generalized dark sector components can
be found in earlier works [21,22]). In general, ¢ is the
unknown function of time. However, taking into account
simplicity we restrict ourselves to ¢Z = const, so it is
regarded only as the second physical parameter defining
the equation of state of dark energy (the first one being
the present value of wq).

In this paper we undertake a comparative analysis
of the evolution of gauge-invariant variables of scalar
perturbations in a model with non-relativistic matter
(pm < cp ) and scalar field which we define by classi-
cal Lagrangian with potential constructed for two cases
(wg = const and ¢2 = 0) in the concordance cosmolog-
ical models. These cases have been chosen because they
allow us to obtain analytical solutions which seems to
look very attractive in the world of numerical compu-
tations. We assume the adiabatic initial conditions for
matter and dark energy scalar perturbations.

II. BACKGROUND COSMOLOGICAL AND
SCALAR FIELD MODELS

We consider the homogeneous and isotropic flat Uni-
verse with the metric of 4-space

ds? = gijdr'da? = Adt® — a®(t)dapdz®da®
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= a’(n)(di)® — bapdada®),

where the factor a(t) is the scale factor, normalized
to 1 at the current epoch ty, 1 being conformal time
(cdt = a(n)dn). Henceforth we also put ¢ = 1, so the
time variable t = z¢ has the dimension of length. Here
and below the Latin indices ¢, j, ... run from 0 to 3,
the Greek ones — over the spatial part of the metric:
v, iy ...=1,2,3.

If the Universe is filled with non-relativistic matter
(cold dark matter and baryons) and quintessence which
interact only gravitationally (minimal coupling), the dy-
namics of its expansion is completely described by the
Einstein equations

1
Rij - —gin = 81G (TZ(JIV[) + Tz(jQ)) ,

: (2.1)

where R;; is the Ricci tensor and 7, Z-(jM), Ti(jQ) are energy-
momentum tensors of Matter (M) and Quintessence (Q).
If these components interact only gravitationally then
each of them satisfy the differential energy-momentum
conservation law separately:

T M@ =g (2.2)
(here and below “” denotes the covariant derivative with
respect to the coordinate with the given index in space
with the metric g;;). For the perfect fluid with density
p(m,q) and pressure p(yr @), related by the equation of
state pa,Q) = Wr,Q)P(M,Q) 1t gives

. a
par@) = —3—pare) (1 +wing) (2.3)
(here and below a dot over the variable denotes the
derivative with respect to the conformal time: “ 7=
d/dn). The matter is considered to be non-relativistic,
so wy, = 0 and p,, = p\Pa=3 (here and below “0” de-
notes the present values).

We assume the quintessence to be a scalar field Q(x, 1)
with classical Lagrangian

1
L==
2
where U(Q) is the field potential. We suppose also the
background scalar field to be homogeneous (Q(x,7n) =
Q(n)), so its energy density and pressure depend only on
time:

QuQ" ~U(Q), (2.4)

pali) = 550>+ UQ), paln) = 550° ~ U(Q). (25)

Then the conservation law (2.2) gives a scalar field evo-
lution equation (known as the Klein—Gordon equation)

. ) dU
2aH 2 — =0
Q+20HQ +a* 55 =0,
where H = a/a? is the Hubble parameter for any mo-
ment of conformal time 7.
We specify the model of quintessence using two ther-

modynamical parameters: the EoS parameter wg =
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po/po and the adiabatic speed of sound ¢2 = po/pgo.
In the general case they are connected by the equation

dw/dlna
3(14+w)

¥}

(here and below we omit index @ for wg). If the time
dependence of w is known then c2 is defined unambigu-
ously, if ¢2 is determined then the initial value wo must
be defined additionaly, so, the EoS parameter has 2 de-
grees of freedom: a function and a constant. For other
parametrizations see [11,27,38]. Since the constraints for
time dependence of w or ¢2 are not established well we

consider two simple cases: w = const and ¢2 = const.

In the first case c2 w and in the second one 1 +

w(a) = (1+ e2)(1 + wo)/ (14w — (wo — c2)a¥(+D))
This equation has obvious asymptotical behaviour: when
a— 0w — ¢ and when a — oo w — —1. So, in the
early epoch the dark energy mimics dust matter (w = 0)
for ¢2 = 0 or radiation (w ~ 1/3) for ¢2 = 1/3. In fu-
ture such scalar field will mimic cosmological constant
(w &= —1). The time dependences of EoS parameter for
both cases are shown in Fig. 1. The equation (2.3) has
the analytical solutions for two cases:

e w = const: pg(a) = pg))a—?»(l-s-w) and

()

Q [(1 + ’LUo)a_3 — ’wo],

e c2=0:pgla)=p
so it is possible to simplify formulae and calculations and
we will analyse only these two cases now.

