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The gradual removal of Hertz pressure 
from the surface of elastic half-space

Abstract. Contact stress determination in non-stationary dynamic loading of elastic bodies is crucial for modelling 
structures at high speeds, but it presents mathematical challenges due to the time-dependent and often unknown contact 
area size and shape. The study aims to obtain an energy remainder estimation that forms waves during the contact 
interaction of elastic bodies, based on the exact solutions of non-stationary problems for an elastic half-space. For this 
purpose, the problem of the instantaneous loading half-space as an additional research problem was reconstructed using 
the Hankel transform concerning a radial coordinate and the Laplace transform concerning a time variable. The method of 
derivation of the displacements at an elastic half-space loaded (unloaded) gradually by Hertz's contact pressure has been 
proposed. Its availability made it possible to pass to the solution of the main problem – the problem of gradual loading 
of the half-space surface by Hertz pressure. The possibility of changing of the order of differentiation and integration 
operations in the obtained representation is substantiated based on the integrand properties. The cases when the speed 
of the indenter was constant when its motion was uniformly accelerated and when the motion corresponded to the law 
of the first quarter of the cosine period in the time were considered. It was concluded that the distribution of dynamic 
contact stresses is similar to the Hertz distribution. An estimation of the part of the energy spent on the formation of 
elastic waves was made for various laws of unloading. The practical significance of this study lies in its development of 
an effective method for calculating normal displacements on a loading area in dynamic contact interactions of elastic 
bodies, which can be valuable for modelling structures at high speeds
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INTRODUCTION
The determination of contact stresses, caused by non-sta-
tionary dynamic loading of elastic bodies, is one of the 
practically important problems in the theory of elasticity. 
The correct consideration of the influence of inertial forces 
on local deformations in the vicinity of the contact region 

is necessary for adequate simulation of the operation of a 
structure or mechanisms, in which components interact 
in a significant way at significant speeds. Microwave (ul-
trasonic) motors are typical examples of such mechanical 
systems. X. Tian et al. (2020) concluded that the principle 
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Hertz’s theory is much less than the calculated holds un-
resolved issues. According to the given relations, their cor-
relation depends only on Poisson’s ratio of the material of 
the half-space and does not depend on the initial velocity 
of the sphere. When Poisson’s ratio changes from 0 to 0.5, 
this relation changes from 0.74 to 0.

Thus, it can be concluded that the presented results of 
previous studies contain several contradictions. Therefore, 
with the solution to this sort of issue, various numerical 
methods were used, the finite element method being used 
most often (Lee & Komvopoulos, 2018; Habchi, 2018). This 
is also facilitated by the fact that in modern finite element 
packages, both commercial and freely available, the various 
algorithms of the contact interaction of finite elements are 
implemented. However, based on numerical solutions, it is 
difficult to restore the analytical dependence of the pro-
cess characteristics on the values of the input parameters. 
Despite the already fairly long history of research, the im-
portant problem of estimation of the contact interaction of 
the surface of the body under study with measure sensors 
is open still. Hence, the study aims to determine the en-
ergy remainder that causes waves in the case of a contact 
problem.

MATERIALS AND METHODS
The distribution of normal displacements of surface points 
under gradual loading of a half-space with a load, according 
to Heasrtz’s law was obtained by using the solution to the 
corresponding problem of instantaneous loading. There-
fore, to present the solution to the problem of gradual 
loading in a closed form and simplify the perception of the 
material, the main results of a study by A.G. Kutzenko et 
al. (2001) were employed, which addressed the loading of 
a half-space by the Hertz’s pressure. The elastic half-space 
z < 0 was considered, which at time t < 0 had been in static 
equilibrium, and its surface was not loaded. At the moment 
of time t = 0, the pressure, that was given by Hertz’s con-
tact theory, was instantly applied to the surface of the half-
space in a circular domain 0 ≤ r ≤ a (Fig. 1).

Figure 1. Loading of the elastic half-space  
by Hertz’s pressure

Note: a – load area radius; z, r – spatial coordinates;  
p0 — pressure magnitude

of operation of some types of these devices is based on the 
transfer of kinetic energy from the stator to the rotor by 
contact forces arising in the process of their periodic colli-
sions. Based on S.P.  Wankhede & T.-B. Xu (2021), ultrason-
ic motors have been widely used in a variety of electronic 
devices due to their compactness, load torque at moderate 
rotation speeds and high positioning accuracy. They are 
widely used in the double-quick development of robotics 
(Toyama & Nishizawa, 2017). The simultaneous influence 
of surface and couple stresses on the non-symmetrical fric-
tionless indentation of a linearly elastic, homogenous, and 
isotropic half-plane under a tilted, rigid, flat-ended indent-
er with sharp, square corners was investigated by T.M. Le et 
al. (2021) by adopting existing continuum-based models.

B. An et al.  (2023) broadened the applicability of the 
vehicle-track dynamics model to account for 3D short-
wave irregularities on rail surfaces. The key is developing 
a meshing grid approach combined with the accurate con-
jugate gradient (CG) method for contact mechanics under 
arbitrary 3D contact geometry. Therefore, both the glob-
al dynamics and local contact solutions can be provided. 
In this study, short-pitch rail corrugation is employed for 
investigating the role of 3D contact geometry in model-
ling dynamic wheel-rail interaction. The traditional vehi-
cle-track coupled dynamics model using Hertzian spring is 
used for comparison. The results show that short-pitch rail 
corrugation contributes two different aspects, i.e., wheel 
centre trajectory and time-varying contact stiffness. These 
two aspects are found to be the root causes for explaining 
the influence of the varying 3D geometry irregularity size 
on dynamic wheel-rail contact force.

Accounting for the processes that occur during the 
dynamic contact interaction of solids is also important in 
the development and design of “classical” machinery. An 
example is the operation of various crushing machines 
which were described by B. Doroszuk & R. Król (2022), and 
Z. Chen et al. (2021). In particular, for processing agricul-
tural products, the mechanisms, such as grinding mills, are 
used. To describe the operation of the crusher more accu-
rately, Х. Lv et al. (2021), I. Kupchuk et al. (2022) addressed 
the wave processes that occur when parts of the mecha-
nism interact with the crushed material. Many scientists 
considered similar problems in Ukraine. In particular, the 
study of V.A. Bazhenov & M.O. Vabishchevich (2020) is rel-
evant to the branch of construction. Similar studies were 
conducted by V.G. Popov & A.I. Kirillova (2020) in the field 
of mechanical engineering.

H. Xie et al. (2022) noted that the dynamic interaction 
of a rigid sphere with an elastic half-space should be con-
sidered using recently developed particle dynamics. From 
the provisions of this theory, J.  Zhao  et al.  (2021) estab-
lished that the problem was reduced to a wave equation 
concerning one of the components of the displacement 
vector. Based on the mentioned solution, a plausible con-
clusion was made on the similarity at any time of the distri-
bution of contact stresses to Hertz’s distribution. However, 
the conclusion that the maximum pressure according to 
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This pressure was considered a constant variable in the 
study. It was used to determine the normal displacements 
of the surface points of the half-space, as a function of time 
t and radial coordinate r. This was an additional task. The 
corresponding initial and boundary conditions were for-
mulated as follows:

w|t = 0
 = u|t = 0

 = 0, 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
�
𝜕𝜕𝜕𝜕=0

= 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
�
𝜕𝜕𝜕𝜕=0

= 0  ,                (1)
and

𝜏𝜏𝜏𝜏𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟|𝑟𝑟𝑟𝑟=0 = 0, 𝜎𝜎𝜎𝜎𝑟𝑟𝑟𝑟|𝑟𝑟𝑟𝑟=0 = 𝐻𝐻𝐻𝐻(𝑡𝑡𝑡𝑡) �−𝑝𝑝𝑝𝑝0�1− 𝑟𝑟𝑟𝑟2 𝑎𝑎𝑎𝑎2⁄ , 𝑟𝑟𝑟𝑟 < 𝑎𝑎𝑎𝑎,
0, 𝑟𝑟𝑟𝑟 > 𝑎𝑎𝑎𝑎,

           (2)

where w, u  – thickness (normal) and radial (tangential) 
displacements of the points of the half-space; σr, τrz  – 
normal and shear stresses on the surface of a half-space; 
H(t) – Heaviside function.

