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Effect of Reinforcement on the Crack Resistance of Concrete Slabs

Abstract. A preliminary analysis of the available publications devoted to the study of crack resistance of reinforced 
concrete structures showed the absence of established general patterns of influence of important geometric parameters 
inherent in reinforced concrete elements on the distribution of the characteristics of fracture mechanics along the crack 
front. Based on the analysis, the purpose of the study was formulated: to establish these regularities for a concrete slab 
reinforced with a system of longitudinal steel rods. When conducting the research, a linear and elastic model of concrete 
was used, and the stress intensity factor was considered as a characteristic of the fracture mechanics. A surface crack of 
constant depth located in the cross-section of the slab was postulated. It was assumed that its faces completely cover the 
cross-section of reinforcing rods. The crack depth, the depth of reinforcing rods, their diameter, and the distance between 
adjacent rods were chosen as dimensionless geometric parameters relative to the thickness of the slab. The slab was loaded 
with two types of loads applied to its ends: constant tensile stresses (pure tension) and linearly variable axial stresses (pure 
bending). The problem of determining the stress intensity coefficient depending on geometric parameters was reduced to 
the boundary problem of elasticity theory. The CalculiX finite element analysis package was used to solve it and obtain the 
stress-strain state of the slab. More than four hundred finite element models were constructed for various combinations of 
parameters. Based on the known displacements of the crack face points, the values of the stress intensity factor along the 
crack front were calculated using the relation obtained in the study. It is established that its values significantly depend 
on the diameter of the reinforcement, and therefore, when conducting practical calculations, it is not recommended to 
replace the action of reinforcement on concrete with concentrated force. Polynomial approximations with a relative error 
of 10% are obtained for extreme values of the stress intensity factor. The materials of the study can be useful in the design 
of reinforced concrete structures, and when studying or teaching a course in fracture mechanics
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INTRODUCTION
Issues of crack resistance of reinforced concrete structures 
(RCS) have been relevant for almost as long as the RCSs them-
selves exist, that is, for more than a century and a half. Such 
an insatiable interest in this topic is explained by its direct 
attitude to ensuring the safe operation of residential, public, 
and industrial constructions, because almost every modern 
construction includes reinforced concrete elements. Disre-
gard for the rules and regulations of operation of such facili-
ties is unacceptable and can lead to serious consequences. In 

this context, it is enough to recall only the case of the “worn-
out” Shuliavsky bridge in Kyiv [1], when, under a favourable 
set of circumstances, there were no human casualties.

Historically, most of the publications devoted to the 
crack resistance of RCSs are experimental in nature. This 
circumstance is explained by the relative simplicity of man-
ufacturing experimental samples and the guaranteed relia-
bility of the results of field experiments. Theoretical studies 
of the crack resistance of RCSs for a long time remained at 
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the level of model representations and were of little use for 
direct practical application. The situation began to change 
in the last two decades, when the development of – pro-
gramme codes, primarily finite element analysis software, 
and computer technology allowed modelling the complex 
structure of RCSs with sufficient discreteness, capable of 
reproducing an adequate picture of the stress-strain state (SSS) 
of the reinforced concrete elements under study.

It is worth noting that concrete is generally a physically 
nonlinear material [2]. Therefore, many concepts of nonlin-
ear fracture mechanics have emerged and/or found their fur-
ther development in the study on crack resistance of concrete 
structures. Among them, it is worth noting the two-parameter 
criterion of local destruction, which in Ukrainian literature is 
usually referred to as the Leonov-Panasyuk-Dugdale model [3]. 
Other concepts used in the study of crack resistance of concrete 
elements include: the pre-destruction zone, the law of sample 
thickness, the fracture resistance curve (R-curve), etc. A fairly 
complete overview of the corresponding models is given in [4].

Despite the physical nonlinearity of concrete, the 
results of many studies [5-7] indicate the possibility of using 
linear fracture mechanics (LFM) methods to assess the state 
of cracks in concrete structures. One of the circumstances 
that facilitate this is the relatively large size of these struc-
tures, and the condition for the legality of using LFM is the 
small plastic zone in the vicinity of the crack vertex com-
pared to the crack length [8]. The length of the macro-crack 
by definition should be commensurate with the character-
istic size of the body in which it is located (otherwise, it 
refers to micro-cracks, the growth patterns of which are 
studied by methods of fatigue theory). Consequently, with  
given mechanical properties of the material, an increase in 
the size of the body increases the legality of using LFM in 
the study of its crack resistance. Based on the above, it can 
be argued that determining the characteristics of LFM in 
RCSs is of theoretical and practical interest. A significant 
amount of work is devoted to the investigation of the effect 
of reinforcement on the distribution of the values of the 
stress intensity factor (SIF), which is the main characteristic 
of LFM, along the crack front. The study will briefly consider 
papers that have a similar object of research.