If the parametrization of EoS parameter is given, it is
possible to apply reverse engineering and construct the
fields @ and potentials U(Q). From (2.5) one simply ob-
tains:

a
VgL +w) po(l—w)
Qo) - Qo=+ [ YL, yia) = 220,
1

If the integral for () can be expressed via functions that
could be inverted to obtain a(Q — Q) then U(Q — Qo)
can be easily written in the analytical form.
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Fig. 1. Top: the dependence of EoS parameter w on scale
factor a for ¢2 = 1/3, 0, —1/3 and w = ¢2 = const. Mid-
dle: the dynamics of expansion of the homogeneous Universe
in the model with non-relativistic matter and quintessential
scalar field with ¢2 = 0 and w = ¢2 = const with best
fitting cosmological parameters from Spergel et al. (2007)
(Qo = 0.745, w = —0.915, Qar = 0.255, h = 0.7): matter and
quintessence densities in units of the critical one. Bottom: the
evolution of acceleration parameter. For comparison we show
also the corresponding dependences for ACDM-model with
Qg = 0.74, Qum = 0.26 and h = 0.73 (Spergel et al. (2007),
Apunevych et al. (2007)).

So, from the Einstein and field equations we deduce
parameters as well as the evolution of the scalar field @

_11-9¢ + (1 +3w)Qqa™"

the time dependences of the Hubble H and acceleration ¢
and potential U(Q):

3
H = Hpa 24/1—-0Q Qoa—3w 2.6
0d \/ Q *Hea, 2 1-Qg+Qga3v (26)
1 Vit+w (1-9¢)a® + Qg — /Qo 1+ /Q
Qa) ~Qo== i (V1% @ _v_2 2], (2.7)
2V6rG w VI =Q0)a® + Qo+ / Qg 1 - /Qq
14w
3H? 1—w w 1 w w
UQ — = —90p—— |ch ( V67G(Q — h | V6rG(Q — 7) 2.8
Q)= 5% l( Q- Q0 ) 7 e (VErE@ - o) 28)
for w = const and
_3 11+ 'LUOQQ + 2wOQQa3
H = Hoa™ 2 /1 + Qgwo — Qquoa’ — - 9.
0a \/ +8quo — Slquoa”, 1= 5 1+ Qowo — Qquod® (2.9)
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1 Qo(1 14+ 0 1—a3)—/1+Q 1 1+
Q(a) = Qo =+ allcw), (VIFQquyll — o) =1 ¥ Qquo Lt YT T dgue) =, )
2v6mG \| 1+ Qquo V14 Qowo(l —a3) + /T4 Qqwo 1 — /1 + Qquo
3H02 QQ(l + wp) 1+ Qowo
_ = 220 22V T o [/ _ —TeWo
U(Q — Qo) 3G 5 c 6mG(Q — Qo) 901 + wo)
Q ’ H?
1 14+ Qgwo 3Hg
—————sh | VO6rG(Q — _— - —0 2.11
T T Qou < G(@ = Qo) QQ(Hwo)ﬂ snG Q0 (2.11)
for ¢2 = 0.

For both models there are 2 independent solutions for
the field (the growing one corresponds to sign “+” and the
decaying one to sign “—") and 2 symmetrical with respect
to () — Qo potentials exist. However, the physical conse-
quences of both these solutions are the same [40], so from
now we restrict ourselves only to the growing one. The
variance of scalar field potentials was presented in [11].
The potential for w = const can be also found in [36,40],
the potential for ¢2 = 0 belongs generally to the fami-
ly of double exponential potentials (with an additional
constant term), but they both differ from the physically-
motivated ones, for which the evolution of scalar linear
perturbations was studied by other authors.

We must note that the asymptotic behaviour at a — 0
of the expansion rate H(a) and acceleration parameter
g(a) in both cases is the same and similar to that in
the ACDM-model: H x a2, ¢ — 1/2. In the cur-
rent epoch the parameters of expansion dynamics are
the same (Hp and gy = (1 + 3w€g)/2) for both mod-
els. But their asymptotic behaviour at a — oo is differ-
ent: in w = const quintessence H — Hocf%(l“”) \/%,
q — (1+3w)/2, pg — 0 and in ¢ = 0 quintessence
H — Hy\/—woQg, ¢ — —1, pgo — —wop(o). The energy
densities of both fields evolve similarly but have different
asymptotic regimes: in the quintessence with w = const
po/pm = Qa3 /(1 — Qg) always while in the ¢ = 0
quintessence at a — 0 pg/pm — (1 + wo)Qg/(1 — Qg)
and at a — 00 pg/pm — —woQga®/(1 — Qg). So, the
scalar field with ¢2 = 0 behaves as cold dark matter at
the early epoch and will mimic the cosmological constant
in the far future.

The different asymptotic behaviour of these fields is
caused by their intrinsic properties. In the w = const
quintessence the negative pressure stiffly follows its en-
ergy density and their relation is always constant. In the
ci = 0 quintessence the negative pressure is always con-
stant: pg = 3H3we o /87G. So, it is insignificant in the
early epoch when a — 0 and pg — oo for the model of
the Universe filled only with dust matter and quintessen-
tial dark energy, and important in the late one when
w— —1.