The maximum contact pressure was an independ-
ent parameter in the boundary conditions (2). However, 
considering the further extension of the results to cases 
of gradual loading of a half-space, it was expressed ac-
cording to Hertz’s theory in terms of the radius of the 
load area a and the radius of curvature of the equivalent 
indenter R:

𝑝𝑝𝑝𝑝0 = 4𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺
𝜋𝜋𝜋𝜋(1−𝜈𝜈𝜈𝜈)𝑅𝑅𝑅𝑅

  ,                                     (3)

where G – shear modulus, ν – Poisson’s ratio of the half-
space material. All three parameters p0, a, and R were con-
sidered as constant variables in the study. Only one pa-
rameter R was considered as a constant in the gradual load 
issue, as parameters p0 and a were changed with time. 

If the Laplace transform L with was applied concern-
ing time and the Hankel transform H to the spatial coor-
dinate r to Lamé equations of motion respectively, dis-
placements can be represented as multiple integrals of the 
Riemann-Mellin inversion:

𝑤𝑤𝑤𝑤(𝑟𝑟𝑟𝑟, 𝑧𝑧𝑧𝑧, 𝑡𝑡𝑡𝑡) = 1
2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋 ∫ 𝐽𝐽𝐽𝐽0

∞
0 (𝜆𝜆𝜆𝜆𝑟𝑟𝑟𝑟)𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆∫ 𝑊𝑊𝑊𝑊𝛿𝛿𝛿𝛿𝛿𝜋𝜋𝜋𝜋∞

𝛿𝛿𝛿𝛿𝛿𝜋𝜋𝜋𝜋∞ (𝜆𝜆𝜆𝜆, 𝑧𝑧𝑧𝑧, 𝑠𝑠𝑠𝑠)𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡)𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆 , 

𝑢𝑢𝑢𝑢(𝑟𝑟𝑟𝑟, 𝑧𝑧𝑧𝑧, 𝑡𝑡𝑡𝑡) = 1
2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋 ∫ 𝐽𝐽𝐽𝐽1

∞
0 (𝜆𝜆𝜆𝜆𝑟𝑟𝑟𝑟)𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆∫ 𝑈𝑈𝑈𝑈𝛿𝛿𝛿𝛿𝛿𝜋𝜋𝜋𝜋∞

𝛿𝛿𝛿𝛿𝛿𝜋𝜋𝜋𝜋∞ (𝜆𝜆𝜆𝜆,𝑧𝑧𝑧𝑧, 𝑠𝑠𝑠𝑠)𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒( 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡)𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆. 
.(4)

In this case, the images W(λ, z, s) and U(λ, z, s) satisfied 
the system of differential equations:

𝜅𝜅𝜅𝜅 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

+ 𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆�− 𝜆𝜆𝜆𝜆 𝜆𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

+ 𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆� = 𝑠𝑠𝑠𝑠2

𝑐𝑐𝑐𝑐22
𝜆𝜆𝜆𝜆  

−𝜅𝜅𝜅𝜅𝜆𝜆𝜆𝜆 �𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

+ 𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆�+ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

+ 𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆� = 𝑠𝑠𝑠𝑠2

𝑐𝑐𝑐𝑐22
𝜆𝜆𝜆𝜆,  

,  
              (5)

where 𝜅𝜅𝜅𝜅 = 2 1−𝜈𝜈𝜈𝜈
1−2𝜈𝜈𝜈𝜈

= 𝑐𝑐𝑐𝑐12

𝑐𝑐𝑐𝑐22
> 1, 𝑐𝑐𝑐𝑐1 = �2 1−𝜈𝜈𝜈𝜈

1−2𝜈𝜈𝜈𝜈
𝐺𝐺𝐺𝐺
𝑝𝑝𝑝𝑝

, 𝑐𝑐𝑐𝑐2 = �𝐺𝐺𝐺𝐺
𝑝𝑝𝑝𝑝

   – the  

velocities of propagation of tension-compression waves 
and shear waves, respectively.

The zero initial conditions (1) were considered when 
equation (5) was deriving. To satisfy the boundary condi-
tions (2), the Laplace and Hankel transformations were 
also applied:

� 1−𝜈𝜈𝜈𝜈
1−2𝜈𝜈𝜈𝜈

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

+ 𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈
1−2𝜈𝜈𝜈𝜈

𝑈𝑈𝑈𝑈𝑈𝑈
𝑑𝑑𝑑𝑑=0

= −𝛱𝛱𝛱𝛱0(𝜆𝜆𝜆𝜆, 𝑠𝑠𝑠𝑠), �𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆��
𝑑𝑑𝑑𝑑=0

= 0, (6)

where

𝛱𝛱𝛱𝛱0(𝜆𝜆𝜆𝜆,𝑠𝑠𝑠𝑠) = 𝛱𝛱𝛱𝛱0𝑖𝑖𝑖𝑖 (𝜆𝜆𝜆𝜆,𝑠𝑠𝑠𝑠) = −𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋(𝜎𝜎𝜎𝜎𝑧𝑧𝑧𝑧|𝑧𝑧𝑧𝑧𝑧𝑧)� = 

= 2
𝜋𝜋𝜋𝜋(1−𝜈𝜈𝜈𝜈)𝑅𝑅𝑅𝑅

𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎−𝑎𝑎𝑎𝑎𝜆𝜆𝜆𝜆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2

.              (7)

The general solution of system (4), which satisfies the 
conditions of boundedness at infinity, was represented as:

𝑊𝑊𝑊𝑊(𝜆𝜆𝜆𝜆, 𝑧𝑧𝑧𝑧, 𝑠𝑠𝑠𝑠) = 𝜆𝜆𝜆𝜆 𝜆𝑐𝑐𝑐𝑐2
𝑠𝑠𝑠𝑠
�
2

[−𝜅𝜅𝜅𝜅𝜅𝜅𝜅𝜅1𝐴𝐴𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒( 𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆1𝑠𝑠𝑠𝑠) + 𝐵𝐵𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒( 𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆2𝑠𝑠𝑠𝑠)],

𝑈𝑈𝑈𝑈(𝜆𝜆𝜆𝜆,𝑧𝑧𝑧𝑧, 𝑠𝑠𝑠𝑠) = 𝜆𝜆𝜆𝜆 𝜆𝑐𝑐𝑐𝑐2
𝑠𝑠𝑠𝑠
�
2

[𝜅𝜅𝜅𝜅𝐴𝐴𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒( 𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆1𝑠𝑠𝑠𝑠) − 𝛾𝛾𝛾𝛾2𝐵𝐵𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆2𝑠𝑠𝑠𝑠)].
  (8)

Submitting it to conditions (6), the expression for the 
image of normal displacement of boundary points was ob-
tained:

𝑊𝑊𝑊𝑊� 𝑖𝑖𝑖𝑖(𝜆𝜆𝜆𝜆,𝑠𝑠𝑠𝑠,𝑎𝑎𝑎𝑎) = 𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖(𝜆𝜆𝜆𝜆, 0, 𝑠𝑠𝑠𝑠) = −𝛱𝛱𝛱𝛱0𝑖𝑖𝑖𝑖 (𝜆𝜆𝜆𝜆, 𝑠𝑠𝑠𝑠) 𝛾𝛾𝛾𝛾1�𝛾𝛾𝛾𝛾2
2−1�
2𝛥𝛥𝛥𝛥

= 

= 1
𝜋𝜋𝜋𝜋(1−𝜈𝜈𝜈𝜈)𝑅𝑅𝑅𝑅

𝛾𝛾𝛾𝛾1�𝛾𝛾𝛾𝛾22−1�
2𝛥𝛥𝛥𝛥

𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝜆𝜆𝜆𝜆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2

,
  (9)

where 𝛾𝛾𝛾𝛾1 = �1 + 𝑠𝑠𝑠𝑠2 (𝑐𝑐𝑐𝑐1𝜆𝜆𝜆𝜆)2⁄   , 𝛾𝛾𝛾𝛾2 = �1 + 𝑠𝑠𝑠𝑠2 (𝑐𝑐𝑐𝑐2𝜆𝜆𝜆𝜆)2⁄   , 

𝛥𝛥𝛥𝛥 = 𝛥𝛥𝛥𝛥(𝑠𝑠𝑠𝑠 𝜆𝜆𝜆𝜆⁄ ) = �𝛾𝛾𝛾𝛾22+1�
4

− 𝛾𝛾𝛾𝛾1𝛾𝛾𝛾𝛾2   – Rayleigh determinant. Its sin-
gle-valued branch was distinguished on the complex plane 
s by cutting, as shown in Figure 2.