The study [9] considered a reinforced concrete rod hav-
ing an edge crack of constant depth located in some of its 
cross-section. Under assumption that the rod is in a deforma-
ble state of bending two approaches to determining the SIF of 
such a crack, are proposed: analytical and based on finite ele-
ment modelling. According to the analytical approach, the 
stress state in the cross-section of the crack location was 
approached as the stress state of the rod, the cross-section 
height of which is less than the cross-section height of the 
original rod by the crack length. The nonlinear relation-
ship between stresses and deformations inherent in con-
crete was also considered. From the condition of compat-
ibility of deformations of concrete and reinforcement and 
Hooke’s law, the stresses acting in the reinforcement were 
determined. In the future, the effect of reinforcement on 
the stress state of concrete was modelled by a concentrated 

force equal to the equivalent of the specified stresses, that is, 
their product on the cross-sectional area of reinforcement. 
The estimated stresses obtained in this way in the vicinity 
of the crack vertex were considered, in fact, as nominal load 
stresses in the Griffiths crack problem, and the SIF value 
itself was established based on the Griffiths formula. The 
numerical solution, which was based on classical linear frac-
ture mechanics and the finite element method, was imple-
mented using standard tools of the ANSYS software suite. 
The methods were compared for a single set of geometric 
and mechanical parameters. The discrepancy in the SIF val-
ues obtained by analytical and numerical methods was 1.3% 
for a certain value of the external bending moment. How-
ever, it increased rapidly with a slight increase in bend-
ing moment. Thus, with an increase in the moment by one 
and a half times, the discrepancy increased by an order 
of magnitude. The authors explain this by the fact that, 
unlike the numerical value of SIF, the analytical value does 
not depend linearly on the external moment.

The study [10] also considered a reinforced concrete 
rod having an edge crack of constant depth located in its 
cross-section. It is indicated that the simulation was per-
formed using the ANSYS finite element analysis software 
suite. However, no geometric parameters indicating the rel-
ative position of the crack and reinforcement are reflected 
in the model description. The main conclusion made in the 
above paper is the significant dependence of the rod stiff-
ness and the stress intensity factor on the rod width. This 
conclusion was also made on models with slightly varia-
ble geometric parameters: only the width of the rod changed 
within 50%.

In [11] the effect on the crack resistance of a concrete 
sample of a system of steel reinforcing bars located in it in 
a plane perpendicular to the external bending moment as 
a vector was investigated. In this case, some of these rods 
passed through the faces of a flat edge crack, which was pos-
tulated in the cross-section of the sample. As in the above 
studies, the effect of reinforcement on the stress state of 
concrete was modelled by concentrated forces. Although the 
paper provides an expression for SIF for the crack under 
study, which is based on the assumption of the flat nature 
of the problem and the superposition principle, the main 
attention in analysing the results is focused on the depend-
ence of the stiffness of a reinforced concrete sample on 
the geometric and mechanical properties of its components.

Obviously, this review does not claim to be complete, 
but it reflects the main trends of such studies: the charac-
teristics of LFM, if calculated, are only for very limited vari-
ations in the parameters of the concrete-reinforcement sys-
tem. This restriction does not provide general conclusions 
about the criticality of a particular RCSs defect, depending 
on its size and the parameters of the reinforcement frame. 
Therefore, the purpose of this study is to determine the 
stress intensity factor depending on the geometric charac-
teristics of a reinforced concrete element with a crack: the 
depth of the crack, the thickness of reinforcing rods and the 
parameters of their location. The originality of the study is 
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explained by the lack of similar results in available papers, 
and its relevance is explained by the need to create a hand-
book of RCS defects that can help quickly assess the danger 
of defects in practice. The presence of these dependencies 
also allows analysing the fatigue growth of cracks. A sepa-
rate goal of the study is to evaluate the validity of modelling 
the effect of reinforcement on the stress state of concrete 
with concentrated force, which is often used in theoretical 
studies, based on numerical results.

