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We consider both analytically and numerically the creation conditions of diverse hierarchical
trees. A connection between the probabilities to create hierarchical levels and the probability to
associate these levels into a united structure are studied. We argue that a consistent probabilistic
picture requires the use of deformed algebra. Our consideration is based on the study of the main
types of hierarchical trees, among which both regular and degenerate ones are studied analytically,
while the creation probabilities of Fibonacci and free-scale trees are determined numerically. We
find a general expression for the creation probability of an arbitrary tree and calculate the sum
of terms of deformed geometrical progression that results from the consideration of the degenerate
tree.
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I. INTRODUCTION

The problem of the origin of hierarchy and its im-
plications for physical, biological, economical, ecologi-
cal, social and other complex systems has a long his-
tory which can be found in Refs. [1–13]. Along this line,
one of the most striking manifestations of hierarchy is
found in complex networks [14, 15]. As is shown for di-
verse systems, ranging from the World Wide Web [16] to
biological [17–20] and social [21–23] networks, real net-
works are governed by strict organizing principles dis-
playing the following properties: (i) most networks have
a high degree of clustering; (ii) many networks have been
found to be scale-free [24, 25] that means the probabil-
ity distribution over node degrees, being the set of the
numbers of links with neighbours, follows a power law.
Moreover, many networks are modular: one can easily
identify groups of nodes that are highly interconnected
with each other, but have only few or no links to nodes
outside the group to which they belong (in society such
modules represent groups of friends or coworkers [26], in
the WWW these denote communities with shared inter-
ests [27], in the actor network they characterize specific
genres or simply individual movies). This clearly identi-
fiable modular organization is at the origin of the high
clustering coefficient seen in many real networks. In or-
der to find modularity, the high degree of clustering and
the scale-free topology under a single roof, we need to
assume that modules combine with each other in a hier-
archical manner.

A formal basis of the theory of hierarchical structures
is given by the fact that hierarchically constrained ob-
jects are related to an ultrametric space whose geomet-
rical image is the Cayley tree with nodes and branch-
es corresponding to elementary cells and their links [28].

One of the first theoretical pictures [29] has been devoted
to the diffusion process on either uniformly or random-
ly multifurcating trees. The consequent study of hierar-
chical structures [30] has shown that their evolution is
reduced to an anomalous diffusion process in the ultra-
metric space that arrives at a steady-state distribution
over hierarchical levels, which represents the Tsallis pow-
er law inherent to non-extensive systems [31]. Principal
peculiarity of the Tsallis statistics is known to be gov-
erned by the deformed algebra [32].

Our work is devoted to the studying of creation con-
ditions of a vast variety of hierarchical trees on the ba-
sis of the methods developed initially within quantum
calculus [33]. Along this line, we restrict ourselves by
considering ideal hierarchical trees which possess the un-
derlying properties: order, predictability, and pyramidal
structure [34]. These trees relate to the casual graphs,
that are connected, directed acyclic graphs in which the
arrows depict couplings between nodes of the nearest-
neighbour hierarchical levels.

The outline of the paper is as follows. In Section II,
we discuss the statistical peculiarities of the picture of
a hierarchical structure creation to demonstrate that ef-
fective energies of hierarchical levels remain to be ad-
ditive values, while a set of corresponding probabilities
becomes both non-additive and non-multiplicative due
to the coupling between different levels. Section III pro-
ceeds with this discussion to formulate the connection
between the probabilities to find hierarchical levels with
a given set of effective energies and the probability to
associate these levels into a united structure. We argue
that a consistent probabilistic picture requires the use
of the deformed algebra, whose main rules are stated in
Appendix A. Further consideration is based on a study
of the main types of hierarchical trees depicted in Fig. 1:
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Fig. 1. The main types of hierarchical trees (level num-
bers and node sum are indicated left and right respectively).
Top-down: regular tree with branching index b = 2, Fibonacci
tree with b = 2, and degenerate tree with b = 3.

Sections IV and V are devoted to the analytical def-
inition of the creation probabilities of both regular and
degenerate trees, while in Section VI we find these for
both Fibonacci and scale-free trees numerically. The case
of an arbitrary tree is considered in Section VII. Section
VIII is devoted to the discussion of the obtained results.
Appendix B contains details of calculations of the sum of
terms of deformed geometrical progression that appears
while considering the degenerate tree, and in Appendix
C asymptotic forms of the distributions over hierarchical
levels of both regular and degenerate trees are obtained.

II. STATISTICAL PECULIARITIES OF
HIERARCHICAL ENSEMBLES

Standard statistical physics is known to be based on
the Gibbs distribution

pl ∝ exp (−εl/∆) (1)

which determines the probabilities pl to have the energies
εl, whose random values are scattered with the variance

∆. The distribution form (1) follows from the maximum
principle of the Boltzmann entropy

S = −
∑

l

pl ln pl. (2)

According to distribution (1), the energy growth of a sta-
tistical state causes the exponentially fast decay of the
corresponding probability. This distribution defines the
behaviour of simple systems related to an ensemble of
graphs, whose edges correspond to particles, while given
graph relates to a state of the system. The volume con-
servation law mimics the condition of a constant number
of nodes.

Although the energy is a key concept of the network
optimization theory, it is not always possible to match its
value to a given graph. However, basing on the heuristic
ideas, it is always possible to attach an effective value of
energy to some phenomenological parameter. Following
the statistical theory [35], we cite below some distribu-
tions corresponding to different statistical ensembles.

Microcanonical ensemble of graphs is defined by at-
taching equal specific weights to every state of a system
with the fixed energy ε and the particle number M (the
other states have zero weight). Thus, the microcanonical
ensemble of graphs is defined the by the weight

pa = n−1 (3)

of each of n graphs a, which have M edges with the en-
ergies ε.

Canonical ensemble consists of graphs with the fixed
number M of edges and weight

pa = Z−1e−εa/∆, (4)

where ∆ and εa are variance and energy of graph a, re-
spectively. According to the normalization condition, the
partition function reads

Z =
∑

b

e−εb/∆. (5)

For this category of graphs, the weight function is gov-
erned by the condition of minimum deviations from cer-
tain expected properties (for example, that the number
of triangles composing a graph is constant).

Grand canonical ensemble of graphs is characterised by
fixed values of both variance ∆ and chemical potential
µ. With variation of the energy εa and the number of
edges (particles) Ma the probability to realize a graph a
takes the value

pa = Z−1e−(εa−µMa)/∆ (6)

where the partition function is written as

Z =
∑

b

e−(εb−µMb)/∆. (7)

Along the line of the above statistical theory, one con-
siders an ensemble of random graphs, whose probabil-
ities are associated with the effective energies of their
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creation. Within this approach, every edge of the graph
represents a particle a of a many-body statistical sys-
tem with the energy spectrum εa. As a result, the ad-
ditivity of the εa effective energies forces related proba-
bilities pa to be multiplicative. For example, if we take
an ensemble of N non-interactive particles with the en-
ergies εa, a = 1, 2, . . . , N , the probability to have the
total energy εN =

∑N
a=1 εa is determined by the prod-

uct PN =
∏N

a=1 pa. From a mathematical point of view,
the above property follows directly from the exponential
form of the Gibbs distribution (1).

