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THERMO-RHEOLOGICAL
HEREDITARY ELEMENTS AND
DISCRETE CONTINUUM MODEL
DYNAMICS

In this paper we shall define a piezo- and thermo-rheological discrete continuum model
as a system of material particles interconnected by light standard constraint elements
(elastic, hereditary or creep) and which are, in piezo- or thermo-rheological modified
dynamical state, on defined interdistances (when constraint elements are unstressed and
stressed). By using standard creep light elements with fractional derivative order constitutive
relations, as a constraints, for a discrete systems with many degrees of freedom the
system of the integro-differential equations of fractional order and in covariant tensor
form are composed. Also, we take into consideration more precise definition of the
thermomodification of the standard hereditary element taking into account rheonomic
constitutive relation od the thermo - modification of the standard hereditary rheological
light element and possibilities of apearence of parametrically excited phenomena in the
discrete system. Two examples: a thermorheological oscillator and a thermorheological
coupled pendulums excited by deterministic and stochastic temperature excitation are
considered, and a series of the systems of the averaged differential equations are derived
for deterministic and stochastic cases.

discrete continuum, piezo and thermo-rheological hereditary elements, discrete system
dynamics, sistem of material particles, discrete homogenous chain, discrete
homogenous material net, integro-differential equations, rheological kernel,
relaxational kernel, fractional derivtive order differential equations, tensor equations.

1. Inyroduction. Discrete continuumisideally elastic if
it's material particles are interconnected by light standard
ideally elastic constraint elements. Discrete continuum isa
standard hereditary continuumiif it's material particles are
interconnected by light sandard hereditary e ements. Discrete
continuum isastandard creep continuum (see Refs. [9], [15])
if its material particles are interconnected by light standard
creep elements (see Refs. [2], [3] and [4]). Discrete continuum
is a termo- or piezo-modified continuum if its material
particesareinterconnected by light Sandard thermo- or piezo-
rheological hereditary elements.

We shall definediscrete chain system[15] asa system of
discretematerial particlesthat can movealongalineand are
interconnected by standard constraint light elements. The
chainisideally dasticif material particles areinterconnected
by ideally elastic d ements. The chain isstandard hereditary
if material particlesareinterconnected by standard hereditary
elements. Thechain isstandard creep if material particlesare
interconnected by standard creep e ements. The number of
degrees of freedom of each of these chainsis equal to the
number of particles in it, since we hypothesize that each
material particle movesin thedirection of thechainline,
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If all material particlesof thediscrete continuum movein
the same planethey have two degrees of mation freedom and
areinterconnected by standard constraint light elements; such
material system we shall call the plane material net[9]. The
net can be el astic, standard hereditary or standard hereditary
plane material net depending on thetype of congtraint e ements
that interconnectsits material particles. Itisaplanediscrete
material surface through which we can follow the propagation
of deformati on waves, which can bedadtic, hereditary or creep
excited by thermo- or piezo modificationsin two orthogonal
directions.

Fig. 1 showstwo material particles, with masses m and
m,, the positions of which are determined by following
vectorsposition r and rz,constral ned by light standard piezo-
thermo-rheol oglcal hereditary element, negligable mass. At
ends of the hereditary eement in the extension stress-strain
state, the force of deformation P(t) apears, which depends
on generalized coordinate of element deformation r - r
aswel| on corresponding temperatures, T, (t) and T, (t) and
polarisations voltages U, (t) and U, (t) of piezo-thermo-
maodification of hereditary element. This system was studied
in thepapers[20], [7] and [8] and in monograph [2].

The paper [20] presents the discrete continuum method
on examples of homogenous discrete systems' with limited
number of degrees of motion freedom dynamics. These
systems are in theform of homogenous chains[15] and nets
in space and plain. Material points of these netsand chains
are tied by elagtic, standard hereditary or creep elements.
Thesesystems' dynamicsisdescribed by a system of integro-
differential equations or differential equationswith fractional
derivatives. A light standard creep element is defined by a
congtitutive relation of stress-strain state, for the creation of
which fractional order derivativeswere used.

The fast development of science of material and
experimental mechanics, as well as methods of numerical
analysis, led tothe creation of different modd sof real material
bodies and methods for studying dynamics and processes
which happen in them during the transduction of disturbance
through deformable bodies (see Refs. [5], [6], [10], [11], 12],
[16-20]).

Therealsoexist different approachesto creating real body
models. One such approach is represented by a mode of
discrete system of material particleswhich are connected by
certain ties, and the number of which is then increased to

P(t)

Fig. 1. Discrete system consisted of two material particles
constrained by light standard piezo-thermo-rhelogical hereditary
element

create a continuum, the motion and deformable wave
propagation of which was then described by using partia
differential equations. And then, due to the impossibility of
solving them analytical, the approximation method was used
for the purpose. Methods of discretization of systemsof partial
differential equationsand methods of physical discretization
of continuum were used.