MATERIALS AND METHODS
The analysis of the influence of reinforcement on the crack 
resistance of RCSs will be carried out on the example of 
a reinforced concrete plates (slabs). Reinforced concrete 
slabs (RCPs) are one of the most commonly used structural 
elements in construction. The floor overlaps of most multi- 
storey constructions, the walls of panel houses, the founda-
tions of low-rise buildings – all these components are made 

in the form of RCPs [12]. As a result, this structural element 
is very variable in its size, shape, and configuration of rein-
forcement frames. Therefore, to assess their crack resist-
ance, it is necessary to investigate the patterns of the influ-
ence of reinforcement on the distribution of SIF along the 
front of hypothetical cracks that may occur in RCP.

Problem statement. The study considers a concrete 
rectangular slab of length L, width W, and thickness h, rein-
forced with longitudinal steel rods in increments 2s by the 
width of the slab (Fig. 1a). The axes of the reinforcement 
bars are located at a distance of a from the lower surface of 
the slab, and their diameter is equal to d. It is assumed that 
in such a slab, in some of its cross-section, an edge crack 
of constant depth l has occurred, which is greater than the 
depth of the reinforcement: l>a+d/2. In other words, the face 
of the crack completely covers the reinforcing rods in the 
cross-section of its location.

As an external load, the longitudinal stresses applied 
to the ends of the slab are considered: constant tensile 
stresses p (Fig. 2a) and linearly distributed stresses of max-
imum intensity p (Fig. 2b). The first type of load corresponds 
to the pure tension of the slab, and therefore, the results 
associated with it will be denoted by index N. The second 
type of load determines the pure bend ing of the slab, and 
therefore, the corresponding results will be denoted by 
index M. Due to the immutability of the load along the width 
of the slab, its stress-strain state will have a periodic char-
acter along the transverse direction. Therefore, to find it, it 
is enough to consider only a strip of width s – one half-pe-
riod of the slab, which is shown in Fig. 1b. A coordinate 

system associated with a half-period is introduced: its axis x 
is directed along the crack front, axis y is directed vertically 
upwards and intersects the axis of the reinforcement rod, and 
the axis z is directed along the rod, which is shown in Figure 1b 
in dark grey. In this case, the area of the crack edge shown in 
Fig. 1b is highlighted in a light gray shade, set by the condi-
tions z=0 and y<0. It will be also assumed that the plane of the 
crack location is located at a sufficiently large distance from 
plate end compared to s. In this case, the influence of edge 
effects on the stress distribution near the crack front can be 
ignored and it is assumed that it is symmetric with respect to 
the plane xy, and therefore, it is enough to consider the SSS 
of only one half of the slab period, for example, z>0.

Figure 1. Geometry of the problem: a) general view of RCP; b) half-period of RCP
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Figure 2. Plate load: a) σzN (tension); a) σzM (bending)
a) b)

p p

Thus, the following problem is obtained: it is neces-
sary to find the stress-strain state of an elastic body in the 
form of a rectangular parallelepiped, shown in Fig. 1b, if its 
surface is free of tangential stresses, and: the side surfaces 
y=-l and y=h-l and the surface of the crack face (z=0 and 

y≤0 except for the cross-section of the reinforcement) are 
also free from normal stresses, on the rest of the end face 
z=0 (y>0 without the cross-section of the reinforcement) 
are free of normal stresses; rest of end z=0 and two sides 
x=0 and x=s because of symmetry conditions are of normal 
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displacements; and at the far end z=D (D»h) normal stresses 
are prescribed as:

σzN=p=const    or    σzM=2p(h/2-l-y)/h.              (1)

The problem statement is completed by setting the 
elastic properties of the material. Elastic modulus E and 
the Poisson’s ratio v of concrete will be considered equal 
to 24 GPa and 0.2, respectively, which corresponds to the 
design values of concrete class C20/25 [13].

Note that, according to the statement, the problem 
contains 4 dimensionless geometric parameters. The following 
are selected as independent ones:

s̄ =s/h, l̄ =l/h, ā =a/h, d̄ =d/h.                        (2)

As a method for solving this problem, the study will 
use the finite element method (FEM) implemented in the 
CalculiX packege. This packege determines SSS in solid 
deformable bodies of various rheological nature under 
the action of force and temperature loads [14]. Despite the 
fact that CalculiX is a free-access software suite, its capa-
bilities are not much inferior to many similar commercial 
products, and in some aspects, due to the openness of its 
code, even surpass them. This packege also allows solving 
problems of fracture mechanics, even in a nonlinear for-
mulation [15]. Fig. 3 shows a general view of the CalculiX 
finite-element model and its separate part in the vicinity of 
the reinforcement rod outlet to the crack face at s̄ =1, l̄ =0.3, 
ā =0.1, d̄ =0.1. The model is formed using 20- and 15-node 
quadratic elements of type C3D20 and C3D15, respectively.