As pointed out in the Introduction, hierarchically con-
strained statistical systems are not related to an expo-
nential distribution. As a result, these systems cannot
display both properties of the additivity of effective en-
ergies and multiplicativity of related probabilities simul-
taneously. The cornerstone of our approach is that the
creation of a hierarchical structure does not break the
law of energy conservation, so that the energies εl of hi-
erarchical levels remain to be additive values. On the
other hand, due to the coupling between different lev-
els the hierarchy essentially deforms the corresponding
probabilities pl, which become non-multiplicative. Tak-
ing into account the findings in [30] that the distribution
over hierarchical levels is described by the Tsallis ther-
mostatistics governed by the deformed algebra [32], it is
natural to propose that the probability product should
be deformed in accordance with this algebra. Most im-
portant, the deformed algebra [32] increases the creation
probability of a hierarchical structure due to the coupling
between different levels of the hierarchy. In addition, con-
trary to the approach in [35] it is convenient for our aims
to consider the nodes of the hierarchical tree as particles
of a statistical ensemble, while its edges represent a cou-
plings between these particles.

The above law of the deformed multiplicativity deter-
mines the probabilities pl to create a set of hierarchical
levels simultaneously. Another problem appears when we
consider the connection between the creation probabili-
ty of a given hierarchical level l and the same for every
node on this level. Let us consider for simplicity a reg-
ular tree, whose nodes multifurcate to generate a set of
the Nl nodes determined with the inherent probabili-
ties π = p0/Nl where p0 is their top magnitude being a
normalization constant. If one permits additivity of the
node probabilities, we arrive at the total probability of
the lth level realization to be independent of their num-
bers: pl := Nlπ = p0. Since the probability pl to create a
hierarchical level should decay with the level number l,
we are forced again to replace the trivial additive connec-
tion of the level probability pl with the node value π by
a deformed sum. As will be shown in Section IV, the de-
formed sum proposed in Ref. [32] takes the values which
are less than usual, so that the level creation probability
decays with the l number of the hierarchical level.

Finally, since the creation probabilities of the hierar-
chical levels go beyond the probabilities related to non-
hierarchical structures, the standard normalization con-
dition based on the use of the usual sum will be broken as
well. As a result, one can anticipate that the appearance

of hierarchical coupling should deform the normalization
condition. Due to the property of the deformed sum such
a deformation should restore this condition for an arbi-
trary set of the creation probabilities of the hierarchical
levels.

III. FORMULATION OF THE PROBLEM

As was mentioned above, self-similar distributions are
described by the power law p(k) ∝ k−γ with an expo-
nent γ > 0. This form is caused by the fact that a ran-
dom variation of the node order k is scale-free. In fact,
the substitution of the variable k by the value k/a scaled
by a positive constant a keeps the power-law form. His-
torically, self-similar ensembles were used firstly in the
studying of critical phenomena [36], when groups of b
spins (b = 2 corresponds to the simplest case of a binary
tree) associate in clusters, then groups of b clusters se-
quentially create a supercluster of the next level and so
on, until the maximum cluster is created, which contains
virtually all spines. As a result, such structure have a hi-
erarchical character, which can be depicted by the Cayley
tree (Fig. 1).

Apparently, the behaviour of a whole hierarchical sys-
tem is defined by the cluster structure of all its levels,
however, the property of self-similarity allows us to con-
fine ourselves to setting a minimal cluster structure and
fixing a level number. Since the hierarchical tree is a
geometrical image of the ultrametrical space [28], a de-
scription of the complex network within the generation
method reduces to the description of a diffusion process
in this space [30].

Following the line of Ref. [15], let us show that the
evolution of a self-similar complex system represents an
anomalous diffusion over hierarchical levels, which leads
to a stationary distribution in the Tsallis form. For this
purpose, we consider a probability destiny pu = pu(t) of
the system distribution over the ultrametric space coor-
dinates u at the moment of time t. This distribution is
governed by the kinetic master equation [30]

τ ṗu =
∑
u′

(fuu′pu′ − fu′upu) (8)

where the dot stands for the time differentiation, τ is a
relaxation time, fuu′ represents the transition rate from
u′ to u. In order to find the form of dependencies on
ultrametric coordinates let us consider a regular hierar-
chical tree, which is characterized by the fixed branch-
ing index b > 1 and the variable number of hierarchi-
cal levels l � 1. In so doing, the ultrametric coordi-
nate u and is l-digit figure in the b-nary number sys-
tem: u ≡ u0u1 . . . um . . . ul−1, um = 0, 1, . . . , b − 1. Ac-
cordingly, the transition rate is written as a power se-
ries fuu′ =

∑n
m=0 f(um − u′m)bl−m where the first term

(m = 0) relates to the top level of hierarchy which de-
fines the whole system behaviour, whereas the last one
(m = l) relates to the lowest level which corresponds to
the smallest clusters. According to the definition, the dis-
tance between points u and u′ is 0 ≤ s ≤ n if conditions

2001-3



A. OLEMSKOI, S. BORYSOV, I. SHUDA

um = u′m for m = 0, 1, . . . , l − (s + 1) and um 6= u′m for
m = l − s, l − s + 1, . . . , l are fulfilled [28]. Thus, when
the distance s is fixed, the first l − s terms of the above
series equal zero by definition, while the last ones, whose
number equals s, contain the factor bl−m of the value,
being in the continuous limit b →∞ much less than the
factor bs that is the first of the other terms. As a result,
only the term m = l − s with fuu′ ∼ bs = bl−m is signif-
icant in the considered power series. It can be similarly
shown that the probability destiny is pu ∼ bl−s = bm. In
the case of a random tree the branching index b becomes
variable, which leads to the transition rate fuu′ ⇒ fl−m

and the probability destiny pu ⇒ pm takes the form of
the Mellin transform [37]

fl−m =
∫ ∞

0

f(b)bl−mdb, pm =
∫ ∞

0

p(b)bmdb, (9)

where f(b) and p(b) are the corresponding weight func-
tions.

As a result, the kinetic master equation is written as
follows:

τ ṗl =
∑
m>l

fm−lpl −
∑
m<l

fl−mpm. (10)

In contrast to the form (8) related to the continuous ul-
trametric space, here we pass to the corresponding dis-
crete representation, being related to hierarchical trees
whose simplest types are depicted in Figure 1. The first
term of the right-hand side of Eq. (10) takes into ac-
count the hierarchical couplings of the fixed level l with
the nodes of lower levels m > l, while the second term
makes the same for upper levels m < l. In comparison
with usual systems, both the above terms have the op-
posite signs because it is inherent in the autonomous
hierarchical systems to restore spontaneously instead of
going to decay.