The radical branches γ1 and γ2 were chosen so that 
their values on the real axis s coincided with the values 
of the corresponding arithmetic roots. Such selection was 
used to obtain a representation of the solution in the form 
of a superposition of waves propagating from the surface 
into the depths of the half-space, and to ensure that the 
stress and displacement were clamped at z→-∞. The in-
dex “i” in expressions (7) and (9) indicated that the char-
acteristic marked by it corresponded to the problem of 
instantaneous loading.

Figure 2. Integration contour  
in the inverse Laplace transform

Note: cR – the Rayleigh wave velocity; s = ±iλcR are poles of 
the function W

Im s

iλc1

–iλc1

iλc2

–iλc2

iλcR

–iλcR

s

Re s

L

0
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Since the points of the surface corresponded to a cer-
tain (zero) value of the coordinate z, i.e., normal displace-
ments depended only on the variables r and t, this fact in 
(9) and below was denoted by the symbol “~”. In addition, 
functions, containing the symbol “~” in their designation, 
were also considered as functions of the parameter a, nec-
essary in the case of gradual loading of the half-space.

Further transformation (9) involved the inversions of 
the Laplace and Hankel transformations by (4). It was easy 
to verify that all singular points of expression (9) in the 
complex plane s stayed within the imaginary axis. Accord-
ing to the selection of branches of the radicals γ1 and γ2, 
the poles corresponded only to the points s = 0 and s = ± iλcR, 
where cR was the Rayleigh wave velocity. Therefore, func-
tion (9) was an analytic function of a variable parameter s 
in the right half-plane Re s > 0, which was used to shift the 
Laplace inversion contour to the imaginary axis.

Going around the poles of the function W, it was nec-
essary to explicitly select the semi-residues equal to the 
integrals over the arcs of circles (Fig.  2). Performing this 
operation and introducing a new integration variable 
x = -s2 /(c2λ)2, after the pairwise union of the integrals cor-
responding to the upper and lower parts of the axis Im s, 
the normal displacements of points on the surface of the 
half-space was represented in a form that does not contain 
complex variables:

𝑤𝑤𝑤𝑤�𝑖𝑖𝑖𝑖(𝑟𝑟𝑟𝑟, 𝑡𝑡𝑡𝑡,𝑎𝑎𝑎𝑎) = − 𝑎𝑎𝑎𝑎2

𝜋𝜋𝜋𝜋(1−𝜈𝜈𝜈𝜈)𝑅𝑅𝑅𝑅
𝑓𝑓𝑓𝑓(𝜌𝜌𝜌𝜌, 𝜏𝜏𝜏𝜏)  ,                     (10)

where:

𝑓𝑓𝑓𝑓(𝜌𝜌𝜌𝜌, 𝜏𝜏𝜏𝜏) = (1− 𝜈𝜈𝜈𝜈)𝐼𝐼𝐼𝐼(𝜌𝜌𝜌𝜌) + 1
4𝜋𝜋𝜋𝜋
�𝜋𝜋𝜋𝜋 (1−𝑞𝑞𝑞𝑞 2⁄ )2�1−𝑞𝑞𝑞𝑞 𝜅𝜅𝜅𝜅⁄ 𝐼𝐼𝐼𝐼𝐶𝐶𝐶𝐶(𝑙𝑙𝑙𝑙,2𝑟𝑟𝑟𝑟)

(1−𝑞𝑞𝑞𝑞 2⁄ )3−(1+𝜅𝜅𝜅𝜅−1−2𝑞𝑞𝑞𝑞 𝜅𝜅𝜅𝜅⁄ ) 2⁄
−  

−∫
�1−𝑥𝑥𝑥𝑥 𝜅𝜅𝜅𝜅⁄ 𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆�𝜌𝜌𝜌𝜌,2𝜏𝜏𝜏𝜏�𝑥𝑥𝑥𝑥 𝑞𝑞𝑞𝑞⁄ �

(1−𝑥𝑥𝑥𝑥 2⁄ )2−�(1−𝑥𝑥𝑥𝑥 𝜅𝜅𝜅𝜅⁄ )(1−𝑥𝑥𝑥𝑥)
1
0 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 −  

−∫
�𝑥𝑥𝑥𝑥 𝜅𝜅𝜅𝜅⁄ −1𝐼𝐼𝐼𝐼𝐶𝐶𝐶𝐶�𝜌𝜌𝜌𝜌,2𝜏𝜏𝜏𝜏�𝑥𝑥𝑥𝑥 𝑞𝑞𝑞𝑞⁄ �

(1−𝑥𝑥𝑥𝑥 2⁄ )2+�(𝑥𝑥𝑥𝑥 𝜅𝜅𝜅𝜅⁄ −1)(𝑥𝑥𝑥𝑥−1)
∞
0 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 −  

−∫
(1−𝑥𝑥𝑥𝑥 𝜅𝜅𝜅𝜅⁄ )2�1−𝑥𝑥𝑥𝑥 𝜅𝜅𝜅𝜅⁄ 𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆�𝜌𝜌𝜌𝜌,2𝜏𝜏𝜏𝜏�𝑥𝑥𝑥𝑥 𝑞𝑞𝑞𝑞⁄ �

(1−𝑥𝑥𝑥𝑥 2⁄ )4−(1−𝑥𝑥𝑥𝑥 𝜅𝜅𝜅𝜅⁄ )(1−𝑥𝑥𝑥𝑥)
𝜅𝜅𝜅𝜅
1 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 −

−∫
(1−𝑥𝑥𝑥𝑥 𝜅𝜅𝜅𝜅⁄ )√𝑥𝑥𝑥𝑥−1𝐼𝐼𝐼𝐼𝐶𝐶𝐶𝐶�𝜌𝜌𝜌𝜌,2𝜏𝜏𝜏𝜏�𝑥𝑥𝑥𝑥 𝑞𝑞𝑞𝑞⁄ �

(1−𝑥𝑥𝑥𝑥 2⁄ )4−(1−𝑥𝑥𝑥𝑥 𝜅𝜅𝜅𝜅⁄ )(1−𝑥𝑥𝑥𝑥)
𝜅𝜅𝜅𝜅
1 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ⎭

⎬

⎫
 . 

(11)

The dimensionless independent variables ρ = r/a and 
τ = (cRt)

 /a were introduced in the expressions (10)-(11), as 
well as a parameter q = c2

R /c
2
2 – the square of the ratio of the 

Rayleigh wave velocity to the shear wave velocity, which 
was a simple pole of the integrand of the first integral in 
(11). The index “i” at w̃  indicated, as before, that this dis-
tribution of normal displacements corresponded to the 
problem of instantaneous loading. After relocation of the 
contour of the inverse Laplace transform to the imaginary 
axis, the integrals of the inverse Hankel transform I, IS, and 
IC were as follows:

𝐼𝐼𝐼𝐼(𝜌𝜌𝜌𝜌) = �1− 𝜌𝜌𝜌𝜌2

2
� 𝐼𝐼𝐼𝐼1(𝜌𝜌𝜌𝜌) + 𝐼𝐼𝐼𝐼2(𝜌𝜌𝜌𝜌)

2
, 

𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆(𝑙𝑙𝑙𝑙, 𝜉𝜉𝜉𝜉) = �1− 𝜉𝜉𝜉𝜉2 − 𝜌𝜌𝜌𝜌2

2
� 𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝑆(𝑙𝑙𝑙𝑙, 𝜉𝜉𝜉𝜉) + 𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝑆(𝑙𝑙𝑙𝑙,𝜉𝜉𝜉𝜉)