The dynamics of expansion of homogeneous Universe
in the model with non-relativistic matter and quintessen-

tial scalar field with ¢2 = 0 and w = ¢2 = const is
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shown in Fig. 1. For both models we assume best fit-
ting cosmological parameters from [43] (Q¢g = 0.745,
w = wyg = —0.915, QO = 0.255, h = 0.7). For com-
parison we show also the corresponding dependences in
ACDM-model with Q5 = 0.74, Qp; = 0.26 and h = 0.73

[1,43].
We have constructed the potentials of quintessential
scalar fields with w = const [40] and ¢2 = 0 for the

QCDM cosmological model with best fitting parameters
obtained from WMAP and SNIa data [43]. The evolution
of the fields Q(a), potentials U(a) and rolling down of
the fields @) to the minimum which is located at () — oo
(a — o0) are shown in Fig. 2. The discussion of the
influence of parameter determination uncertainties on a
potential of field with w = const can be found in [40].

So, the difference of the homogeneous Universe expan-
sion dynamics in ACDM- and such QCDM-models is too
small to discriminate them using the avialable datasets.
That is why in the next sections we will analyse the
linear stage of growth of scalar perturbations of mat-
ter and dark energy. For this we will use gauge-invariant
approach developed by [2,15,23].

ITII. EVOLUTION OF SCALAR
PERTURBATIONS

For the analysis of scalar linear perturbations the
conformal-Newtonian gauge with space-time metric

ds® = a®(n)[(1 + 2% (x,7))dn?

—(1 4 28(x,1))dapdr®dz”] (3.12)

is convenient. Here W(x,n) and ®(x,7) are gauge-
invariant perturbations of a metric [2] called Bardeen’s
potentials. If proper anisotropy of the medium equals
zero then ¥(x,n) = —®(x,n). Dust matter and scalar
fields have this property [23]. In the linear perturba-
tion theory the Fourier decomposition is used, so spa-
tial dependences of all variables can be substituded
by the corresponding Fourier amplitudes. For example,
U(x,n) — U(k,n), where k is wave number. Hence-
forth, telling about the metric ¥(x,7n), matter density
S (x,m) = (par(x,m) — par(n))/par (1), its peculiar ve-
locity VM) (x,n), scalar field 6Q(x,n) = Q(x,1) — Q(7n),
its energy density perturbations §(?)(x,n) = (po(x,m)—
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pq(n))/po(n) etc. we mean their Fourier amplitudes
U(k,n), 6 (k,n), VD (k,n), 6Q(k,n), 6D (k,n), etc.
The metric (¥(k,n)), matter density and velocity per-
turbations (6" (k,n), VM) (k,n)) as well as scalar
field perturbations (5Q(k,n), 6@ (k,n), V(@ (k,n)) in
the conformal-Newtonian gauge are gauge-invariant vari-
ables [23]. The energy density and velocity perturbations
of quintessence, 6(?) and V(9| are connected with the
perturbation of field variable 6Q) in the following way:

5Q a25Q dU
Q) — = _ -
) (1+w) < - v+ ~ ) ,

vi@ _ k@

Q

Other non-vanishing gauge-invariant perturbations of
the scalar field are isotropic pressure perturbation

1 Bl 26Q d
S L L (3.13)
w Q Q? dQ
and intrinsic entropy
2
Q)  Ca
@ = 7@ _ 55@). (3.14)

The density perturbation of any component in the
conformal-Newtonian gauge Ds = §, which is gauge-
invariant variable, is related to other gauge-invariant
variables of density perturbations D and D, as:

= 1X1O14?\7 c.=0, + 7
. r _ _ _crt=0, - ]
g 5x1018 [N\ _ ____w=const, + B
3) ro o ____._ w=const, — ]
= r T~ 1
2 0F T e
\G_.)/ | ]
Z; 75x1013? g
‘ 4
S _1x1014 E
0.0 0.2 0.4 0.6 0.8 1.0

-1.0 -08 -06 -04 -02

Q-Q, [*10%(erg/cm)”]

aV aV
D=D,+3(1+ U+ —— ) =D,+3(14+w)=
g+ 3( w)( ak) s 3 w)ak7

(3.15)

where Dy, D, D, and V correspond to either M- or
Q-component. Here D, is the density perturbation in
the rest frame in which the fluctuations of the curvature
scalar of the constant time hypersurface vanish and D
corresponds to the rest frame in which the 4-velocity is
orthogonal to constant time hypersurface [23].

The intrinsic entropy of quintessence '@ can be pre-
sented via gauge-invariant Q-perturbations as follows:

wl@ = (1 - 2)D@, (3.16)

This equation shows that the intrinsic entropy for scalar
perturbations of quintessence with ¢2 # 1 is non-zero
when proper energy density perturbation D(%@) (mea-
sured in synchronous comoving gauge) of quintessence
is non-vanishing. In the first case (w = const) wl'(@®) =
(1 —w)D@ in the second one (¢ = 0) wl'@) = D@,
In the case of perturbed quintessence dissipative pro-
cesses generate entropic perturbations, so we have the
sound speed ¢? defined by a more general relation: ¢ =
dpg/dpq. The intrinsic entropy perturbation can be pre-
sented in the form: wI'@) = (¢2 — ¢2)D(Q) [23]. For the
scalar fields with classical Lagrangian ¢ = 1 [18,45.

1072 n

1074

106 1

U [erg/cm?]

10-8E — 5
06 08 10

10-2F .

10-4F .

106 .