Expanding the probability pm in a series over the dif-
ference l −m, one obtains in the limit l � 1

τ ṗl = −D
∂2pl

∂l2
+Dlpl (11)

where the lower moments
∑

m<l

(l − m)fl−m = 0 and

2D =
∑

m<l

(l−m)2fl−m are taken into account; the oper-

ator

Dl :=
∑
m>l

fm−l −
∑
m<l

fl−m (12)

determines a difference between the transition rates from
the lth level onto the lower and upper levels. Usually, the
conditions m > l and m < l, taking place in the sums
of Eqs. (10) and (12), are absent, and Dl = 0. However,
one has no reason to take the condition Dl = 0 for the
hierarchical systems because the transition rates depend
essentially on the levels m (to be lower or upper ones)
which are coupled with the given hierarchical level l.

As is mentioned in the Introduction, we consider on-
ly ideal hierarchical trees, whose coupled nodes belong

to the nearest-neighbour hierarchical levels. In this case,
the transition rates in Eqs. (10) and (12) take non-zero
values fm−l = fl at m = l+1 and fl−m = fl at m = l−1.
Then, within the steady state where ṗl = 0, the master
equation (10) arrives at the relation

fl−1

fl
=

pl

pl−1
(13)

that allows one to express the transition rates through
the stationary probabilities. Basing on the independent
combinatorial approach, we will obtain in Section 4 dis-
tribution (26) over hierarchical levels of the regular tree,
being the simplest example of hierarchical graphs. With
using this distribution we find

fl−1

fl
=

[1 + (1− q)b−l]b
l

+ − 1
[1 + (1− q)b−(l−1)]bl−1

+ − 1

' 1− 1
2

(q − 1)2

eq−1 − 1
b−(l−1) (14)

where the last estimation corresponds to the limit b →∞
related to a continuons ultrametric space. So, one can
conclude that the transition rates decay exponentially
fast from top to bottom of a regular tree. As the asymp-
totic form (44) shows, such behaviour is kept with the
passage to the degenerate tree.

As a fact of fundamental importance it is worth not-
ing that the probability distribution (26) can be written
in the form of (27) expressed trough the basic number
(28). Since the latter represents the eigenvalue of the
Jackson derivative acting on the homogeneous function
as the eigenfunction [33], one can suppose that operator
(12) which, in accordance with relation (13), is expressed
through a combination of related probabilities should be
determined by the Jackson derivative being an archetype
of self-similar hierarchical systems [38]. As a result, we
propose to use the ansatz

Dl := −dqpq−1
l

∂

∂l
(15)

with the positive parameters q, d; the formal basis for
such an ansatz is that the integral

∫ ql

l
Dlpldl is reduced,

accurate within the factor −d(q − 1), to the Jackson
derivative Dlp

q
l :=

pq
ql−pq

l

q−1 . Then, the master equation
(11) takes the final form

τ ṗl = − ∂

∂l

(
dpq

l +
∂

∂l
Dpl

)
. (16)

The steady-state solution of this equation has the form

pl =
(

p
−(q−1)
0 +

q − 1
∆

l

)− 1
q−1

; p0 ≡
(

2− q

∆

) 1
2−q

,

∆ ≡ D/d. (17)

With growing the level number l, the creation probability
pl of a hierarchical cluster decreases monotonically from
the maximum value p0 on the upper level l = 0 related
to the whole system.
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With the use of the deformed exponential (A.1) and

the effective energy εl =
(

2−q
∆

) q−1
2−q l, the creation proba-

bility (17) of the lth hierarchical level takes the canonical
form

pl = p0 expq

(
− εl

∆

)
(18)

related to the Tsallis statistics [31]. According to the con-
sideration in [39], the effective temperature ∆ obeys stan-
dard thermodynamic relations under the condition that
a random variable φl distributed over the levels of a hi-
erarchical self-similar set is defined by the q-normalized
average 〈φ〉 =

∑
l φlPl, which is based on the use of the

escort probability Pl := pq
lP

l pq
l

instead of the initial distri-
bution pl. The determination of such a type of averages
arrives at a separate problem which will be considered
elsewhere [40].

As was pointed out in the previous section, with the
growth of the difference |q− 1| probability (18) increases
at arbitrary values of the energy εl with respect to the
non-deformed value related to the parameter q = 1. On
the other hand, the deformed sum (A.3) decreases with
the growing the parameter q > 1. As a result, one can
anticipate that a self-consistent probabilistic picture of
hierarchical ensembles is reached, if one proposes that
the normalization condition

p0 ⊕q p1 ⊕q · · · ⊕q pn = 1, q > 1 (19)

is deformed to fix the top level probability p0 according
to the summation rule (A.3). We will show in Sections
IV and V that the analytical consideration of both regu-
lar and degenerate hierarchical trees on the basis of the
above propositions appears to be self-consistent.

In accordance with the proposed statistical picture,
we suppose that the total energy εn of a hierarchically
constrained statistical ensemble comprising of the n > 1
levels l = 0, 1, . . . , n is connected with the effective ener-
gies εl of the level creation by the usual sum

εn :=
n∑

l=0

εl. (20)

Within the statistical theory of random networks [35],
effective energies εl are reduced to a constant for the
microcanonical ensemble and are fixed by the set of
given probabilities pl according to the relation εl =
−∆ ln(pl)+const for both canonical and grand canonical
ensembles with the effective temperature ∆. The above
considered master equation (16) leads to the Tsallis dis-
tribution (18) with the linearly dependent effective ener-

gy εl =
(

2−q
∆

) q−1
2−q l.

In opposition to the statistical theory [35] based on
the Gibbs distribution, we are based on the Tsallis one,
so that probability Pn to create an n-level hierarchical
structure should be connected with the total energy εn

by means of the relation εn = −∆ lnq(Pn) using the de-
formed logarithm (A.1). Then, condition (20) leads to

the additivity of these logarithms:

lnq(Pn) =
n∑

l=0

lnq(pl). (21)

In accordance with the first rule (A.5), this equation
gives the probability relation

Pn := p0 ⊗q p1 ⊗q p2 ⊗q · · · ⊗q pn. (22)

Thus, in contrast to ordinary statistical systems, the cre-
ation probability Pn of a hierarchical structure equals
the deformed production of specific probabilities pl re-
lated to levels l = 0, 1, . . . , n. As the product definition
(A.2) shows, growth of the deformation parameter q > 1
increases essentially the probability (22) in comparison
with the usual value at q = 1. From a physical point of
view, the above deformation of the factorization rule for
independent probabilities recovers the additivity condi-
tion (20) for the corresponding energies within the Tsal-
lis’ thermostatistics.

Taking into account (A.1), Eq. (21) gives the explicit
form of the creation probability of a hierarchical struc-
ture:

Pn = expq

[∑n
l=0 p1−q

l − (n + 1)
1− q

]

=

(
n∑

l=0

p1−q
l − n

) 1
1−q

+

. (23)

Here, the last expression follows directly from the de-
formed production (22) taking into account rule (A.2).
Relations (23) imply a decrease in the creation probabil-
ity with the growth of the hierarchical tree in accordance
with the difference equation

P 1−q
n−1 − P 1−q

n = 1− p1−q
n . (24)

In the non-deformed limit q → 1, relations (22) and (23)
are reduced to the ordinary rule Pn =

∏n
l=0 pl (respec-

tively, Eq. (24) reads Pn/Pn−1 = pn), while at q = 2 the
creation probability (23) takes a maximal value.