4
, 

𝐼𝐼𝐼𝐼𝐶𝐶𝐶𝐶(𝑙𝑙𝑙𝑙, 𝜉𝜉𝜉𝜉) = �1− 𝜉𝜉𝜉𝜉2 − 𝜌𝜌𝜌𝜌2

2
� 𝐼𝐼𝐼𝐼𝐶𝐶𝐶𝐶𝐶(𝑙𝑙𝑙𝑙, 𝜉𝜉𝜉𝜉) + 𝐼𝐼𝐼𝐼𝐶𝐶𝐶𝐶𝐶(𝑙𝑙𝑙𝑙,𝜉𝜉𝜉𝜉)

4
 ,          

(12)

where:

𝐼𝐼𝐼𝐼1(𝜌𝜌𝜌𝜌) = �
𝜋𝜋𝜋𝜋 2,⁄ 𝜌𝜌𝜌𝜌 ≤ 1,

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝜌𝜌𝜌𝜌−1 ,𝜌𝜌𝜌𝜌 ≥ 1,  

𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆1(𝜌𝜌𝜌𝜌, 𝜉𝜉𝜉𝜉) = 1
2

⎩
⎨

⎧𝑙𝑙𝑙𝑙𝑎𝑎𝑎𝑎�1 + 𝜉𝜉𝜉𝜉 +�(1 + 𝜉𝜉𝜉𝜉)2 − 𝜌𝜌𝜌𝜌2� − 𝑙𝑙𝑙𝑙𝑎𝑎𝑎𝑎�|1− 𝜉𝜉𝜉𝜉| +�(1− 𝜉𝜉𝜉𝜉)2 − 𝜌𝜌𝜌𝜌2� , |1− 𝜉𝜉𝜉𝜉| ≥ 𝜌𝜌𝜌𝜌,

𝑙𝑙𝑙𝑙𝑎𝑎𝑎𝑎�1 + 𝜉𝜉𝜉𝜉 +�(1 + 𝜉𝜉𝜉𝜉)2 − 𝜌𝜌𝜌𝜌2� − 𝑙𝑙𝑙𝑙𝑎𝑎𝑎𝑎 𝜌𝜌𝜌𝜌 , |1− 𝜉𝜉𝜉𝜉| ≤ 𝜌𝜌𝜌𝜌 ≤ 1 + 𝜉𝜉𝜉𝜉,
0, 1 + 𝜉𝜉𝜉𝜉 ≤ 𝜌𝜌𝜌𝜌,

  

𝐼𝐼𝐼𝐼𝐶𝐶𝐶𝐶1(𝜌𝜌𝜌𝜌, 𝜉𝜉𝜉𝜉) = 1
2
�

𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋(1− 𝜉𝜉𝜉𝜉), |1− 𝜉𝜉𝜉𝜉| ≥ 𝜌𝜌𝜌𝜌,
𝜋𝜋𝜋𝜋 2⁄ + 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎((1− 𝜉𝜉𝜉𝜉) 𝜌𝜌𝜌𝜌⁄ ) , |1− 𝜉𝜉𝜉𝜉| ≤ 𝜌𝜌𝜌𝜌 ≤ 1 + 𝜉𝜉𝜉𝜉,

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎((1 + 𝜉𝜉𝜉𝜉) 𝜌𝜌𝜌𝜌⁄ ) + 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎((1− 𝜉𝜉𝜉𝜉) 𝜌𝜌𝜌𝜌⁄ ) , 1 + 𝜉𝜉𝜉𝜉 ≤ 𝜌𝜌𝜌𝜌
  

                        

(13)

and

𝐼𝐼𝐼𝐼2(𝜌𝜌𝜌𝜌) = �
0,𝜌𝜌𝜌𝜌 ≤ 1,

�𝜌𝜌𝜌𝜌2 − 1,𝜌𝜌𝜌𝜌 ≥ 1,
  

𝐼𝐼𝐼𝐼𝐶𝐶𝐶𝐶2(𝜌𝜌𝜌𝜌, 𝜉𝜉𝜉𝜉) = �
0, |1− 𝜉𝜉𝜉𝜉| ≥ 𝜌𝜌𝜌𝜌,

(1 + 3𝜉𝜉𝜉𝜉)�𝜌𝜌𝜌𝜌2 − (1− 𝜉𝜉𝜉𝜉)2 , |1− 𝜉𝜉𝜉𝜉| ≤ 𝜌𝜌𝜌𝜌 ≤ 1 + 𝜉𝜉𝜉𝜉,
(1 + 3𝜉𝜉𝜉𝜉)�𝜌𝜌𝜌𝜌2 − (1− 𝜉𝜉𝜉𝜉)2 + (1− 3𝜉𝜉𝜉𝜉)�𝜌𝜌𝜌𝜌2 − (1 + 𝜉𝜉𝜉𝜉)2 , 1 + 𝜉𝜉𝜉𝜉 ≤ 𝜌𝜌𝜌𝜌,

  

𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆2(𝜌𝜌𝜌𝜌,𝜉𝜉𝜉𝜉) = 1
2
�
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(1− 𝜉𝜉𝜉𝜉) (1 + 3𝜉𝜉𝜉𝜉)�(1− 𝜉𝜉𝜉𝜉)2 − 𝜌𝜌𝜌𝜌2 − (1− 3𝜉𝜉𝜉𝜉)�(1 + 𝜉𝜉𝜉𝜉)2 − 𝜌𝜌𝜌𝜌2 , |1− 𝜉𝜉𝜉𝜉| ≥ 𝜌𝜌𝜌𝜌,

−(1− 3𝜉𝜉𝜉𝜉)�(1 + 𝜉𝜉𝜉𝜉)2 − 𝜌𝜌𝜌𝜌2 , |1− 𝜉𝜉𝜉𝜉| ≤ 𝜌𝜌𝜌𝜌 ≤ 1 + 𝜉𝜉𝜉𝜉,
0, 1 + 𝜉𝜉𝜉𝜉 ≤ 𝜌𝜌𝜌𝜌.

  

                      

(14)

The plots of displacements found based on (10) for 
various values of the dimensionless time  are shown in 
Figure 3. The analysis highlighted the reason for the se-
lection of Rayleigh as the characteristic velocity in the 
nondimensionalization of time. This velocity determined 
the dynamics of transient processes under instantaneous 

loading of the half-space. After the propagation of the 
Rayleigh wave excited at the point of the loading area, 
which is the most distant from the given point of the half-
space surface, the static value of the normal displacement 
was instantly set in the latter one. This important property 
was used in further transformations.
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The gradual removal of Hertz pressure from the surface of elastic half-space

An elastic half-space that was at the initial moment 
t = 0 in an unloaded state of static equilibrium was used. 
At the given moment an area arises on its surface and then 
continues to grow, on which the pressure is distributed ac-
cording to the law:

𝑝𝑝𝑝𝑝(𝑟𝑟𝑟𝑟, 𝑡𝑡𝑡𝑡) = 𝑝𝑝𝑝𝑝0(𝑡𝑡𝑡𝑡)�1− 𝑟𝑟𝑟𝑟2 𝑎𝑎𝑎𝑎2(𝑡𝑡𝑡𝑡)⁄ , 𝑟𝑟𝑟𝑟 ≤ 𝑎𝑎𝑎𝑎(𝑡𝑡𝑡𝑡), 𝑡𝑡𝑡𝑡 > 0,       (15)

where a = a(t) is the radius of the loading area. It was the 
time-respecting variable parameter. In this case, as before, 
the relation (3) determined the dependence of the maxi-
mum pressure p0(t) on the radius of the loading area. It was 
required to determine the time evolution of normal dis-
placements on the surface of a half-space.