Figure 3. Finite element model for s̄ =1, l̄ =0.3, ā =0.1, d̄ =0.1: a) general view; b) crack face near reinforced rod

a) b)

Since CalculiX does not have its own SSF estimation 
tool, it was implemented using additional code. The idea of 
determining the SIF from pre-calculated SSS is to approx-
imate the field of normal displacements of the points of 
the crack edges u with an expression (A++Bρ)√ρ, where ρ – 
distance from the displacement determination point to the 
crack front. Thus, to determine the constans A and B, it is 
enough to know the displacements u1 and u2 at two points 
near the crack front located at a distance of ρ1 and ρ2, respec-
tively. Indeed, substituting the pair of values (ρ1, u1) and 
(ρ2, u2) in the expression u=(A+Bρ)√ρ, a system of two linear 
equations is obtained with respect to constants A and B. The 
field of normal displacements of the crack edges of a nor-
mal fracture in the case of plane deformation (the case of 
the problem formulated) in accordance with the asymptotics 
of the Westerhard’s solution is given by the relation [8; 16]:

 
 𝑢𝑢𝑢𝑢 = 4(1−𝑣𝑣𝑣𝑣2)

𝐸𝐸𝐸𝐸√2𝜋𝜋𝜋𝜋
𝐾𝐾𝐾𝐾�𝜌𝜌𝜌𝜌, 𝜌𝜌𝜌𝜌 → 0 ,                          (3)

where the constant K is the stress intensity factor. Compar-
ing expressions (A+Bρ)√ρ and (3), we can conclude that K 

is proportional to the constant A. Therefore, based on the 
above relations, the expression for SIF is obtained:

𝐾𝐾𝐾𝐾 =
𝐸𝐸𝐸𝐸√2𝜋𝜋𝜋𝜋

4(1− 𝑣𝑣𝑣𝑣2)
𝑢𝑢𝑢𝑢1�𝜌𝜌𝜌𝜌23 − 𝑢𝑢𝑢𝑢2�𝜌𝜌𝜌𝜌13

�𝜌𝜌𝜌𝜌1𝜌𝜌𝜌𝜌2(𝜌𝜌𝜌𝜌2 − 𝜌𝜌𝜌𝜌1)
 .                   (4)

Equation (4) is the basis for determining the SIF from 
the known SSS.

To reduce the error in determining the fields in the 
vicinity of the crack front, it is necessary to move the middle 
nodes closest to it by a quarter of the length of the corre-
sponding edge of the finite element (FE) towards the corner 
node lying on the crack front. The specified nodes are circled 
in Fig. 4a. With this arrangement, the approximations of the 
stresses fields in the FE near the front will have a root singular-
ity, i.e., they will increase inversely proportional to √ρ. Approx-
imations of displacements will decrease to zero proportion-
ally to √ρ. This nature of approximations corresponds to the 
asymptotic solution of the problem of elasticity theory, and 
therefore, provides greater accuracy of the numerical solution. 
Similar shift must be made for the middle nodes near the con-
crete-reinforcement interface line on the crack face (Fig. 4b).

Figure 4. Shift of middle nodes: a) near the front; b) near the interface line on the crack face

a) b)



38
Machinery & Energetics. Vol. 13, No. 3

Effect of reinforcement on the crack resistance of concrete slabs 

Evidently from Figure 3a, a decrease in the dimen-
sion of the resolution system was achieved by increasing the 
FE size in the regions of the period farthest from the crack. 
The sufficiency of the discreteness of the finite element grid 
of models was checked by halving the FE size. The relative 
change in the numerical values of SSF did not exceed 1%.

RESULTS AND DISCUSSION
Using the developed FE models, a large number of calcula-
tions of the stresses fields and displacements of the RCP  
half-period with a crack were performed, based on which 
the SIF distributions along the crack front were determined. 