U [erg/cm®]

1081 ]
—-12 —10 -8 —6 —4 —2 0
Q—Q, [x10%(erg/cm)"?]

Fig. 2. Top: the evolution of fields Q(a) (left), potentials U(a) (right) for quintessence with w = const and ¢2 = 0. Bottom:
rolling down of the fields @ to the minimum U(Q) = 0 which is located at @ — oo (a — o) for cases of w = const (left) and

¢z = 0 (right).
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A. Evolution equations 9 2@\1, _ 4\1, Y 0 3.17
20705 Q=0. (3.17)

Evolution equation for scalar field perturbation Thus, the evolution of quintessence perturbation depends

6Q(k7_77) can be obtained either from Lagrang.efEuler on field model (U(Q)), gravitational potential ¥, expan-
equ?g)on or from energy-momentum conservation 1aw  gion rate of the Universe H and the scale of perturbation
Ty, =0 k.

The linearised Einstein equations for gauge-invariant

- . d2U turbations of metric and energy-momentum tensor
2 2 perturbations o etric and energy-momentu €Nnso
0Q +2aHoQ + (k ta dQQ) 0Q components are

@ 3 k (1-c)H 0 ¥ _
D, +5(17w)D§Q)+ <a2H +9— (1+w)V(Q)+9(1+w)(1fca)g =0, (3.18)
2 kU k D@
V(@ _ 2@ _y — A 3.19
a a’H a’?H1l+w ’ ( )

U 4nG VD V(@)

\I//Jrg T (ﬁM A +ﬁQ(1+w)T> =0. (3.20)
Here and below a prime denotes the derivative with respect to the scale factor a. The conservation equations for
matter density and velocity perturbations JT;;i(M) = 0 in terms of the gauge-invariant variables DgM) and VM) are

as follows:

oy KVOD
D’g + T 0, (3.21)
vM) g

(M) S — .22
V + o 2H 0 (3.22)

They are connected with the dark energy ones only via ¥ and are the same for both models of quintessence.

So, in each case we have the system of 5 first-order ordinary differential equations for 5 unknown functions ¥(k, a),
DgM)(k:, a), VIM(k, a), DS(,Q)(k:, a) and V(@) (k, a). From these systems of equations it is easy to obtain the systems
of 2 second-order ordinary differential equations for 2 unknown functions ¥(k,a) and 0Q(k, a):

7 3 H2\ ¢ 3 H2 U
W (5 - Sunae i g ) T S0 wega e g
2a0Q" 4+ 3(1 — w)oQ

; H
-5 (1+w) 210 _
—q 2 (Fw) /67601 +w) 5o =0, (3.23)

5 g ag(lw)H_g) 5Q' ( k2 9(1 —w)(2+ w) N w(1l — w) QQGS(Hw)H_g) 50

2 H?2) a atH? 4a? 4a? o2
73(1+M)E 3 Q 1 4G\III+3(1 *U})‘I’ _ 24
@ H V871G o(l+w) a? 0 (3.24)

for w = const or

7 3 H2\ ¢ 3 HZ U s Hy /
\I]” + (5 — §’LUQQQH—(;) ; + 5(1 + wo — QWOGB)QQG_SH—OZE — a/_% ﬁo 67TGQQ(1 + wo)

2a0Q’ + 36
x% —0, (3.25)
5 3 H2\ 6Q' k2 9 9 H2 s Hy [ 3
5Q" + (5 - 5“’0%#) a T (W ot m“’o%#) 0Q — a7 4r grgtelt + o)
4090’ 4+ 30
X =0 (3.26)
for ¢2 = 0.
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Using their solutions (four fundamental once) for
U(k,a) and Q(k,a) and the constraint equation

k20 = 4nGa® (ﬁMD(M) + pQD@)) . (3.27)
it is possible to find the values of DgM) (k,a), VM (k, a),
DgQ)(k:, a), V@ (k,a) and T@(k,a). The equations
(3.21)—(3.22) can be substituted by one second-order
equation

D)

) k2
D//(I\/[) 2 o g
o tTE-——+

The systems of equations (3.23)—(3.24) and (3.25)-
(3.26) describe the evolution of perturbations of gravi-
tational ¥ and quintessentional 6@ fields and their cou-
pling. A few important conclusions can be deduced from
the qualitative analysis of these systems:

e The coupling of ¥- and §Q-field is modulated
by the value /Qg(1+w) for w = const and
Vo1 +wp) for ¢2 = 0. So, if w = wy = —1
then both fields evolve independently. Since obser-
vational data prefer current w close to —1 their
coupling is weak.

¥ =0.

(3.28)

e Evolution of §Q)-field depends on the relation of
scale of perturbation to horizon explicitly while the
dependence of U-field is implicit (through the lat-
ter).

e The system of equations for w-quintessence (3.23)—
(3.24) allows the asymptotic behaviour ¥ — const,
6@ — const when a — oo with the relation be-

tween them 6Q = ¥ /4/67G(1 + w).

e The system of equations for c2-quintessence
(3.25)—(3.26) allows the asymptotic behaviour
¥ — const, 6Q — const when a
with the initial relation between them §Q =
\/QQ(1+U]Q)/67TG(1+QQUJO)\II.