Since the initial conditions (1) and the first of the 
boundary conditions (2) were still true, the course of the 
solution to the given problem did not differ from the afore-
mentioned, until the rest of the boundary conditions were 
satisfied. The main difference between the boundary con-
ditions concerning the normal component of the stress 
vector in the problem of instantaneous and in the problem 
of gradual loading of a half-space was its significant time 
dependence in the second case. In this case, it was impos-
sible to explicitly run the direct Laplace transform without 
the specification of the loading area radii dependence con-
cerning time. Therefore, in the general case, instead of (7) 
and (9), the following was true:

𝛱𝛱𝛱𝛱0(𝜆𝜆𝜆𝜆,𝑠𝑠𝑠𝑠) = 𝛱𝛱𝛱𝛱0
𝑔𝑔𝑔𝑔(𝜆𝜆𝜆𝜆,𝑠𝑠𝑠𝑠) = −𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝜎𝜎𝜎𝜎𝑧𝑧𝑧𝑧|𝑧𝑧𝑧𝑧𝑧𝑧)� = 

= − 2
𝜋𝜋𝜋𝜋(1−𝜈𝜈𝜈𝜈)𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅3 ∫ (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 (𝑡̄𝑡𝑡𝑡)𝜆𝜆𝜆𝜆 𝜆𝜆𝜆𝜆𝜆 (𝑡̄𝑡𝑡𝑡)𝜆𝜆𝜆𝜆 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎 (𝑡̄𝑡𝑡𝑡)𝜆𝜆𝜆𝜆)∞

0 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒( − 𝑠𝑠𝑠𝑠𝑠̄𝑠𝑠𝑠)𝑑𝑑𝑑𝑑𝑑̄𝑑𝑑𝑑, (16)

and
𝑊𝑊𝑊𝑊�𝑔𝑔𝑔𝑔(𝜆𝜆𝜆𝜆,𝑠𝑠𝑠𝑠) = − 2

𝜋𝜋𝜋𝜋(1−𝜈𝜈𝜈𝜈)𝑅𝑅𝑅𝑅
𝛾𝛾𝛾𝛾1�𝛾𝛾𝛾𝛾22−1�

𝜆𝜆𝜆𝜆3𝛥𝛥𝛥𝛥
 

∫ � 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎 (𝑡̄𝑡𝑡𝑡)𝜆𝜆𝜆𝜆 𝜆
−𝑎𝑎𝑎𝑎(𝑡̄𝑡𝑡𝑡)𝜆𝜆𝜆𝜆 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎 (𝑡̄𝑡𝑡𝑡)𝜆𝜆𝜆𝜆�

∞
0 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒( − 𝑠𝑠𝑠𝑠𝑠̄𝑠𝑠𝑠)𝑑𝑑𝑑𝑑𝑑̄𝑑𝑑𝑑. 

×

×               (17)

The index “g” implied that the images of surface pres-
sure and normal displacement correspond to the gradual 
loading of the half-space. It was necessary to apply the  
inverse Laplace and Hankel transformations to (17)  

following the first relation in (4) to find the expression of 
normal displacements. In the general case, it was impos-
sible to run the corresponding integration since the form 
of the function W itself was unknown. However, since only 
one of these integrals was singular, they could be intro-
duced under the sign of the integral contained on the right 
side of (17), i.e., the order of integration could be changed 
(Gakhov, 2014). Hence, such a permutation could be used to 
reduce the procedure of taking the internal integrals of the 
Riemann-Mellin inversion to the calculations made above. 
It should be remembered that the radius a(t̄ ) acts as an in-
dependent parameter in internal integrals. Therefore, the 
inversion integrals were obtained from the product of the 
function W̃

 i(λ, s, a) and the parameters. The last multiplier 
is explained by the absence of the Heaviside function in the 
boundary conditions under gradual loading. In addition, 
the exponent of the Laplace inversion kernel contained the 
difference t -  t̄ instead of t, which was derived as a result 
of a rearrangement of the order of integration. Thus, the 
following was true:

𝑤𝑤𝑤𝑤𝑤𝑔𝑔𝑔𝑔(𝑟𝑟𝑟𝑟, 𝑡𝑡𝑡𝑡) = 1
2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋 ∫ 𝑑𝑑𝑑𝑑𝑑̄𝑑𝑑𝑑∞

0 ∫ 𝐽𝐽𝐽𝐽0(𝜆𝜆𝜆𝜆𝑟𝑟𝑟𝑟)𝜆𝜆𝜆𝜆𝑑𝑑𝑑𝑑𝜆𝜆𝜆𝜆∞
0

∫ 𝑊𝑊𝑊𝑊� 𝜋𝜋𝜋𝜋�𝜆𝜆𝜆𝜆,𝑠𝑠𝑠𝑠,𝑎𝑎𝑎𝑎(𝑡̄𝑡𝑡𝑡)�𝑠𝑠𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�𝑠𝑠𝑠𝑠(𝑡𝑡𝑡𝑡 𝑡 𝑡̄𝑡𝑡𝑡)� 𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝛿𝛿𝛿𝛿𝛿𝜋𝜋𝜋𝜋∞
𝛿𝛿𝛿𝛿𝛿𝜋𝜋𝜋𝜋∞ . 

            (18)

The theorem on differentiation of the Laplace trans-
formation original to (18) was applied and w̃ i(r, t, a) ≡ 0 was 
implied for t ≤ 0, to derive the following:

𝑤𝑤𝑤𝑤�𝑔𝑔𝑔𝑔(𝑟𝑟𝑟𝑟, 𝑡𝑡𝑡𝑡) = ∫
𝜕𝜕𝜕𝜕𝑤𝑤𝑤𝑤�𝑖𝑖𝑖𝑖�𝑟𝑟𝑟𝑟,𝑡𝑡𝑡𝑡−𝑡̄𝑡𝑡𝑡,𝑎𝑎𝑎𝑎(𝑡̄𝑡𝑡𝑡)�

𝜕𝜕𝜕𝜕𝑡𝑡𝑡𝑡
𝑑𝑑𝑑𝑑𝑡̄𝑡𝑡𝑡𝑡𝑡𝑡𝑡

0   .                    (19)

It expressed the normal displacements under gradual 
loading of the half-space in terms of the normal velocities 
of the surface points under its instantaneous loading. The 
relationship (19) could be obtained from simpler consid-
erations, based on the incremental approach. Therefore, 
the process of continuous loading was replaced by a step 
change in surface pressure at discrete moments separat-
ed from each other by a small time interval Δt. A loading 
area with radius a1

 = a(t1) was assumed to have arisen on 
the surface of the half-space at the moment of time t1 =

 Δt. 
The normal displacements of points on the surface of the 
half-space were described until the next moment of load 
change by the expression:

w̃ s(r, t) = w̃ i(r, t - t1, a1), t1
 < t < t2,                   (20)

where the index “s” denoted stepwise load change. At the 
moment of time t2

 = t1
 + Δt, the radius of the loading area 

changed abruptly from a1 to a2
 = a(t2). It corresponded to 

instantaneous load removal along the area with the radius 
a1 and instantaneous application along the area with radi-
us a2 at t = t2:

w̃ s(r, t) = w̃ i(r, t-t1, a1)-w̃ i(r, t - t2, a
1) + w̃ i(r, t - t2, a2),

t2 < t < t3.                                      (21)

The following obtained expression for normal  
displacements at the N-th step is as follows:

Figure 3. Dimensionless function f(ρ, τ) for ν = 0.3 
at moments of dimensionless time τ = n/10,  

where n is the number of the curve
Source: developed by the authors

f

1

2

3

2

3

5

4

1

6
7

8

0.8

9

10

ρ0.60.40.2



69
Machinery & Energetics. Vol. 14, No. 4

A. Kutsenko and O. Kutsenko

𝑤𝑤𝑤𝑤�𝑠𝑠𝑠𝑠(𝑟𝑟𝑟𝑟, 𝑡𝑡𝑡𝑡) = 𝑤𝑤𝑤𝑤�𝑖𝑖𝑖𝑖(𝑟𝑟𝑟𝑟, 𝑡𝑡𝑡𝑡 − 𝑡𝑡𝑡𝑡𝑁𝑁𝑁𝑁+1 ,𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁+1) + 

+��𝑤𝑤𝑤𝑤�𝑖𝑖𝑖𝑖(𝑟𝑟𝑟𝑟, 𝑡𝑡𝑡𝑡 − 𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘 ,𝑎𝑎𝑎𝑎𝑘𝑘𝑘𝑘)−𝑤𝑤𝑤𝑤�𝑖𝑖𝑖𝑖(𝑟𝑟𝑟𝑟, 𝑡𝑡𝑡𝑡 − 𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘+1 ,𝑎𝑎𝑎𝑎𝑘𝑘𝑘𝑘)�
𝑁𝑁𝑁𝑁

𝑘𝑘𝑘𝑘=1

≈ 

≈ 𝑤𝑤𝑤𝑤�𝑖𝑖𝑖𝑖(𝑟𝑟𝑟𝑟, 𝑡𝑡𝑡𝑡 − 𝑡𝑡𝑡𝑡𝑁𝑁𝑁𝑁+1 ,𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁+1) +∑ 𝜕𝜕𝜕𝜕𝑤𝑤𝑤𝑤�𝑖𝑖𝑖𝑖(𝑟𝑟𝑟𝑟,𝑡𝑡𝑡𝑡−𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘,𝑎𝑎𝑎𝑎𝑘𝑘𝑘𝑘)
𝜕𝜕𝜕𝜕𝑡𝑡𝑡𝑡

𝑁𝑁𝑁𝑁
𝑘𝑘𝑘𝑘=1 𝛥𝛥𝛥𝛥𝑡𝑡𝑡𝑡, 

 𝑡𝑡𝑡𝑡𝑁𝑁𝑁𝑁 < 𝑡𝑡𝑡𝑡 < 𝑡𝑡𝑡𝑡𝑁𝑁𝑁𝑁+1.       