More than 800 SIF distributions were obtained – two for 
each model (for loads σzN and σzM). Figure 5 shows the distri-
bution of normal displacements and normal stresses in the 
cross-section of the crack edge in the vicinity of the rein-
forcement rod obtained using the model shown in Fig. 3. The 
displacements distribution is given for the load case σzN, and 
the stresses distribution is for the case of load σzM. The posi-
tive direction of normal displacements is determined by the 
external normal to the crack face, i.e., in the negative direc-
tion of the axis z. The values are given in basic units of the 
SI system (displacement – in m, stresses – in Pa). The fields 
are calculated at p=100 MPA and h=0.12 m.

Figure 5. Distribution of fields for s̄ =1, l̄ =0.3, ā =d̄ =0.1: 
a) normal displacements field for the load σzN; b) normal stresses field for the load σzM

a) b)

A total of four values of the relative width of the 
half-period s: 1, 2, 3, and 5 and three values of the dimen-
sionless diameter of the reinforcement rod d: 0.05, 0.1, and 
0.15 were considered. Dimensionless crack depth l̄  var-
ied from 0.05 to 0.7 in increments ranging from 0.25 to 1. 
The depth of the reinforcement rod ā  axis also varied. At 
the same time, the obvious conditions for the correctness 
of the model construction were monitored: a ā >d̄ /2 and 
ā +d̄ /2<l. Fig. 6 and 7 show some of the SIF distributions 
along the front. A dimensionless coordinate is plotted along 
the abscissa axis of the corresponding graphs x̄ =x/s, and 
along the ordinate axis – the value of the dimensionless 

SIF K̄ =K/(p√l). The lower index in the SIF designation, as 
already mentioned, is responsible for the type of load. The 
numbers in the circles correspond to the parameter s̄  values, 
for which the corresponding distribution was constructed. 
The value of this parameter for those curves where there 
are no marks can be determined by analogy. Fig. 6 shows 
SIF graphs for crack with depth l̄ =0.3, Fig. 7 – with depth l̄ =0.7. 
The dotted lines correspond to the rod diameter d̄ =0,05, and 
dashed lines – with a diameter of d̄ =0.15. The depth of the 
reinforcement rod axis for all curves was determined by the 
condition ā =0”.025”+d̄ /2, that is, for all curves, the depth of 
the reinforcement point closest to the crack front was fixed.

Figure 6. SIF distribution for crack with depth l̄ =0.3 for loading:  
a) σzN; b) σzM
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In addition to dotted and dashed lines, each of 
the graphs has a solid horizontal straight line that corre-
sponds to the SIF value in the absence of reinforcement. 
These values were compared with known in the literature, 
which are calculated from solutions to the corresponding plane 
problems. Corresponding exact SIF approximations for ten-
sion and bending loads as a function of the only  parameter l̄  
which remains in this case can be represented as [16]:

𝐾̄𝐾𝐾𝐾𝑁𝑁𝑁𝑁 = �1,11 + 5𝑙𝑙𝑙𝑙4��1− 𝑙𝑙𝑙𝑙�−1√𝜋𝜋𝜋𝜋, 

𝐾̄𝐾𝐾𝐾𝑀𝑀𝑀𝑀 = 0,7𝑙𝑙𝑙𝑙−2��1− 𝑙𝑙𝑙𝑙�−3−�1− 𝑙𝑙𝑙𝑙�3 
                  (5)

The deviation of the calculated values from (5) does 
not exceed 1% and 4%, respectively.

Analysing the graphs shown in Figs. 6 and 7, it can 
be noted that all of them monotonically increase from 
the minimum value K̄ min=K̄ |x̄ =0 near the rod to its maximum 
value K̄ max=K̄ |x̄ =1. The rate of this growth varies. It is largest 
in the middle part of the front closer to the rod. However, 
at the neighbourhood of reinforced rod, and at the oppo-
site end of the front, it decreases to zero (the velocity is the 
derivative, and the derivative is zero at the extreme points). 
The growth rate in the middle section significantly depends 
on the diameter of the reinforcement rod: the larger it is, 
the higher the growth rate, although the values themselves 
are significantly lower. This conclusion is important in the 
context of determining the adequacy of replacing the valve 
action with concentrated force.