— 0

e From equation (3.28) it follows that DS(,M) ~ const

for superhorizon perturbations (k < a?H). If
¥ = const and ¢ = 1/2 at a — 0 then either
DM = const — 2ak?W /3HZ(1 — Qg) for w = const
or DS = const — 2ak*U/3HZ(1 + Qowy) for
2 =0 and for ¥ < 0 it begins to grow slowly
from the constant value. The decay of ¥ and tran-

sition from deceleration to acceleration slow down
the growth of DéM).

B. Initial conditions

A stady of the background dynamics presented in the
previous section has shown that both QCDM-models are
matter-dominated in the early Universe (Fig. 1). In the
QCDM-model with w = const the ratio pyr/pg — o0
when a — 0, while in the QCDM-model with ¢2 = 0
pm/po — (1 — Qg)/(1 + wo)Qg and w — 0 when
a — 0. The adiabatic growing mode of perturbation in
the non-relativistic matter-dominated Universe can be

specified by the condition ¥ = const (¥ = 0). Adiabatic-
ity condition in two-component model (Syr.g = DgM) —
DS? /(14+w) = 0 [14]) gives DS = D{? /(1+w). These
conditions, constraint equations written for hypersurface
Ninit < Mo (ainit < 1) and the analytic asymptotic solu-
tions (see next subsection) lead to the following adiabatic
initial conditions:

2 k Wini
V(Q)ini = B init 3.29
YTBH, TV (3:29)
Dy = =51+ w) Vi, (3.30)
2 k Wini
VD, e = 5 — —2 finn, 3.31
CTBH, JTo0g V™ (3.31)
DG, =~V (3.32)
for w = const and
2 k Wini
V@, = - i, 3.33
YT 3H, Tt Qgup ¥ (3.33)
Dy, = —5Tinie, (3.34)
2 k Wini
VD, = o — G, 3.35
¢ 3 HO 1+ QQU}O Qinit ( )
D, = =5V (3.36)
for ¢2 = 0.

Therefore, the growing mode of adiabatic pertur-
bations in two-component (non-relativistic matter and
quintessence) medium is defined by the single value —
initial gravitational potential W;y;;.

Since the non-adiabatic initial perturbations are
strongly constrained by the WMAP data, in this paper
we restrict ourselves only to adiabatic initial conditions.

C. Asymptotic and numerical solutions

In order to analyse the evolution of gauge-invariant
variables of matter and quintessence perturbations we
must solve the system of equations (3.18)—(3.20) togeth-
er with (3.21)—(3.22) numerically for initial conditions
(3.29)—(3.32) or (3.33)—(3.36), respectively. But before
we propose the analysis of these systems of equations in
the early epoch (a <« 1), for which the analytical so-
lutions are known. So, the system of equations (3.25)—
(3.26) for a < 1 can be simplified as

yo T8 3001+ wy) ¥ 6mGQo(1 + wo)

O o T W e T
2 a 2 1+ QQ’LUO a? 1+ QQ’LUQ

2a0Q" + 36Q

—— =0 3.37
% 2a2 ’ ( )

56Q’ 9 3 Qo1+ wo)

so" 1+ 2 2 oso— |2 et T%)

@ T2 Jr2a2Q 81G 1+ Qowo

4a¥’ + 3V

This system of equations has 4 fundamental solutions, so
it is possible to write the general solution in the form:

1902-7
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C ,%(H /W) ,%(1, /W)
v =0 + — + Csa Qo + Cha Q™o ,
a?2

50 — 1 QQ(l-‘v-lUO) §%_ 1+ Qowo QQw0+SQQ—7X
vVorG 1+ QQ’LUO 2 a% QQ(l + IU()) 1+ QQU)O

< _%<1+ QQ;quU;sQQ77> _%<1_ QQlwf;SQQ—7>
Csa V Q™) _ Cya Ve

10.0¢ 10.0¢
o 5 )
o e}
3 3
= = 10
‘s 1.0¢ s UE
g E g
<< << r
0.1¢ O.1g
1.000 E
Lot o 1.00F
) il (V) £
< 0.100¢ - T S r
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<< E - <<
|- / '/’ 4
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Fig. 3. The evolution of gauge-invariant amplitudes of perturbations in matter (top) and quintessence (bottom) for two
models of quintessence: w = const (left column) and ¢2 = 0 (right column). The corresponding scale of perturbations is

k= 0.00 Mpc™! and the cosmological parameters are Qg = 0.745, w = —0.915, Qur = 0.255, h = 0.7.

The first two solutions noted by the constants of in-
tegration C7 and Cs are well known growing and decay-
ing modes of adiabatic perturbations in the dust matter-
dominated Universe. The next two solutions, noted by
the constants of integration C's and Cy, are due to possi-
ble entropy initial conditions and intrinsic non-vanishing
entropy of quintessence. Indeed, the condition I'(?) = 0
leads to 1 second-order equation which has two dust-like
fundamental solutions:

U=C4+Chat and D@ = <c~1 - gc) .