(22)

When the parameter Δt was zero in expression (22), the 
expression (19) was used instead. In the case when a static 
load was applied along the radius a0 to the surface of the 
half-space, two more terms would be added to the integral 
on the right side of (19):

w̃ H(r, a0)-w̃ i(r, t, a0).                             (23)

The first of them described the field of normal dis-
placements in the Hertz contact problem:

𝑤𝑤𝑤𝑤�𝐻𝐻𝐻𝐻(𝑟𝑟𝑟𝑟,𝑎𝑎𝑎𝑎0) = −2𝑎𝑎𝑎𝑎02

𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋
𝐼𝐼𝐼𝐼 � 𝑟𝑟𝑟𝑟

𝑎𝑎𝑎𝑎0
�  .                         (24)

The second term corresponded to the removal of this 
load at the initial moment. Therefore, the expressions for 
normal displacements during gradual loading of the half-
space due to normal velocities of surface points during its 
instantaneous loading and normal displacements in con-
tact interaction were obtained.

RESULTS AND DISCUSSION
The relationship (19), addressing (23), was utilised to con-
sider the evolution of normal displacements for different 
laws of change in the radius of the loading area a = a(t). 
However, this study only focused on the case when the 
dependence of the radius of the loading area on time is a 
monotonically decreasing function, which corresponds to 
the process of unloading the half-space (Fig. 4).

In this case, to achieve the goals formulated in the in-
troduction, it is sufficient to determine the function (11) 
and its partial derivative only at ρ < 1, since only the normal 
displacements of points that currently belong to the load-
ing area are considered in this study. In practice, it is better 
to set not the law of change in the radius of the contact 
area, but the law of change in the penetration depth of an 
equivalent indenter δ, which, following the Hertz’s theory, 
is related to the radius by the relation:

δ = a2/R.                                      (25)

Three partial dependencies δ = δ(t) will be considered, 
namely δ = δ0(1-t/T) – uniform unloading, δ = δ0(1-(t/T)2) – 
uniformly accelerated unloading and δ =  δ0cos(πt/((2T))). 
The last expression accurately approximates the depend-
ence, which follows from Hertz’s quasi-static contact the-
ory, of the penetration depth as a function of time during 
the collision of two elastic balls moving by inertia (John-
son, 2012). Here, δ0 is the initial value of the depth of the 
penetration, and T is the period of unloading. In the case 
of unloading, relation (19) can be represented in a dimen-
sionless form considering (23):

𝜋𝜋𝜋𝜋𝑤𝑤𝑤𝑤�𝑔𝑔𝑔𝑔(𝑟𝑟𝑟𝑟,𝑡𝑡𝑡𝑡)
𝛿𝛿𝛿𝛿0

= −2𝐼𝐼𝐼𝐼(𝜌𝜌𝜌𝜌) + 1
1−𝜈𝜈𝜈𝜈

�𝑓𝑓𝑓𝑓(𝜌𝜌𝜌𝜌, 𝜏𝜏𝜏𝜏) − ∫ 𝑑𝑑𝑑𝑑(𝜏̄𝜏𝜏𝜏)𝑓𝑓𝑓𝑓𝜏𝜏𝜏𝜏
𝜏𝜏𝜏𝜏
0 � 𝜌𝜌𝜌𝜌

𝑑𝑑𝑑𝑑(𝜏̄𝜏𝜏𝜏)
, 𝜏𝜏𝜏𝜏−𝜏̄𝜏𝜏𝜏
𝑑𝑑𝑑𝑑(𝜏̄𝜏𝜏𝜏)

�𝑑𝑑𝑑𝑑𝜏̄𝜏𝜏𝜏� , 

𝜏𝜏𝜏𝜏 < 𝜏𝜏𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 , (26)

where

𝜌𝜌𝜌𝜌 = 𝑟𝑟𝑟𝑟
𝑎𝑎𝑎𝑎0

= 𝑟𝑟𝑟𝑟
�𝑅𝑅𝑅𝑅𝛿𝛿𝛿𝛿0

, 𝜏𝜏𝜏𝜏 = 𝑐𝑐𝑐𝑐𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡
2𝑎𝑎𝑎𝑎0

= 𝑐𝑐𝑐𝑐𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡
2�𝑅𝑅𝑅𝑅𝛿𝛿𝛿𝛿0

, 

𝑑𝑑𝑑𝑑(𝜏𝜏𝜏𝜏) = �𝛿𝛿𝛿𝛿(𝑡𝑡𝑡𝑡)
𝛿𝛿𝛿𝛿0

= �𝛿𝛿𝛿𝛿�2𝜏𝜏𝜏𝜏�𝑅𝑅𝑅𝑅𝛿𝛿𝛿𝛿0 𝑐𝑐𝑐𝑐𝑅𝑅𝑅𝑅� �
𝛿𝛿𝛿𝛿0

,  

𝑓𝑓𝑓𝑓𝜏𝜏𝜏𝜏(𝜌𝜌𝜌𝜌,𝜏𝜏𝜏𝜏) = 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕(𝜌𝜌𝜌𝜌,𝜏𝜏𝜏𝜏)
𝜕𝜕𝜕𝜕𝜏𝜏𝜏𝜏

,   𝜏𝜏𝜏𝜏 𝑐𝑐𝑐𝑐𝑅𝑅𝑅𝑅𝑇𝑇𝑇𝑇
2�𝑅𝑅𝑅𝑅𝛿𝛿𝛿𝛿0𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚

. 
                  (27)

During the calculation of the function value, the order 
of the integration and derivation operations in (11) can be 
changed and performed analytically. Thus, the determina-
tion of fτ values is reduced to simple (not multiple) inte-
grations, similar to those that arise when calculating the 
antiderivative of function f. A three-dimensional plot of 
-fτ(ρ, τ) on the square [0,1]×[0,1] is shown in Figure 5.

δ(t)

a(t)   

a0 = a(0)   

δ0 = δ(0)   

Figure 4. The gradual unloading  
of the elastic half-space

Note: a = a(t) is the radius of the loading area; δ = δ(t) – the 
law of change in the penetration depth of an equivalent 
indenter; δ0 – the initial value of the depth of the 
penetration
Source: developed by the authors

Figure 5. Surface -fτ (ρ, τ) for ν = 0.3
Source: developed by the authors
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The gradual removal of Hertz pressure from the surface of elastic half-space

Figure 6 shows a plot of the same function but in the 
form of isolines. As can be seen, this function is bound-
ed and continuous everywhere, except for the point ρ = 0, 
τ = 1/2, where a finite gap is present along the axis τ. The 
advantage of representation (26) in comparison with other 
possible methods for the solution of the problem of gradual 
loading/unloading of a half-space is explained by the fact 
that, in addition to dimensionless variables, the function fτ 
depends only on the Poisson ratio as a parameter and can be 
easily tabulated. Thus, the calculation following (26) is re-
duced to the integration of a bounded, continuous function.