Another important conclusion that can be drawn 
from Figs. 6 and 7, there is a locality of reinforcement 
action for small cracks. So for a crack with depth l̄ =0.3, the 
difference between the maximum and current SIF values 
is reduced by half at a distance of less than a third of the 
slab thickness. At the same time, K̄ max are much closer to 
SIF for a flat crack, that is, in the absence of reinforcement. 
The minimum SIF values, regardless of the crack depth, sig-
nificantly depend on the reinforcement thickness. In case of 
a deep crack l̄ =0.3 they do not depend much on the length 
of the half-period s̄  and already for s̄ ≥2 they can be consid-
ered constant. For cracks with depth l̄ =0.7, the minimum 

SIF values significantly depend on both the rod diameter 
and the width of the half-period.

Thus, the general conclusion that can be drawn on 
the basis of the analysis performed is that it is incorrect to 
replace the arming action with concentrated force during 
practical calculations. To understand why this is the case, it is 
necessary to refer to the basic concepts of concentrated force 
in the mechanics of continuum in general and in elasticity 
theory in particular. From the course of elasticity theory, it 
is known [17] that the fields of displacements and stresses in 
Kelvin, problem, Boussinesq problem and similar three-dimen-
sional problems of elasticity theory have a singularity of the 
type ρ-1 and ρ-2, respectively. Here ρ – distance from the obser-
vation point to the point of application of a concentrated force. 
That is, both take infinite values at the point of application of 
the concentrated force. According to the solution, looks like 
the concentrated force “pins out” the point of its application 
to infinity, which does not correspond to reality. The key to the 
correct practical use of these singular solutions of elasticity 
theory lies in the Saint-Venan’s principle [17]: replacing the 
system of external forces with a statically equivalent one has 
little effect on SSS at remote points. In this case, points located 
at a distance of at least five characteristic sizes of the area of 
application of forces are considered remote. In our case, the 
characteristic size of this area is the diameter of the reinforce-
ment rod. That is, to adequately replace the action of the rein-
forcement with a concentrated force, it is necessary that the 
reinforcement rod is at least five of its diameters away from 
both the crack front and the edge of the slab. Obviously, such 
conditions cannot be implemented in practice in any way. 
Therefore, replacing the action of arming with a concentrated 
force can only be used to explain qualitative behaviour, and not 
to obtain quantitative results.

For each specific set of parameters (2), a fairly com-
plete picture of the SIF distribution along the crack front can 
be obtained by knowing two values: K̄ minand K̄ max. Therefore, it 
is important to be able to find their approximate values using 
simple relations. To do this, the results obtained were processed 
using the least squares method. A polynomial approximation of 
the specified extreme values of SIF as functions of parameters (2) 
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was found. It turned out that the linear approximation is quite 
rough and allows a relative error (the ratio of the maximum 
deviation to the maximum value) of up to 25%. The trade-off 
between the accuracy and complexity of an expression can 
be considered an approximation in the form of second-order 
polynomials. Their relative error for all four values is about 
10%. In general, this approximation can be represented as

𝐾̄𝐾𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = ��𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 +
4

𝑖𝑖𝑖𝑖=𝑖𝑖𝑖𝑖

4

𝑖𝑖𝑖𝑖=1

�𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 + 𝛾𝛾𝛾𝛾
4

𝑖𝑖𝑖𝑖=1

 ,                 (6)

where ext takes one of four values: Nmin, Nmax, Mmin, 
or Mmax; r1=s̄ , r2=l̄ , r3= ā , r4=d̄  – indexed geometric param-
eters (2). The approximation coefficients (6) are shown in 
Table 1.

Table 1. Approximation coefficients of extreme SIF values

Coefficients
Extreme values of SIF

K̄ Nmin K̄ Nmax K̄ Mmin K̄ Mmax

α11 −8.035×10−2 −1.206×10−1 −4.228×10−2 −6.399×10−2

α12 1.557 2.309 7.727×10−1 1.133

α13 −7.622×10−1 −1.013 −4.148×10−1 −5.643×10−1

α14 9.476×10−1 4.075 5.382×10−1 2.221

α22 9.924 1.680×10 −6.923×10−1 3.291

α23 2.526×10 1.624×10 1.364×10 7.825

α24 −1.100×102 −1.134×102 −4.261×10 −5.394×10

α33 −1.107×10 5.066 −4.810 2.301

α34 −5.077×10 3.323×10 −2.014×10 1.933×10

α44 2.548×102 1.052×102 1.300×102 5.129×10

β1 2.590×10−2 −6.800×10−2 3.867×10−2 1.472×10−2

β2 −1.868 −8.774 1.299 −2.534

β3 −5.022 −7.455 −3.386 −3.217

β4 4.746 1.520×10 −7.413 4.572
γ 2.171 3.873 1.499 2.312

Based on the values in Table 1 and equation (6), it is 
possible to quickly restore the overall qualitative picture of 
SIF distributions as a function of geometric parameters. Hav-
ing distribution data and critical SIF values in concrete, it is 
possible to quickly give an answer about the degree of danger 
of a particular defect. In addition, they allow investigating the 
rate of growth of defects based on the Paris formula [8; 16].