For the quintessence with w = const the solutions for ¥

are the same and DgQ) =—-2(1+w) (C‘l — %C’ga_%).
The quantities DéM)(k,a), V) (k, a) and V(@ (k, a)

can be found using equations (3.15)—(3.22) and (3.27).
The relations between them are presented in the previ-

Tt was created by T. E. Hull,
http://www.cs.toronto.edu/NA /dverk.f.gz
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ous subsection as a set of initial data (3.29)—(3.36).

We have integrated numerically the systems of equa-
tions (3.18)—(3.20) for w = const and for ¢2 = 0 to-
gether with (3.21)—(3.22) for adiabatic initial conditions
(3.29)—(3.32) and (3.33)—(3.36) using the publicly avail-
able code DVERK!. We assumed aiyix = 10710 and
integrated up to a = 1. The evolution of perturba-
tions is scale dependent, so we performed calculations for
k = 0.0001, 0.001, 0.01 and 0.1 Mpc~! for the cosmolog-
ical model with the parameters {1 = 0.745, w = —0.915,
Qp = 0.255, h = 0.7. The evolution of gauge-invariant

variables of matter perturbations D,(JM), DgM), D),
VM) for two scales k = 0.001 and 0.01 Mpc~! is shown
in top panels of Fig. 3 and Fig. 4. In the bottom panels
the analogical gauge-invariant variables of quintessence
perturbations (DéQ), DgQ), D@ V(@ (@) are pre-
sented (for ¢2 = 0 the curves wI'@) and D(@) overlap).
The evolution of gauge-invariant gravitational potential

K. R. Jackson in 1976 and 1is available at
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U is shown in all panels for comparison. All plots are
1000 E!
] r 1 ()
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Fig. 4. The same as in Fig.

IV. DISCUSSION

From the top panels of Fig. 3, 4 it follows that the mag-
nitudes of the adiabatic matter density perturbations
grow similarly in both models (and alike in the ACDM-
model), but time dependences of magnitudes of the
adiabatic quintessence energy density perturbations are
more varied (bottom panels of the same figures): gauge-

invariant variables DgQ) and DgQ) decay from the initial
constant value after the particle horizon entry while D(Q)
and V(@) grow at an early stage before the horizon entry
and decay after that — in the quintessence-dominated
epoch when the gravitational potential starts to decay.
The perturbation shown in Fig. 3 enters the particle hori-
zon (n(a) = 7/k) at a =~ 0.03 for w-quintessence and at
a =~ 0.04 for c2-quintessence. The perturbation shown in
Fig. 4 enters the particle horizon at a ~ 0.0004 and a ~
0.0005 for w- and c2-quintessence, respectively. The par-
ticle horizon in the current epoch (79) in the cosmologi-
cal model with the parameters 2o = 0.745, w = —0.915,
Qpr = 0.255, h = 0.7 and w-quintessence equals ~ 14970
Mpe. In the model with ¢2-quintessence it is ~ 13810
Mpe. In the early epoch D@  a for both models of
quintessence. After the particle horizon entry the am-
plitudes start to decay slowly in the matter-dominated
epoch and decay fast in the quintessence-dominated one.
At asymptotic regime for the quintessence model with
¢2 = 0 approximately D(@) « ¢~2. In the quintessence
model with w = const the transition epoch is extend-

@ —

1000 ¢

1.00 -

0.01¢

shown for the following range: 0.001 < a < 1.

100 ¢

10—~

0.001 0.010 0.100 1.000

a

3 for scale k = 0.01 Mpc~1.

ed in time. In Fig. 5 we show the dependences of ratios
of quintessence density perturbations to matter density

ones in conformal-Newtonian gauge (DgQ) / DgM)) on the
scale factor for perturbations with the scales k£ = 0.0001,
0.001, 0.01 and 0.1 Mpc~!. These curves emphasise the
difference of evolution of perturbations in ordinary mat-
ter and quintessence as well as the similarity of behaviour
of perturbations in two models of quintessence. The mag-
nitudes of quintessence density perturbations in units of
matter density perturbations in both models in the cur-
rent epoch are close although their initial magnitudes dif-
fer by one order. The magnitudes of quintessence density
perturbations with the scale less than particle horizon are
lower than the corresponding magnitudes of matter den-
sity perturbations by factor ~ (23000k)? so that for scale

k=0.01 DgQ)/DgM) ~ 2 x 107°. Therefore, on subhori-
zon scales the quintessential scalar fields are practically
smoothed out while the matter clusters.

The tests for choice of the type of dark energy are
based on the results of its action on luminous matter
and cosmic microwave background. So, the key question
is how these types of quintessence affect the growth of
matter density perturbations and the time variation of
gravitational potential. From top panels of Fig. 3 and
4 we can see that they are more suppressed for c¢2 = 0
than for w = const and for perturbations with small-
er scale. In order to illustrate this effect in Fig. 6 we
present ratios DM ag,;;/ Di(ﬁ?a and U/W;,; for scales
k = 0.0001, 0.001, 0.01 and 0.1 Mpc~!. We can see that

1902-9
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scale dependence of suppression of magnitude of mat-
ter density perturbations as well as of gravitational po-
tential is strong for the ¢2 = 0 quintessence and weak
for the w = const one. In the ACDM-model it is scale-
independent [9]. (In the Einstein — de Sitter model both
ratios equal 1 for all times and scales). These ratios are
substantial for calculations of magnitude of the matter
density power spectrum at different redshifts and the an-
gular power spectrum of CMB temperature fluctuations
in the range of scales of the late integrated Sachs—Wolfe
effect.