It is worthy to note that the principle peculiarity of
the above scheme is that the level energies εl remain to
be additive values because the creation of a hierarchical
structure does not break the law of energy conservation.
However, the hierarchy deforms essentially the probabil-
ity relations (19), (22), (23) and (24) due to the appear-
ance of the coupling between level probabilities pl.

According to Eq. (23) the consequent step in the def-
inition of the creation probability Pn of a hierarchical
structure is the determination of a set of probabilities
{pl}n

0 related to different hierarchical levels. Let us con-
sider first the simplest case of the regular tree depicted
in Fig. 1(a).

IV. REGULAR TREE

Let us consider a regular tree whose nodes multifurcate
on a certain level l with the constant branching index
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b > 1 to generate a set of the Nl = bl nodes determined
with inherent probabilities π = p0/Nl = p0b

−l where p0

is their top magnitude being a normalization constant.
Within a naive proposition, one could permit additivity
of the node probabilities to arrive at the total probabil-
ity of the lth level realization to be pl := Nlπ = p0.
Thus, within the condition of additivity of the node
probabilities, related values pl = p0 = (n + 1)−1 for
all levels appear to be non-dependent of their numbers
l = 0, 1, . . . , n.

To escape such a trivial situation we propose to replace
the above additive connection of the level probability pl

with the node value π by the following deformed equali-
ties:

pl

p0
:=

π

p0
⊕q

π

p0
⊕q · · · ⊕q

π

p0︸ ︷︷ ︸
Nl

≡ Nl �q
π

p0
= bl �q b−l.

(25)
Presenting here the deformed sum of Nl identical terms
with the help of formula (A.4), one obtains required level
distribution in the binomial form

pl =
[1 + (1− q)b−l]b

l

+ − 1
1− q

p0. (26)

A much more elegant form

pl = b−l[bl]λl
p0, λl ≡ [1 + (1− q)b−l]+ (27)

can be attached to equality (26) using the basic num-
ber [33]

[n]λ :=
λn − 1
λ− 1

. (28)

According to Appendix C, in the limit b →∞ related to
the continuous ultrametric space [28] distribution (26) is
simplified into the form

pl ' p∞ +
p0

2
q − 1
eq−1

b−l (29)

that shows exponentially fast decay with the growth of
the level number l ≥ 1. Here, the limit value

p∞ =
e1−q − 1

1− q
p0 = p0 lnq e (30)

is introduced to be p∞ > p0 at the deformation q < 1 and
p∞ < p0 at q > 1. Inserting Eq. (30) into Eq. (23) leads
to the following expression for the creation probability
of a regular tree:

Pn =
{

p1−q
0

[
1 + n (lnq e)1−q

]
− n

} 1
1−q

. (31)

Respectively, the deformed normalization condition re-
lated to the limit b � 1 takes the form

p0 ⊕q [n�q (p0 lnq e)]

=
[1 + p0 (1− q)] [1 + p0 (1− q) lnq e]n − 1

1− q
= 1. (32)

In accordance with the above consideration, Fig. 2(a)
shows probability (26) increasing with the growing num-
ber l of a hierarchical level at q < 1 and decays at q > 1.

Fig. 2. Probability distribution over hierarchical levels of
the regular tree as function of the level number at: (a) b = 2,
n = 10 and q = 10−4, 0.5, 1.0, 1.5, 1.9, 1.99, 1.9999 (curves
1–7, respectively); (b) b = 2, q = 1.5 and n = 1, 2, . . . , 10
(curves top-down, respectively); (c) q = 1.9999, n = 5 and
b = 2, 4, 100 (curves 1–3, respectively).

From a physical point of view, the creation probability
of a lower hierarchical level should be less than for the
higher levels, so that one ought to conclude that only the
case q > 1 is meaningful.
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In this case, with the growing total number of hier-
archical levels n, the probability distribution (26) nor-
malized with condition (19) decays as shown in Fig.
2(b). Characteristically, the form of this distribution de-
pends very weakly on both deformation parameter q and
branching index b excluding the domain 2 − q � 1. Ac-
cording to Fig. 2(c), within this domain, the probability
distribution over hierarchical levels decays not so fast
at small values of the branching index b. With a large
growth of the parameter b � 1, the dependence pl de-
creases faster to reach exponentially fast the minimum
value (30) that is independent of the branching index b.

Fig. 3. Creation probability of the regular hierarchical tree
in dependence of the whole number of its levels at: (a) b = 2
and q = 1.0001, 1.5, 1.9, 1.99, 1.9999 (curves 1–5, respective-
ly); (b) q = 1.9999, n = 10 and b = 2, 4, 100 (curves 1–3,
respectively).

As numerical calculations show, the creation probabil-
ity (23) takes meaningful values P0 ≤ 1 for the defor-
mation parameters q > 1 only. According to Fig. 3(a)
the dependence of this probability on the whole number
of tree levels slows down monotonically with a decaying
rate that decreases considerably only near the limit val-
ue q = 2. On the other hand, Fig. 3(b) shows that a
variation of the branching index b � 1 affects apprecia-
bly the dependence of the the creation probability only
for moderate numbers of tree levels within the domain
2− q � 1.

Fig. 4. Top level probability of the regular tree as function
of the deformation parameter at: (a) b = 2 and n = 2, 4, 10
(curves 1–3, respectively); (b) n = 5 and b = 2, 103 (curves
1,2, respectively).

The above data indicate a distinctive feature in the
behaviour of the regular hierarchical tree near the limit
value q = 2 where the dependence (26) has no singular-
ity. This feature is corroborated with the dependence of
the top level probability on the deformation parameter
depicted in Fig. 4. It is aparent, independent of both the
total number of levels n and

branching index b, of the type shown in Fig. 2(a) this
probability increases monotonically with the q-growth to
reach sharply the limit value p0 = 1 in the point q = 2.
Obviously, this means anomalous increasing probabili-
ties pl for the whole set of hierarchical levels (that with
the curve 7). Though, within the domain 2− q � 1, the
ordinary normalization condition

∑n
l=0 pl = 1 is violat-

ed appreciably, definition (A.3) shows that the deformed
normalization condition (19) can be recovered at a large
parameter q. However, beyond the border q = 2 this con-
dition is not satisfied at all. As a result, we arrive at the
conclusion that physically meaningful values of the de-
formation parameter are concentrated within the domain
q ∈ [1, 2].

V. DEGENERATE TREE

As shown in Fig. 1, the difference between regular and
degenerate trees is that all nodes multifurcate on each
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level in the former case, while the only one node branch-
es in the latter. In this sense, the degenerate tree can
be considered as an antipode of the regular one to be
studied analytically.