CONCLUSIONS
The problem of crack resistance of RCP was reduced to the 
problem of linear elasticity theory, which was solved using 
the CalculiX finite element analysis package for variable val-
ues of geometric parameters of the system. In processing 
the obtained numerical results, general regularities of the 
dependence of the SIF on the geometric parameters of the 
RCP are established, namely:

– for all values of geometric parameters, SIF is a peri-
odic and monotonous function on the half-period of the plate 
width, taking the minimum value near the reinforcing rods, 
and the maximum value in the middle between them;

– the maximum growth rate of the SIF corresponds to 
an interval close to its minimum;

– for shallow cracks, the effect of reinforcement is local: 
the minimum SIF value weakly depends on the length of the 

slab period, and the SIF itself quickly increases to its max-
imum value;

– as the rod diameter increases, the difference between 
the minimum and maximum SIF values increases;

The paper also provides a reasonable warning 
regarding the modelling of the action of reinforcement on 
concrete with concentrated force during practical calcula-
tions. Instead, it is proposed to use polynomial approxima-
tions of extreme SIF values given in the paper and obtained 
as a result of processing a large array of numerical data to 
estimate the stress state in the vicinity of the crack front.

Since for real diameters of reinforcing rods, the SIF 
varies significantly along the front of a flat crack, in order to 
correctly calculate the crack configuration during its subsid-
ence, this study should be extended to the case of cracks of 
other configurations, for example, semi-elliptical.
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Вплив армування на тріщиностійкість бетонних плит

Анотація. Попередній аналіз наявних літературних джерел, присвячених дослідженню тріщиностійкості 
залізобетонних конструкцій, показав відсутність встановлених загальних закономірностей впливу важливих 
геометричних параметрів, властивих залізобетонним елементам, на розподіл характеристик механіки руйнування 
вздовж фронту тріщини. На основі проведеного аналізу було сформульовано мету дослідження: встановлення 
зазначених закономірностей для бетонної плити, укріпленої системою поздовжніх арматурних стрижнів. При 
проведенні досліджень використовувалася лінійно-пружна модель бетону, а у якості характеристики механіки 
руйнування розглядався коефіцієнт інтенсивності напружень. Постулювалася поверхнева тріщина постійної 
глибини, розташована в поперечному перерізі плити. Передбачалося, що її береги повність покривають поперечний 
переріз арматурних стрижнів. У якості безрозмірних геометричних параметрів були обрані віднесені до товщини 
плити глибина тріщини, глибина залягання арматурних стрижнів, їх діаметр та відстань між сусідніми стрижнями. 
Плита навантажувалася двома типами навантаження, прикладеними до її торців: постійними розтягуючими 
напруженнями (чистий розтяг) та лінійно-змінними осьовими напруженнями (чистий згин). Задача визначення 
коефіцієнта інтенсивності напружень залежно від геометричних параметрів була зведена до граничної задачі теорії 
пружності. Для її розв’язання і отримання напружено-деформівного стану плити використовувався скінченно-
елементний пакет CalculiX. Для різних комбінацій параметрів було побудовано більше чотирьохсот скінченно-
елементних моделей. За відомими зміщеннями точок берега тріщини за допомогою співвідношення, отриманого 
в роботі, розраховувалися значення коефіцієнта інтенсивності напружень вздовж фронту тріщини. Встановлено, 
що його значення суттєво залежать від діаметра арматури, а тому при проведенні практичних розрахунків дію 
арматури на бетон не рекомендовано замінювати зосередженою силою. Для екстремальних значень коефіцієнта 
інтенсивності напружень отримано поліноміальні апроксимації з відносною похибкою в межах 10 %. Матеріали 
роботи можуть бути корисними при проектуванні залізобетонних конструкцій, а також при вивченні чи викладанні 
курсу механіки руйнування

Ключові слова: енергоефективність, двигуни середньої потужності, реактивна потужність, внутрішня ємнісна 
компенсація, компенсувальна ємність, пусковий режим