𝜋𝜋𝜋𝜋𝑤𝑤𝑤𝑤�𝑔𝑔𝑔𝑔(𝑟𝑟𝑟𝑟,𝑡𝑡𝑡𝑡)
𝛿𝛿𝛿𝛿0

≈ 𝑑𝑑𝑑𝑑(𝜏̄𝜏𝜏𝜏)
1−𝜈𝜈𝜈𝜈

�∫ 𝑓𝑓𝑓𝑓𝜏𝜏𝜏𝜏
𝜏𝜏𝜏𝜏
0 � 𝜌𝜌𝜌𝜌

𝑑𝑑𝑑𝑑(𝜏̄𝜏𝜏𝜏)
, 𝜏𝜏𝜏𝜏−𝜏̄𝜏𝜏𝜏
𝑑𝑑𝑑𝑑(𝜏̄𝜏𝜏𝜏)

� 𝑑𝑑𝑑𝑑(𝜏̄𝜏𝜏𝜏)�  .              (28)

Running the integration in (28), the required results 
are obtained. It also follows from the above reasons that 
the magnitude of the deviation of the displacements caused 
by the gradual removal of the load from Hertz quasi-static 
displacements is of the order of τ-1

max.
Figures 7-10 show the distributions of the displace-

ments “under the indenter”, which were calculated using 
linear (26) (Fig. 7 and 8) and quadratic (Fig. 9 and 10) un-
loading laws corresponding to different speeds. For com-
parison analysis, the dashed lines indicate the surface 
profiles of the loading area given by Hertz’s theory for the 
corresponding penetration depth of the indenter.

Each pair of solid and dashed curves corresponds to a 
fixed time 0 < τ < τmax. For example, in Figure 7, which cor-
responds to constant indent speed and τmax the five such 
pairs for time points τ = 1, τ = 3, τ = 5, τ = 7 and 5 → τ = 9 are 
represented. The lengths of curves decrease with time as 
the size of the load area also decreases. This fact is indicat-
ed by the upper dashed outline. The lower dashed contour 
corresponds to the distribution of displacements in Hertz’s 
static contact problem. The curves in each pair are similar, 
only slightly shifted relative to each other in the vertical 
direction. In other words, there is an almost constant ver-
tical gap between them. This gap means that the dynamic 
distribution of normal displacements lags behind the qua-
si-static Hertzian distribution. Moreover, for a constant 
speed of removing the indentor, this lag decreases until the 
end of the unloading process.

A comparison of Figures 7 and 8 (the latter also shows 
data for a constant indenter speed but with τmax) indicates 
that with an increase in the indenter speed, the difference 
between the dynamic and quasi-static distributions in-
creases.

7
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Figure 6. The isolines  
of a dimensionless function -fτ (ρ, τ)

Note: the values of the function are indicated near the 
isoline
Source: developed by the authors

The representation (26) also shows that the only pa-
rameter significant for the process, in addition to the 
Poisson ratio, is the dimensionless period of unloading 
τmax, which is equal to the number of diameters of the in-
itial loading area that the Rayleigh wave travels during 
the unloading time. In addition, based on (26), for random 
dependence d = d(τ), which is monotonically decreasing 
to zero, it can be proved that in the limiting case, when 
τmax, the distribution of normal displacements tends to the 
distribution given by Hertz’s theory for the current val-
ue of the penetration depth. The depth of penetration (
𝑑𝑑𝑑𝑑 = �1− 𝜏𝜏𝜏𝜏 𝜏𝜏𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚⁄   ) when τ > 1 is demonstrated in the exam-
ple of the linear law of decreasing. In this case, the first 
two terms on the right side of (26) on the loading area 
completely compensate for each other. However, fτ(ρ, τ) ≠ 0 
at ρ ≤ 1, when τ < 1. Considering the dependence d = d(τ), it 
is possible to conclude that the integrand in the remain-
ing term is nonzero on a narrow interval τ1

 < τ- < τ, where 

𝜏𝜏𝜏𝜏1 = 𝜏𝜏𝜏𝜏 − 1
2𝜏𝜏𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

�1− 𝜏𝜏𝜏𝜏
𝜏𝜏𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

+ 1
4𝜏𝜏𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

2 ≈ 𝜏𝜏𝜏𝜏 −�1− 𝜏𝜏𝜏𝜏
𝜏𝜏𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

  
.

Hence, d(τ-) ≈ d(τ) and:

Figure 7. The normal displacements of points of loading 
area for the law δ = δ0 (1

 - τ /10)
Note: 1 → τ = 1, 2 → τ = 3, 3 → τ = 5, 4 → τ = 7, 5 → τ = 9
Source: developed by the authors
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This conclusion remains valid even with uniformly 
accelerated movement of the indenter (see Fig. 9 and 10). 
Only in this case, the gap between the distributions in-
creases until the end of the unloading process. A similar 
behaviour of the deviations of normal displacements is also 
characteristic of the dependence δ = δ0cos(πτ/(2τmax)), except 
that in the last case in the second half of the unloading pe-
riod, there is a noticeable tendency to their decrease.

As expected, the deviations between quasi-static 
movements and movements caused by the gradual removal 
of the load increase with a decrease in the period of un-
loading. However, another regularity is noteworthy: at any 
fixed moment, these deviations are practically independ-
ent of the radial coordinate, i.e., the surface profile upon 
gradual removal of the load repeats the profile of an imag-
inary stamp, but at a slightly greater depth, depending on 
time. The latter suggests that by reducing the amplitude of 
surface forces, but leaving their distribution along the ra-
dial coordinate unchanged, it is possible to achieve a match 
between quasi-static and dynamic displacements. Setting 
instead of (15) the pressure in the form:

𝑝𝑝𝑝𝑝(𝑟𝑟𝑟𝑟, 𝑡𝑡𝑡𝑡) = 𝑘𝑘𝑘𝑘𝑝𝑝𝑝𝑝0(𝑡𝑡𝑡𝑡)�1− 𝑟𝑟𝑟𝑟2 𝑎𝑎𝑎𝑎2(𝑡𝑡𝑡𝑡)⁄ , 𝑟𝑟𝑟𝑟 < 𝑎𝑎𝑎𝑎(𝑡𝑡𝑡𝑡), 𝑡𝑡𝑡𝑡 > 0 ,     (29)

It is necessary to select a coefficient from the condition 
of the least deviation of the displacement of the points of 
the surface of the half-space from the profile of the indenter.

Since the magnitude of the deviation varies with time, 
the coefficient k, in general, should be considered as a func-
tion of time. But for sufficiently long periods of unloading, 
a reasonable solution to the problem can be obtained, as-
suming that k is constant. In this case, this coefficient is 
the recovery coefficient during unloading of the half-space. 
The difference of 1 - k is the ratio of the energy carried away 
by elastic waves from the contact zone during unloading to 
the total initially accumulated energy of elastic deforma-
tion of the half-space.

The calculations were carried out for all three types of 
half-space unloading according to the proposed scheme. As 
a criterion for determination of the value of the coefficient 
k, the coincidence of the normal displacements of the half-
space surface points and the corresponding indenter points 
averaged over the radius and over the complete unloading 
time was chosen, i.e.:

∫ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑇𝑇𝑇𝑇
0 ∫ �𝑤𝑤𝑤𝑤�𝑔𝑔𝑔𝑔(𝑟𝑟𝑟𝑟, 𝑑𝑑𝑑𝑑) −𝑤𝑤𝑤𝑤�𝐻𝐻𝐻𝐻�𝑟𝑟𝑟𝑟,𝑎𝑎𝑎𝑎(𝑑𝑑𝑑𝑑)��𝑎𝑎𝑎𝑎(𝑡𝑡𝑡𝑡)

0 𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟 = 0  .       (30)

As such, the value depends not only on the dimension-
less period of unloading τmax but also on its nature. For the 
linear law of change in the depth of penetration the coef-
ficient k is equal:

𝑘𝑘𝑘𝑘 ≈ 0,6
𝜏𝜏𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

  ,                                      (31)

for the other two laws, it is equal:

𝑘𝑘𝑘𝑘 ≈ 0,4
𝜏𝜏𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

  ,                                      (32)

(in the case of uniformly accelerated unloading, the value 
is slightly less than in the case of inertial movement of the 
indenter). It should be noted that expressions (31)-(32) 
make sense only for sufficiently large periods of unloading 
(τmax ≥ 10). Otherwise, even for the optimal value, the devia-
tions at certain points in time become comparable with the 
magnitudes of the displacements themselves.