According to Fig. 1(b), on the l = 1 level, the branch-
ing process with the index b > 1 creates N1 = b nodes
with equal probabilities b−1. Next, on the l = 2 level,
b − 1 nodes out of N2 = 2(b − 1) + 1 ones have the
same probabilities b−1, while the other b nodes relate
to the smaller value b−2. On the l = 3 level, out of
N3 = 3(b − 1) + 1 nodes one has b nodes with proba-
bilities b−3, b − 1 with b−2 and b − 1 with b−1. Hence,
on the lth level Nl = l(b − 1) + 1 nodes are partitioned
into l groups, among which l−1 ones contain b−1 nodes
with the probabilities b−1, b−2, . . . , b−(l−1), while the
last group has b nodes with equal probabilities b−l. Tak-
ing into account such a partitioning, the creation prob-
ability of the lth hierarchical level is expressed with the
following relations:

pl

p0
=
[
(b− 1)�q b−1

]
⊕q · · · ⊕q

[
(b− 1)�q b−(l−1)

]
︸ ︷︷ ︸

l−1

⊕q

(
b�q b−l

)
=
[
(b− 1)�q b−1

]
⊕q · · · ⊕q

[
(b− 1)�q b−l

]︸ ︷︷ ︸
l

⊕qb
−l

:= [(b− 1)�q (Sl+1 	q 1)]⊕q b−l. (33)

Here, in the last equation the sum of the deformed geo-
metrical series

Sl := 1⊕q b−1 ⊕q b−2 ⊕q · · · ⊕q b−(l−1)︸ ︷︷ ︸
l

(34)

is introduced. As a related consideration in Appendix B
shows, this sum is expressed by the power series

Sl =
l−1∑
k=0

Ck+1
l (b)(1− q)kb−

k(k+1)
2 (35)

with the deformed binomial coefficients [33]

Ck
l (b) ≡

k−1∏
m=0

1− b−(l−m)

1− b−(m+1)
. (36)

Inserting Eq. (35) into the last relation (33), one obtains
the final expression for the lth level creation probability

pl =

[
1 + (1− q)b−l

]
[1 + (1− q)Σl]

b−1 − 1
1− q

p0 (37)

where one denotes

Σl ≡ Sl+1 	q 1 =
1

2− q

l∑
k=1

Ck+1
l+1 (b)(1− q)kb−

k(k+1)
2 .

(38)
Within the product representation

Sl =
1

1− q

{
l−1∏
m=0

[
1 + (1− q)b−m

]
−1

}
, (39)

one has

Σl =
1

1− q


∏l

m=0

[
1 + (1− q)b−m

]
2− q

− 1

 . (40)

Then probability (37) takes the explicit form

pl =

[
1 + (1− q)b−l

]∏l
m=1

[
1 + (1− q)b−m

]b−1

−1

1− q
p0.

(41)
This expression can be rewritten in a more elegant form

pl =

(
1 + 1−q

bl

) (
1 + 1−q

b

)(b−1)l

1/b
− 1

1− q
p0 (42)

using the basic-deformed binomial

(x + y)an
µ :=

n∏
m=1

(
x + µm−1y

)a (43)

modified by exponent a for arbitrary variables x and y.
It is interesting to note that in the case of the regular
tree the simplest form (27) of the probability distribu-
tion is achieved if one uses the basic number (28), while
the same simplification for the degenerate tree requires
using the basic-deformed binomial (43). Both mathemat-
ical constructions (28) and (43) are known to represent
paradigmatic conceptions of the quantum calculus [33].

As is shown in Appendix C, in the limit b →∞ related
to continuous ultrametric space, the probability distribu-
tion (42) takes the asymptotic form

pl ' p∞ +
p0

2
q − 1
eq−1

b−2l. (44)

Similarly to the case of the regular tree characterized by
asymptotics (29) this distribution decays exponentially
fast to the limit probability p∞ determined by Eq. (30).
In the limit q → 1 related to the slight hierarchy, the fac-
tor standing in Eq. (44) before b−2l is simplified to the
form q−1. Thus, one can conclude that both regular and
degenerate trees display the same behaviour. Besides, in
spite of apparent differences between formulas (26) and
(41), direct calculations show actually coincident forms
of the probability distributions over hierarchical levels of
these trees. We postpone a numerical study of the cre-
ation probability for the degenerate tree to the following
section where consideration of the free-scale tree allows
us to compare all the results obtained analytically.

VI. FREE-SCALE TREE

Above, we have considered two conceptual examples of
hierarchical trees with a self-similar structure — regular
and degenerate trees depicted in Fig. 1. In this section,
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we study a free-scale tree whose structure is rather ran-
dom, but the probability distribution over hierarchical
levels tends to the power-law form inherent in self-similar
statistical systems [41].

Fig. 5. Probability distributions over hierarchical levels for
free-scale, regular, Fibonacci and degenerate trees (curves
1–4, respectively) at ∆ = 2, b = 2, n = 10 and q = 1.5
(a), q = 1.9 (b) and q = 1.9999 (c).

In this case, the probability distribution over tree lev-
els is determined by the discrete difference equation [30]

pl+1 − pl = −pq
l /∆, l = 0, 1, . . . , n (45)

accompanied with the deformed normalization condition
(19) (∆ being a distribution dispersion). It is easy to
show that at the continuum limit l → ∞ equation (45)
leads to a power-law dependence (17).

Fig. 6. Creation probabilities of free-scale, regular, Fi-
bonacci and degenerate hierarchical trees (curves 1–4, respec-
tively) as function of the whole level number at ∆ = 2, b = 2
and q = 1.9 (a) and q = 1.9999 (b).

In Figs. 5 we compare the probability distributions
over hierarchical levels of free-scale, regular and degen-
erate trees at different values of the deformation param-
eter. It is seen at all q-values that form of these distribu-
tions is actually equal for regular and degenerate trees,
but differs appreciably for free-scale tree, where the level
probability falls down much more strongly, than for both
other trees. In accordance with such behaviour, the cre-
ation probabilities depicted in Figs. 6 decays faster for
the free-scale tree than in the case of the regular and de-
generate ones. Characteristically, this difference appears
only within the domain 2 − q � 1 of the deformation
parameter variation.

As shown in the end of section III, such behaviour is
stipulated by the singular dependence of the top level
probability p0 on the deformation parameter near the
point q = 2. According to Fig. 7 this singularity is inher-
ent in of the all considered hierarchical trees.
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Fig. 7. Top level probabilities for the free-scale, regular,
Fibonacci and degenerate trees (curves 1–4, respectively) as
function of the deformation parameter at ∆ = 2, b = 2 and
n = 5.