1otk ]
10-2
10-3

1074

D (Q)/D (™)

1073

10-6
10-7 | |

100 -

D (Q)/D ™)

10-6

0.001 0.010 0.100 1.000

a
Fig. 5. Dependences of ratios DgQ)/DgM) on scale factor
for linear perturbations with scales k£ = 0.0001, 0.001, 0.01
and 0.1 Mpc™' (from top to bottom) in the models with
non-relativistic matter and quintessence (w = const — top
panel, ¢Z = 0 — bottom).

V/¥,.,

0.001 0.010 0.100 1.000

a
Fig. 6. Evolution of ratios D(Af)aini:/Di(rﬁ?a and U /Winis
for linear perturbations with scales k& = 0.0001, 0.001, 0.01
and 0.1 Mpc™' (from top to bottom) in the models with
non-relativistic matter and quintessence (ci = 0 — solid line,

w = const — dashed line).
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Evolution of quintessence perturbations depends on
scalar field model (i.e. its Lagrangian and potential),
contents of the Universe, coupling of the quintessence
to other components, initial conditions and scale of per-
turbations [3, 4, 12-14, 29, 44]. Here we have analysed
the evolution of scalar matter and quintessence pertur-
bations for potentials of scalar fields with classical La-
grangian constructed to give either w = const or ¢2 = 0.
Therefore, the results obtained here could be compared
with those of other authors only qualitatively. The evo-
lution of EoS parameter in our ¢2 = 0-model (Fig. 1)
is similar to that of [14]. Despite a different cosmolog-
ical model and potential of scalar field, the qualitative
behaviour of quintessence perturbations is close to the

obtained here: DéQ) is const when the perturbation is
outside the particle horizon and decays when it enters
the horizon. The growth of magnitude of quintessence
density perturbations long before the horizon entry in
a synchronous gauge was shown in [12] (models with
w = const in Fig. 3). Our results for evolution of gauge-
invariant variable D(@) (density perturbation in a syn-
chronous gauge) shown in Fig. 3 support this conclusion.
(We do not discuss the oscilations at early stage visible
in Fig. 3 of [12] because of different initial conditions
and background.) The ratios of quintessence (w = const,

¢ = 1) density perturbations to matter density ones

S

in a synchronous gauge are shown in Fig. 1 of [4] for
k = 0.0lh~! Mpc~!. Presented here in Fig. 5 analogi-
cal ratios in the conformal-Newtonian gauge are similar.
The conclusion about anti-correlation between pertur-
bations of the matter and quintessence has been made
in [17] and [30] on the basis of a study of their evolution
in the matter rest frame. [4] and [45] noted this effect
too. Recalculation of the frame-dependent variables to
gauge-invariant ones will — in our belief — remove such
a discrepancy.

V. CONCLUSION

The dynamics of expansion of the Universe and
evolution of scalar perturbations are studied for the
quintessential scalar fields ) with the classical La-
grangian L = 1Q,;Q" — U(Q) satisfying the additional
condition w = const or ¢2 = 0. For both quintessential
scalar fields the potential U(Q) and time dependence
of @ are constructed for the same cosmological model
and it is shown that the accelerated expansion of the
Universe is caused by the effect of the rolling down of
the potential to the minimum (Fig. 2). In the QCDM-
model with w = const the ratio pa/pg — oo when
a — 0, while in QCDM-model with ¢Z = 0 py/po —
(1-Q¢g)/(1+wp)2g and w — 0 when a — 0. In the ear-
ly epoch w-quintessence is a dynamically unsubstantial
like cosmological constant while c2-quintessence mimics
dust matter (w = 0) at @ < 1 and cosmological constant
(w = —1) at a > 1. The dependence of acceleration pa-
rameter on redshift is a bit different for them (Fig. 1)
but close to the ACDM-model and indistinquishable ob-
servationally now.
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Asymptotic analysis of the systems of evolutionary
equations for gauge-invariant perturbations has shown
that adiabatic initial conditions for non-relativistic mat-
ter and w- and c2-quintessence are allowed. The numer-
ical integration of these systems give time dependences
of gauge-invariant variables for matter and quintessence
scalar perturbations (Fig. 3, 4). The main conclusion de-
duced from them is the following: the magnitudes of the
adiabatic matter density perturbations grow similarly in
the ACDM-model, while for quintessence D_E,Q), DgQ) are
constant and D@ V(@) grow before the particle horizon
entry but all variables decay after that in such a way that
at the current epoch they are approximately two orders
lower than the corresponding quantities for dust matter
on supercluster scales. Therefore, on subhorizon scales
the quintessential scalar field is smoothed out while the
matter is clustered.