However, the dimensionless contact period τmax is in-
versely proportional to the ratio of the speed of insertion/
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Figure 8. The normal displacements of points  
of loading area for the law δ = δ0 (1

 - τ /5)
Note: 1 → τ = 0.5, 2 → τ 1.5, 3 → τ = 2.5, 4 → τ = 3.5, 5 → τ = 4.5
Source: developed by the authors

Figure 9. The normal displacements of points  
of loading area for the law δ = δ0 (1

 - τ /10)2

Note: 1 → τ = 2, 2 → τ = 5, 3 → τ = 7, 4 → τ = 9
Source: developed by the authors

Figure 10. The normal displacements  
of points of loading area for the law δ = δ0 (1

 - τ /5)2

Note: 1 → τ = 1, 2 → τ = 3.5, 3 → τ = 4.5
Source: developed by the authors
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removal of an imaginary indenter and the speed of elastic 
waves in elastic space c0. Therefore, the results obtained 
qualitatively coincide with those known from the litera-
ture, for example, those obtained by I.I.  Argatov  (2012), 
stating that the part of the energy spent on the formation 
of elastic waves increases with increasing this ratio. I.I. Ar-
gatov (2012) carried out an asymptotic analysis of the in-
teraction of an elastic half-space with a slowly moving rigid 
spherical indenter. The superseismic and subsonic phases 
of interaction were considered separately. For each of them, 
the expressions for maximum penetration, contact time, 
and contact force dependence on time are derived. Based 
on the obtained relations, the above statement on the neg-
ligence of the superseismic phase can be questioned.

Therefore, the conclusion reached by H.  Xie  et 
al. (2022) on the independence of the maximum pressure 
from the indenter speed could be derived from the method 
used. At the same time, calculations of this study confirm 
the conclusion of K.L. Johnson (2012) on the insignificance 
of the contribution of the superseismic phase to the overall 
picture of contact interaction. Attempts of rectification of 
Hertz’s theory for the case of dynamic contact were made 
repeatedly. An analysis of earlier studies was conducted by 
K.L. Johnson (2012). In particular, the time of the so-called 
super seismic phase, when the boundary of the contact area 
moves faster than elastic waves, was determined as negli-
gible. In addition, it is noted that for indenter velocities of 
an order of magnitude lower than the elastic wave veloci-
ties in the half-space, the quasi-static Hertz theory gives 
a good approximation. The applicability criterion for such 
an approach, which is called Love's criterion, is given in the 
fundamental paper of K.L.  Johnson  (2012). According to 
this criterion, it has the following formulation: Hertz's the-
ory approximates the real distribution of contact pressure 
more accurately, that the smaller the ratio of the approach 
(retreat) velocity of the bodies V to the characteristic value 
of the elastic wave velocities inside the bodies themselves 
c0. The physical implication of this criterion determines 
that the more times the elastic waves return to the point 
of impact during the contact time (it is reflected from the 
distant boundaries of the bodies) the more the deforma-
tion process can be like static deformation. As K.L.  John-
son (2012) pointed out, this criterion is true even if the di-
mensions of one of the bodies are so large that during the 
time of contact, the waves do not have time to return to the 
point of impact.

C.  Zhao (2011), Y. Shen & V. Giurgiutiu (2014) proved 
that an example of the practical application of the results 
of dynamic contact mechanics was non-destructive ultra-
sonic testing and monitoring. However, the determination 
of contact stresses in the case of the exact formulation of 
the corresponding boundary value problems of the dynam-
ic theory of elasticity is accompanied by overcoming some 
mathematical difficulties. H.  Jalali & P. Rizzo (2021) con-
cluded that one of the characteristic features of non-sta-
tionary contact problems is the dependence of the size, and 
sometimes the shape of the contact area concerning time, 
which cannot be deducted in advance. Y. Yang et al. (2019) 

and Q. Peng et al. (2021) determined that the absence of 
relatively simple analytical expressions for contact stress-
es that consider local dynamic effects is the reason for the 
practically uncontested use of Hertz’s quasi-static theory 
of impact in applied problems.

Thus, the obtained results of calculations and 
graphical dependencies obtained on their basis indicate 
that the gradual removal of the load from the surface of 
the elastic half-space has been achieved and the Hertz-
ian pressure can be determined sufficiently accurately 
by the proposed method.

CONCLUSIONS
In the course of the research, an efficient method for calcu-
lating normal displacements in the area of loading during 
dynamic contact interaction of elastic bodies was devel-
oped. This method is based on exact solutions to non-sta-
tionary problems and holds practical significance for mod-
elling structures operating at high velocities. The only 
significant parameter in the problem of gradual loading 
(unloading) of an elastic half-space, excluding the Poisson 
ratio of the material of the half-space, is the dimensionless 
loading (unloading) period τmax, which is equal to the char-
acteristic diameter of the loading area, which the Rayleigh 
wave travels during the loading (unloading) time. With a 
gradual removal of pressure, the normal displacements of 
the points of the loading area always lag behind the cor-
responding quasi-static values given by Hertz’s theory, 
and this lag is proportional to τ-1

max for large values of the 
dimensionless period of unloading. This phenomenon of 
inertia of points on the surface of the half-space leads to 
a decrease in the contact pressure compared to the Hertz 
pressure when the indenter is removed (it is logical to as-
sume that when the indenter is deepened, the inertia of 
the surface of the half-space leads to an increasing in pres-
sure). For sufficiently long periods of unloading (τmax ≥ 10), 
the deviation of normal displacements from its quasi-static 
value is practically independent of the radial coordinate, 
i.e., uniform over the loading area, independently of the 
unloading law. For long periods of unloading, the ratio of 
the energy spent on the formation of elastic waves to the 
total energy of the initial elastic deformation is described 
by the expression Cτ-1

max, where the constant value of C is 
different for different laws of unloading.

Considering the rapid development of computing 
tools, it seems promising to study this problem using the 
finite element method. This approach will not only allow 
us to compare numerical results but also suggest the time 
dependence of the penetration depth of a real, rather than 
imaginary, stamp. The latter, in turn, will make it possible 
to perform a more accurate assessment of the energy of 
elastic waves using the proposed analytical method.
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Поступове зняття з поверхні пружного півпростору тиску Герца

Анотація. Визначення контактних напружень при нестаціонарному динамічному навантаженні пружних тіл має 
вирішальне значення для моделювання конструкцій при високих швидкостях, але це пов’язано з математичними 
труднощами через залежність від часу і часто невідомі розміри та форму контактної області. Основна мета роботи 
полягала в тому, щоб на основі точних розв’язків нестаціонарних задач для пружного півпростору отримати оцінку 
величини частини енергії, яка витрачається на утворення хвиль під час контактної взаємодії пружних тіл. Для цього 
за допомогою перетворення Ханкеля за радіальною координатою та перетворення Лапласа за часовою змінною 
реконструйовано розв’язок додаткової задачі – задачі про миттєве навантаження півпростору. Запропоновано метод 
знаходження переміщень у пружному півпросторі, який поступово навантажується (розвантажується) контактним 
тиском Герца. Його наявність дозволила перейти до розв’язання основної задачі – задачі поступового навантаження 
поверхні півпростору тиском Герца. Обґрунтовано можливість зміни порядку операцій диференціювання та 
інтегрування в отриманому представленні на основі властивостей підінтеграла. Розглянуто випадки, коли швидкість 
індентора постійна, коли його рух рівномірно прискорений і коли рух відповідає закону першої чверті періоду 
косинуса в часі. Зроблено висновок, що розподіл динамічних контактних напружень подібний до розподілу Герца. 
Зроблено оцінку частини енергії, що витрачається на формування пружних хвиль, для різних законів розвантаження. 
Практичне значення роботи полягає в розробці ефективного методу розрахунку нормальних переміщень на 
ділянці навантаження при динамічній контактній взаємодії пружних тіл, що може бути цінним для моделювання 
конструкцій, які працюють з високими швидкостями

Ключові слова: динамічна контактна взаємодія; уточнення контактного розподілу; енергія хвиль; перетворення 
Лапласа; штамп; перетворення Ханкеля
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