VII. ARBITRARY TREE

Now, we are in position to consider an arbitrary hi-
erarchical tree, over whose levels l = 0, 1, . . . , n, n ≥ 1
are distributed Nl nodes i0i1 . . . il with the probabilities
pi0i1...il

1. The main peculiarity of hierarchical trees is
known to be a clustered structure, whose fragment is de-
picted in Fig. 8: nodes i0 . . . il−1il of the lth level form
a cluster i0 . . . il−1 on the (l − 1)-level; in turn, clusters
i0 . . . il−2il−1 form supercluster i0 . . . il−2 on the follow-
ing level l − 2, et cetera. The above clustering process
spreads over the upper levels l − 3, l − 4, . . . up to the
pair of the top levels l = 1 and l = 0 where Ni0 nodes
i1 form the superior node i0. Along this way, the node
probabilities on the hierarchical levels ranged bottom-
up as follows: pi0...in−1in

, pi0...in−1 , . . . , pi0...il
, . . . , pi0i1 ,

pi0 ≡ p0. Let us calculate these probabilities considering
hierarchical levels top-down.

Fig. 8. Node parametrization within a hierarchical cluster.

On the uppermost level l = 0, one has a single node
i0 = 1 related to the probability p0 ≡ pi0 . With the
passage down to the level l = 1, this node multifurcates
into a cluster comprising of Ni0 nodes i1. Because of the
identity of these nodes, they are characterized by equal
probabilities

pi0i1 = p0N
−1
i0

. (46)

In a similar manner, on the following level l = 2 one
obtains the node probabilities

pi0i1i2 = pi0i1N
−1
i0i1

= p0 (Ni0Ni0i1)
−1

. (47)

The iteration of this procedure down to an arbitrary level
l yields the required result

pi0...il
= p0

(
l−1∏
m=0

Ni0...im

)−1

(48)

where Ni0...im
is the node number within the cluster

i0 . . . im.
Generalization of the first equality (25) leads to the ex-

pression of the creation probability of an arbitrary level l
through a set of related node probabilities. This expres-
sion is reduced to the following l-fold deformed sum:

pl

p0
=

Ni0⊎
i1=1

· · ·
Ni0...il−1⊎

il=1

pi0...il

p0
, l 6= 0. (49)

Respectively, the normalization condition (19) takes the
form

p0 ⊕q p0

Ni0⊎
i1=1

· · ·
Ni0...in−1⊎

in=1

pi0...in

p0
= 1. (50)

Above, we have used the notation of the deformed sum
of n terms:

n⊎
i=1

ai ≡ a1 ⊕q a2 ⊕q · · · ⊕q an. (51)

It is worth noting the characteristic peculiarity of the
above consideration: the node probabilities (48) are de-
termined making use of non-deformed algebra, while def-
inition (49) of the level probabilities pl is based on the
use of deformed summation (51). A ground of such a par-
titioning is that the former of these probabilities relates
to the configuration of hierarchical trees, while the latter
describes their statistical properties.

In conclusion, we consider two examples of the ap-
plications of the above theory, among which the former

1In accordance with Ref. [28], a node coordinate of a hierarchical tree represents so called p-adic number i0i1 . . . in where the
first digit i0 = 1 relates to the major ancestor on the uppermost level l = 0, the second i1 numbers are its sons on the lower
level l = 1, and so on — up to the last digit in numbering the lowest descendants on the bottom level l = n.
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concerns the Fibonacci tree (Fig. 1(b)), while the lat-
ter relates to the schematic evolution tree shown in Fig.
9 (in the last case, nodes identify substantial stages in
the evolution of life, e. g., human is situated on the 24th
level). Using formulas (48) and (49) for the node and
level probabilities, obeying the normalization condition
(50), we show that the probability distributions of the Fi-
bonacci tree depicted in Figs. 5–7 do not differ actually
from related dependencies for both regular and degen-
erate trees. Concerning the evolution tree, its probabili-
ty distributions (Fig. 10) show that the presence of the
stopped branches (type of two rightmost ones in Fig. 9)
considerably decreases the creation probability of new hi-
erarchical levels. Particularly, the probability of appear-
ance of man takes the values more than 10−4 only at the
deformation parameter q = 1.9999.

Fig. 9. Schematic representation of evolution tree (from
Ref. [42]).

Fig. 10. Creation probability of the evolution tree vs. the
level number at: q = 1.0001, 1.1, 1.2, 1.3, 1.4, 1.5, 1.7, 1.9,
1.9999 (curves 1–9, respectively).

VIII. CONCLUDING REMARKS

To avoid ambiguities it is worthwhile stressing that
our consideration concerns rather a probabilistic picture
of the creation of the hierarchical trees themselves than
hierarchical phenomena and processes evolving on these
trees (for example, hierarchically constrained statisti-
cal ensembles [13], diffusion processes on multifurcating
trees [29], etc.). Among others we have studied analyt-
ically both regular and degenerate trees to confirm the
coincidence of both analytical and numerical results fol-
lowing from the developed scheme applicable to an arbi-
trary tree.

A principle peculiarity of the elaborated probabilis-
tic picture is a distinction between the deformed and
non-deformed quantities. Thus, effective energies of hi-
erarchical levels in Eq. (20) are non-deformed quantities
because the creation of hierarchical structures does not
break the conservation law of energy being an additive
value. Moreover, the node probabilities are determined
making use of non-deformed relations (48) because these
probabilities relate to the configuration of the hierarchi-
cal tree itself (in other words, they are determined by
geometrical, but not probabilistic reasons). At the same
time, the hierarchy appearance deforms essentially the
probability relations (19), (50), (22), (23) and (24) due
to the coupling level probabilities pl. Similarly, the defini-
tion (49) of these probabilities through the corresponding
node values is based on the use of deformed summation
(51).

Making use of the deformed algebra leads to an in-
crease of probabilities pl for the whole set of hierarchical
levels to take anomalous character near the point q = 2.
The deformed normalization condition (19) is fulfilled on-
ly at q ≤ 2, while it is broken beyond the limit q = 2. As
a result, physically meaningful values of the deformation
parameter belong to the domain q ∈ [1, 2].

Our comparison of the probability distributions over
hierarchical levels of scale-free, regular, Fibonacci and
degenerate trees shows (Fig. 5) that the form of these
distributions differs appreciably at all q-values only for
scale-free tree where the level probability decays much
faster. In accordance with such behaviour, the creation
probabilities depicted in Fig. 6 decays faster for the scale-
free tree than for the other cases. Characteristically, this
difference appears within the condition 2− q � 1 only.

Expressions (48)–(50) and (23) constitute the basis for
numerical studies of arbitrary hierarchical structures, for
example complex defect structures of solids subject to
intensive external influence, e.g. a rigid radiation treat-
ment. Unlike in amorphous systems, the number of struc-
ture levels of a real crystal is rather not large: usually,
among different spatial scales, it is accepted to distin-
guish micro-, meso- and macroscopic levels [43]. To study
a real structure, one needs first to distribute the whole
ensemble of defects over hierarchical levels l = 0, 1, . . . , n;
then, one calculates on each of them a number of de-
fects Ni0i1...il−1 belonging to the cluster i0i1 . . . il−11,
i0i1 . . . il−12, . . . , i0i1 . . . il−1Ni1i2...il−1 and attributes
the probability pi0...il

to this cluster in accordance with
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Eq. (48). Next, the level probabilities pl are calculated
according to definition (49) where the top value p0 is
fixed by the normalization condition (50). Finally, the
creation probabilities Pn of hierarchical trees are deter-
mined by equality (23).