The quintessential scalar fields studied here suppress
the growth of matter density perturbations and the
magnitude of gravitational potential (Fig. 6). In these
QCDM-models — unlike the ACDM ones — such a sup-
pression is scale dependent and more visible for c2-

quintessence. Such features of quintessence are impor-
tant for calculations of the matter density power spec-
trum at different redshifts and the power spectrum of
CMB temperature fluctuations in the range of scales of
the late integrated Sachs-Wolfe effect. That can be used
for the interpretation of data of current and planned ex-
periments in order to identify the nature of dark energy.
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EBOJIIOIIISI CKAJIIPHIX 3BYPEHB Y KOCMOJIOTII 3 KBIHTECEHIIIITHOIO
TEMHOIO EHEPI'IEIO

B. Hosocsiyymit, O. Ceprienko
Acmpornomivuna obcepsamopia JIveiecvkozo HauioHarvbHo20 yHisepcumemy imeni Iearna Dparka,
eyn. Kupuaa i Megodia, 8, 79005, Jlveis

Hocmimpkeno quHaMiky posiupenHss BceecBiTy Ta eBOSIOINIIO CKAJIAPHUX 30yPeHb y MOJIENSAX i3 KBIHTECEHIIii-
HUMHI CKaJIipHUME nossivu @ (kinacuduuit narpamxkian L = 1Q,Q" — U(Q)), 1o 3a10BOIBHAIOTH JIOATKOBY
YMOBY CTaJIOCTI apaMeTpa piBHsAHH:A cramy (w = const), abo HyJbLOBOrO 3HAYEHHHA a1a0aTHIHOI MIBUAKOCTI 3BY-
Ky (c2 = 0). O6uuBa KBiHTECEHILIHI O/ TPOAHAIIIZ0BAHO B MexKaX O/HOI KocMojtoriunoi moesi. TTokaszamo, mo
npucKopeHe posunpenHs BeecBiTy 3ymoBiene edeKToM “CKOUyBaHHS IOJIS 10 MiHIMyMy IOTeHIiasxy. Y paHHIO
€II0Xy BIUIMB KBiHTeCeHIl 3 w = const Ha auHaMiKy po3mupenus BeecsiTy HexTiBHO Masuii (mogi6HO, AK y BUIA -
Ky KOCMOJIOTIYHOI CTaJIOl), TOAl sIK I10JIe 3 c2 = 0 Beze cebe AK MIIONOMIGHA MaTepis. Y JaJeKoMy MaiGyTHEOMY
CKaJIsIpHe ToJIe i3 ¢2 = 0 3a CBOIME IposiBaME Gy/ie TOMIGHIM Ha KOCMOJIOTIUHY CTATY.

Orpumano aHajJiTU4YHI PO3B’HA3KU CUCTEMU PIiBHSIHB, IO OMKUCYIOTH E€BOJIOIII0 KaJIiOpyBaJbHO-iIHBapiaHTHUX
30ypeHb METPUKHU IPOCTOPY-9acy, I'yCTHHH 1 MIBUJAKOCTI MaTepil Ta KBIHTECEHII, /I PAHHBOI CTail €BOJIOIT
Beecsity Ta unciiosi jjist Beiel icTopil axk /10 Cyd9acHOI enoxu BKJIFOYHO. [lokasaHo, 1m0 aMIuiiTyu amgiabaTuaHmxX
36ypeHb mMaTepil 3pOoCTaroTh OJHAKOBO B 000x Mozensax (1 momibuo mo 3pocranua B ACDM-mozeni), ane wacosi
3aJIe2KHOCT] pi3HMX aMILIiTys 30ypeHb KBiHTeceHINil pi3Hi: KastibpyBasbHO-iHBapiaHTHI 3MiHHI DéQ) i DgQ) 3ara-
CalOTh BiJI MOYATKOBOI CTAIO0I BEJIMYUMHM ITiCJIs BXOIKEHHSA 30yPEHHSI B TOPU30HT YACTUHKU, TOJI AK D@ jy@
3POCTAIOTh Ha PaHHI#M cTafil O BXOJ2KEHHSI B POPU30HT i 3aracaroThb IiCJI BXOJI2KE€HHH, KOJIM KBIHTECEHIlid [T0YH-
Ha€ JOMIHYBaTH 3a yCTHHOIO, a I'DaBiTalifHuil moTeHmias 3aracaTtu. Y CydacHy €IIOXY BOHHU IPHUOJIM3HO HA [Ba
MOPSIJIKY MEHII 32 BiAnoBiaui ammutityau 30ypensb marepil. OTxke, Ha Macrrabax, MEHIITUX 33 TOPU3OHT YaCTUHKH,
KBIHTECEHIIIIHI CKaJISIpHI 10JIsA € Maii>Ke OJIHOPIIHUMU, TOJI sIK MaTepist KJIaCTEePU30BAHOIO.

ITokazaHo TakoK, 110 00HMBa KBIHTECEHIIHI CKaJIsIPHI I10JIsI CIOBLIBHIOIOTH 3POCTAaHHs 30yPEHb I'yCTHHH Ma-
Tepil Ta rpasiramiiinoro norenmiamny. ¥ mux QCDM-monensax, na Biaminy i ACDM-Moueseit, Take CrioBiibHEHHS
3aJIeKUTh Bi Macmrraby i momiTHirme ajis KBiHTeCeHTITl 3 cg =0.
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