APPENDIX A: MAIN RULES OF DEFORMED
ALGEBRA

Following [32], let us present the main equations of the
deformed algebra. The related formalism is known to be
based on a generalized definition of the logarithm and
exponential functions

lnq(x) :=
x1−q − 1

1− q
,

expq(x) := [1 + (1− q)x]
1

1−q

+ (A.1)

being characterized by the deformation parameter q ≥ 0
with the notion [y]+ ≡ max(0, y). For any numbers
x, y > 0, the deformed product and ratio are defined
by the following relations:

x⊗q y :=
[
x1−q + y1−q − 1

] 1
1−q

+
,

x�q y :=
[
x1−q − y1−q + 1

] 1
1−q

+
. (A.2)

Respectively, the deformed sum and difference read

x⊕q y := x + y + (1− q)xy,

x	q y :=
x− y

1 + (1− q)y
(A.3)

where the condition y 6= − 1
1−q is implied. The n-fold

deformed sum of identical terms is defined as follows:

n�q x ≡ x⊕q x⊕q · · · ⊕q x︸ ︷︷ ︸
n

:=
[1 + (1− q)x]n+ − 1

1− q
.

(A.4)
The rules (A.2), (A.3) ensure the following properties of
the q-logarithm and the q-exponential (A.1):

lnq(x⊗q y) = lnq x + lnq y,

lnq(x�q y) = lnq x− lnq y;
expq(x)⊗q expq(y) = expq(x + y),
expq(x)�q expq(y) = expq(x− y). (A.5)

APPENDIX B: DEFORMED SUM OF TERMS OF
A GEOMETRICAL PROGRESSION

Let a geometrical sequence a, ar, ar2, . . . , arn−1 be de-
termined by the common ratio r, the scale factor a and
the term number n. With the deformed summation rule
(A.3), direct calculations at lower numbers n = 2, 3, . . .
show the sum of terms of a geometrical progression

Sn := a⊕q ar ⊕q ⊕qar2 ⊕q · · · ⊕q arn−1︸ ︷︷ ︸
n

(B.1)

can be written as the series

Sn := a
n−1∑
m=0

σm
n [(1− q)a]m (B.2)

with unknown coefficients σm
n . The iteration of Eq. (B.1)

yields the chain of the following relations:

Sn+1 : = Sn ⊕q (arn) = (Sn + arn) + (1− q)Sn(arn)

=

{
a
(
σ0

n + rn
)

+ a
n−1∑
m=1

σm
n [(1− q)a]m

}

+ (1− q)a(arn)
n−1∑
m=0

σm
n [(1− q)a]m

= aσ0
n+1 + a

n−2∑
l=0

σl+1
n [(1− q)a]l+1

+ a[(1− q)a]rn
n−1∑
m=0

σm
n [(1− q)a]m

= aσ0
n+1 + a

n−2∑
l=0

(
σl+1

n + rnσl
n

)
[(1− q)a]l+1

+ a[(1− q)a]rnσn−1
n [(1− q)a]n−1

= aσ0
n+1 + a

n−1∑
m=1

(
σm

n + rnσm−1
n

)
[(1− q)a]m

+ aσn−1
n [(1− q)a]nrn. (B.3)

Here, the first line takes into account definition (A.3); in
the second line, series (B.2) is applied to single out the
term related to m = 0 within the braces; in the fourth
line, the first term is written in accordance with defini-
tion (B.2) related to the term m = 0, while the summa-
tion index l = m − 1 is introduced in the second term;
in the sixth line, the second term contains both sums
over l and m of the previous line, the last term relates
to the index m = n− 1; in the eighth line, we return to
the summation index m = l + 1. As a result, series (B.2)
takes the form

Sn = asn + a
n−2∑
m=1

(
σm

n−1 + rn−1σm−1
n−1

)
[(1− q)a]m

+aσn−2
n−1 [(1− q)a]n−1rn−1 (B.4)

where the sum

sn ≡
n−1∑
m=0

rm =
1− rn

1− r
(B.5)

of the ordinary geometrical progression 1, r, r2, . . . , rn−1

was used. The comparison of the terms of Eqs. (B.2)
and (B.4) related to the equal m indices arrives at the
following recursion relations:
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σ0
n = sn; (B.6)

σm
n = σm

n−1 + σm−1
n−1 rn−1, m ∈ [1, n− 2]; (B.7)

σn−1
n = σn−2

n−1rn−1. (B.8)

The first of these terms gives an explicit expression
of the lowest power coefficient in series (B.2). It is easy
to convince oneself that regression (B.7) is satisfied with
the insertion

σm
n =

n−1∑
l=0

σm−1
l rl (B.9)

whose iteration yields

σm
n =

n−1∑
l=0

σm−1
l rl =

n−1∑
l=0

l−1∑
k=0

σm−2
k rl+k = . . .

=
n−1∑

lm−1=0

rlm−1

lm−1−1∑
lm−2=0

rlm−2 · · ·
l1−1∑
l0=0

σ0
l0r

l0 . (B.10)

However, the last expression is inconvenient for direct
calculations because it contains connected exponents of
the ratio r with the upper limits of the consequent sums.
Hence, let us calculate explicitly the coefficients (B.9) for
small indices m:

σ1
n =

n−1∑
l=0

σ0
l rl =

n−1∑
l=0

slr
l =

n−1∑
l=0

1− rn

1− r
rl

= r
(1− rn)(1− rn−1)

(1− r)(1− r2)
,

σ2
n =

n−1∑
l=0

σ1
l rl = r

n−1∑
l=0

(1− rl)(1− rl−1)
(1− r)(1− r2)

rl

= r3 (1− rn)(1− rn−1)(1− rn−2)
(1− r)(1− r2)(1− r3)

,

. . . (B.11)

These expressions show that the above coefficients are
proportional to the fractions, whose denominators rep-
resent the production of the terms 1− rl+1 with growing
powers l = 0, 1, . . . , while the numerators contain the
same number of the terms 1− rn−l with decreasing pow-
ers. As a result, we suppose the coefficients to be found
in the following form:

σm
n = r

Pm
k=1 k

m∏
l=0

1− rn−l

1− rl+1

= r
m(m+1)

2

m∏
l=0

1− rn−l

1− rl+1
. (B.12)

At m = 0 this equality is reduced to the condition
(B.6). Respectively, at m ∈ [1, n − 2] inserting (B.12)
into (B.7) arrives at the following relations:

σm
n = r

Pm
k=1 k

m∏
l=0

1− rn−1−l

1− rl+1
+ r

Pm−1
k=1 k

m−1∏
l=0

1− rn−1−l

1− rl+1
rn−1

= r
Pm

k=1 k
m∏

l=0

1− rn−1−l

1− rl+1

(
1 +

1− rm+1

1− rn−m−1
rn−1−m

)
= r

Pm
k=1 k

∏m+1
l=1 (1− rn−l)∏m
l=0(1− rl+1)

1− rn

1− rn−m−1

= r
Pm

k=1 k

∏m
l=0(1− rn−l) 1−rn−(m+1)

1−rn∏m
l=0(1− rl+1)

1− rn

1− rn−m−1
= r

m(m+1)
2

m∏
l=0

1− rn−l

1− rl+1
. (B.13)

In the third line, the overall multiplier is singled out
from terms of the second line; the last fraction in the
fourth line is obtained with obvious summation in brack-
ets of the previous line; the fraction in the numerator of
the first fraction in the fifth line appears to single out
the multipliers related to both lower l = 0 and upper
l = m + 1 limits in the upper production; the last line is
the result of reduction of fractions in the previous line.
Finally, at m = n − 1 Eqs. (B.8) and (B.12) take the
equal form

σn−1
n = r

n(n−1)
2 . (B.14)

Thus, one can conclude that proposition (B.12) is appli-
cable for all indices m ∈ [0, n − 1] and its insertion into

Eq. (B.2) arrives at the final expression of the sum of the
terms of a geometrical progression (B.1):

Sn = a
n−1∑
m=0

Cm+1
n (r)r

m(m+1)
2 [(1− q)a]m (B.15)

with the coefficients

Cm
n (r) ≡

m−1∏
l=0

1− rn−l

1− rl+1
. (B.16)

Expression (B.15) can be written within the product
representation according to the relations
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Sn =
1

1− q

{
n∑

m=0

Cm
n (r)r

m(m−1)
2 [(1− q)a]m − 1

}

=
1

1− q

{
n−1∏
m=0

[
1 + a(1− q)rm

]
−1

}
, (B.17)

the second of which expresses the deformed Gauss poly-
nomials [33,44]

n∑
m=0

Cm
n (r)r

m(m−1)
2 [(1− q)a]m

=
n−1∏
m=0

[
1 + a(1− q)rm

]
. (B.18)

Taking into account definition (A.4), one obtains at r = 1

Sn =
[1 + (1− q)a]n − 1

1− q
= n�q a. (B.19)

In the non-deformed limit q → 1, this relation takes the
trivial form Sn = na.

Rewriting definition (B.16) in the forms

Cm
n (r) =

n∏
l=(n−m)+1

(
1− rl

)
m∏

l=1

(1− rl)

=

n∏
l=1

(
1− rl

)
m∏

l=1

(1− rl)
n−m∏
l=1

(1− rl)
, (B.20)

one can see that coefficients (B.16) are reduced to the
deformed binomial coefficients [33,44]

Cm
n (r) ≡ [n]r!

[m]r![n−m]r!
(B.21)

determined with the deformed factorial

[n]r! ≡ [1]r[2]r . . . [n]r

=
(r − 1)(r2 − 1) . . . (rn − 1)

(r − 1)n
,

[n]r ≡ 1 + r + r2 + · · ·+ rn−1 =
rn − 1
r − 1

(B.22)

According to formula (B.21), the deformed binomial co-
efficients obey the usual property

Cm
n (r) = Cn−m

n (r). (B.23)

After replacing index m + 1 by m in Eq. (B.7) tak-
ing into account Eq. (B.12), we arrive at the deformed
Pascal identity

Cm
n (r) = Cm

n−1(r) + Cm−1
n−1 (r)rn−m (B.24)

that forms the deformed Pascal triangle

1
1 1

1 C1
2 (r) 1

1 C1
3 (r) C1

3 (r) 1
1 C1

4 (r) C2
4 (r) C1

4 (r) 1
1 C1

5 (r) C2
5 (r) C2

5 (r) C1
5 (r) 1

. . . (B.25)

where we put C0
n(r) = 1. On the other hand, the iteration of relation (B.7) yields the sum rule

Cm
n (r) = Cm

n−1(r) +
[
Cm−1

n−2 (r) + Cm−2
n−2 (r)rn−m

]
rn−m = · · · =

m∑
l=0

Cm−l
n−(l+1)(r)r

(n−m)l. (B.26)

Finally, in limit r → 1 relation (B.21) takes an ordinary form:

lim
r→1

Cm
n (r) = lim

r→1

m∏
l=0

1− rn−l

1− rl+1
=

m−1∏
l=0

n− l

l + 1
≡ n!

m!(n−m)!
. (B.27)

APPENDIX C: OBTAINING ASYMPTOTIC
FORMS OF DISTRIBUTIONS (26) AND (42)

The simplest way to find the b → ∞ limit of the bi-
nomial in distribution (26) is to take its logarithm and
then use the expansion over powers of b−l:

ln
[
1 + (1− q)b−l

]bl

+
= bl ln

[
1 + (1− q)b−l

]
+

' bl

[
(1− q)b−l − 1

2
(1− q)2b−2l

]
(C.1)

= (1− q)
(

1 +
q − 1

2
b−l

)
.
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The potentiation of the last expression and the insertion
of the obtained result into Eq. (26) yields the asymp-
totics (29).

According to definition (43) the basic-deformed bino-
mial in Eq. (42) takes the explicit form(

1 +
1− q

b

)(b−1)l

1/b

=
(

1 +
1− q

b

)b−1(
1 +

1− q

b2

)b−1

. . .

(
1 +

1− q

bl

)b−1

. (C.2)

In the limit b →∞, the first factor takes the value e1−q,

while the rest of production is estimated as

1 + (q − 1)b−l +
(q − 1)2

2
b−2l. (C.3)

In order to obtain this estimation, firstly, each of the fac-
tors in (C.2) has been expanded into a series up to the
square term, then the brakets have been removed and,
finally, all the factors before each power of 1 − q have
been collected and reduced. Inserting the obtained esti-
mation into the probability distribution (42) and taking
into account the terms 1−q up to the second order leads
to the asymptotic form (44) of this distribution.
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IМОВIРНОСТI УТВОРЕННЯ IЄРАРХIЧНИХ ДЕРЕВ

О. I. Олємской1,2, I. О. Шуда2, С. С. Борисов2

1Iнститут прикладної фiзики НАН України, вул. Петропавлiвська, 58, 40030, м. Суми, Україна
2Сумський державний унiверситет, вул. Римського-Корсакова, 2, 40007, м. Суми, Україна

Ми розглядаємо аналiтично й чисельно умови утворення рiзних iєрархiчних дерев. Дослiджуємо зв’язок
мiж iмовiрностями утворення iєрархiчних рiвнiв та ймовiрностi об’єднання цих рiвнiв у єдину структуру.
Показуємо, що побудова послiдовної ймовiрнiсної картини вимагає використання деформованої алґебри.
Наш розгляд заснований на вивченнi основних типiв iєрархiчних дерев, серед яких реґулярне й вироджене
дослiдженi аналiтично, тодi як iмовiрностi утворення дерева Фiбоначчi та самоподiбного дерева визначенi
чисельно. Ми знаходимо загальний вираз для ймовiрностi утворення довiльного дерева й обчислюємо суму
членiв деформованої геометричної проґресiї, яка з’являється при розглядi виродженого дерева.
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