2. Equations of dynamics of a discrete system with
finite constraints and standard creep-elements. We
investigate dynamical system (see Fig 2.) of N material
particleswith masses m, , n =1.23..., , the position vectors
of which are r -ynq i=123 n ],23 ,N . Material
particlesare constrai ned by Sfinite constrai nts

fm(Fl,rlz,...,r'N)= fm(yl,yz,...,y3N)
m=123..,S 1)

and where we introduce the following notations:
yo =y k=123 my =my k=123,
n= 12 3N ; aswell ashy K standard hereditary e ements
neglected mass and material properties parameters of which
e Noppsayk » K=123,....,K, aretimesof relaxation, and
Cn 41k and Nk - arean instantaneousrigid stiffness
modulus as prolonged ones; and aswell asby C standard
creep elements neglected mass and material properties
parameters of which are: a(,p4)c » €=1,2,3,....C,, are
proper (own) material constants of the characteristic creep
law of creep eements materials, Egy(, ,.yc,€=123,....,C,
and Ea(nnﬂ)c,c 123...,C, are modulus of elagticity and
creeping properties of standard creep e ements.

Relations between reactions and deformations of the
standard hereditary light e ement in the discrete system can
be defined in the relaxational forms by using integral stress
strain staterelations[2], [8]:

t

é 3 _ U
Ransk = Gnnk g(n,nﬂ)k (t) - Rinpsak (t't)f(nml)k (t)dt :
0 9

n=123..,N,k=123...K, )

whereare

~ ottt
C(n n+)k

C(n n+)k -

e Nin n+1)k

Rnn+l (t t)

n(n n +l)kC(n n+hk
n=123..N, k=123,...K, ©)

kernels of relaxation (see Refs. [2], [3], [4] and[7]), and

I
rI(n)k ’

(@)

r(n +k "~

r r
r(n+1)k - r(n)k -

I
Fpenk = |r (n,n+1)k| =

r
=Ir

r (hn+1)ko =

T o nsnk on+k| ™ VM onspko =

and r nnsyko I1Slength of a hereditary element in natural
stress-strain state, when the strain and stressin the element
are equal to zero.

Rel ations between reactionsand deformati ons of the creep
light eement in the discrete system (see Ref. [6]) can be
defined in theform by using fractional derivativeorder stress
dtrain staterelations:
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[o]

a* rn,n+1(t)_ Inn+1(t)

) =a,u(t)=10,0)

Poat)

Pnn+1(t)

n(n n+)k C(n n+hk C(n n+)k

nn+l

Fig. 2. Model of discrete creep-hereditary system with rheonomic constraints and with
N material particles; a* — hereditary or creep and rheonomic elements in series

A np)e 4 N
I:in,n+1)c = EO(n,n+1)cr (n,n+l)c + Ea(n,n+1)th( ) g (n,n+1)cH,

n=123.,N, ¢=123...C 4)

where D{ [[] is notation of thefractional order derivative
operator defined by following expression:

U nene (L , N
U 1 d (nn 1)C( )dt - Dta Q(n’n+1)c(t)H

Da(nml)c é . ¥ =
t € (”’” 1)CU G(l- a(n,n+1)c) dtoo (t- t)a ©

()

where a ... are ratio numbers from interval
0<a(nic <1 Ry,.. @enormal forces in the cross
section of the standard light line creep elements, T (, . (t)
arerelative extension of the standard line creep e ement.

By using velogity conditions we can write ortogonality
conditions fgraq1 f..v']=0, n=123,...,N,

n=12.3...,S between mass particles and gradients of
the finite constraints, for ideal constraints reactions we can
writethe following:

rmws rr
R, =al,grad, f (f....1y).n =123..,.N (6
m=l
in which the |, , m=123,...,S are Lagrange's

multiplicatorsof thefinite constraints.
From a principle of the work on the virtual system
displacements can bewritten in the following form:

n=N.r r r r, r.r
é.{|n+Fn+R1+PnH+Pr$+RnT}an:0

n=1

(7)

Dynamical Lagrange's equations first kind arise from
previous equation in thefollowing form

20
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& r ' rry I
n’h n = Fn (t)+ a I mgradn fm(rl’ "rN)+ RnT+
m=L
A I I r r N
§ B Fos r Moo U
2 a3 0+ (n+i)e ~ ")
+a. ? P(nn+j)k(t)—rLr_+ a. mn+j)c ( )TLI'_U
j=1 G k=1 Fosik = Tk ln+ive = To)e H
n=123..,N. (8)

3. Covariant integro-differential equations of
fractional order derivatives, of the motion of the discrete
creep-hereditary system. Thevirtual displacementscan be
expressed by using generalized coordinates in the form:

a n
dF =a ﬂ—dq and introduced into the previousequation

a= 19°
(7) for thework of theactiveand reactiveforces on thevirtua
displacements, we obtain the following system of equations
in the covariant coordinates:

D§° \
aabl_Qa"'Qa"'PaH +Pac;
a=123..,n n=3N- S, (9)

where, by analyzing the members, we have the following
expressions of thefictive, active and reactive forces:

| = ”g'Nmn ﬂ'rn o ng'Nm] b= ”ﬂ
o 8T gdtb 0T ﬂq P
D b
o (8 + Ga1a 1=~ 20y - (10)
a=123 n=3N- S,
r .
n:N%r Tlr
Q= a gk (t) 2z (11)
: n:lg () To®
(VRS @ rory 0
Q. =a al .&orad, fm(rl,...,rN ) 11=0, (12
n=1 m=1 ﬂq o
! 3 iy 64
n=Ny j=Nk=K (nn+j)k a )
PI=38 18 & Ron()r n %, (13)
n:1.|l = k=1 I’(n n+j)k| |
L
I
) Eﬁgr fi, o
n=nt j=Ne=c, n+k g <L
| ﬂq [
F’aC = é. 1 3 é. P(n n+J)c(t)—r—2ﬂy, (14
n:1:|: j=1 c=1 r(nn+j)k| |
f b
0 -A R (t) fh ¢ (15)
: nzlg gt

4. Light standard thermo-rheological hereditary
element. When standard hereditary element is modified by

two temperatures T, (t) and T, (t) , which areintroduced by
thermo-modification of visco-elastic properties by
temperature T, (t) and by thermo-modification of elasto-
viscosic properties by temperature T,, (t) than congtitutive
relation between stress and strain state of the thermo-
rheological hereditary element is[2]:

n®(t) +P(t)+nky (t)+Fy (t) =nck

in which (see Ref. [1], [5] and [10])

(t)+eg (t)-rof (16)

Fu (t) =cwanTu (1), Fe (t) =ccagTi (t)

arethermoelastic forces, and r (t) isrheological coordinate,
Cw »Cx are coefficients of thermo-elastic rigidity, a,, ,ax
are coefficients of thermo-elastic dilatations, n is time of
relaxation, and c,& an instantaneousrigidity and aprolonged
one of an element.

Congtitutive relation (17) thermo-rhelogical hereditary
element from diferential form we can rewrite in two integro-
differential form. By using explicit form with respect to the
force P(t) we can write:

(17)

t

P(t):cgr(t)- o 0 (1)- ToR(t- t)dté- Fu (1)+

+—CC%@:" w (t)- F (D)@R(t- t)dt (18)
0
inwhich
& -t
R(t—t):—e n jsakernd of rdaxation (19)
nc

5. Light standard piezo- and ther mo-rheological
hereditary elements. When standard hereditary element is
modified by two polarization voltages UK(t) and U, (t
which are introduced by piezo-modification of visco-dlastic
properties of subelement of piezoceramics, by U (t) and by
piezo-modification of elasto-viscosic propertiesby U, (t),
and thermo-modified by two temperatures T, (t) and T, (t),
than congtitutive relation between stress and strain state of
the piezo-rheol ogical hereditary hybrid element isin theform
(16) in which (see Ref. [1], [10], and Fig. 3.) are

w (£) + G Ty (1),
« (t)+can T (t)

Fy (t) =GmaywVY

Fe(t) = cuc@uV (20)
arethermoelastic forces, and r (t) isrheological coordinate,
Crv »Crx are coefficients of thermo-eastic rigidity, aqy ,a«
are coefficients of thermo-€lastic dilatations, ¢, .Gk are
coefficients of piezo-elastic rigidity, ay,.ay are
coefficientsof piezo-elagtic dilatations nistime of relaxation,
and c,C aninstantaneousrigidity and aprolonged oneof an
hybrid element.

6. Thermo-rheological oscillator. In Fig. 4. a thermo-
rheological oscillator ispresented, containing material particle
of mass m with one degree of freedom defined by generalized
coordinate x, and a standard light thermo-visco-elastic
element termomodified by temperature T (t) .
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Fig. 3. Schematic notation of a thermo-elastic light element (a*);
schematic presentation of the thermo-modified Maxwell elasto viscosic light hereditary element (b*);
schematic presentation of the thermo-modified Kelvin-Foight visco-elastic light hereditary element (c*);
schematic presentation of the thermo-modified Burgers light hereditary element (d*)

Fig. 4. Thermorheologocal oscillator

Now, we take into account that this standard light thermo-
visco-¢l astic e ement termomodified by temperature T (t) is
in the dynamic state, and that we didn’t neglect
thermodification of the element strain, then we can writethat
is DI =a;T(t)(1,+X), and that the condtitutive rel ation of
thethermo-visco-elastic stress-strain stateisin thefollowing
form:

P(t) =c(DI +x)+bk=cxg+aT(t)g+arl,T (t)+bk
(21)

In previous considerations and presented models the
rheolinear member a;T (t)x(t) was neglected as a small
member with comparison with other membersin constitutive
relations. Tnisis acceptable if we research dynamics of the
thermorheol ogical oscillator around main resonance motion,
but we can show that it is not acceplable if we investigate
phenomenaaround parametric resonance state.

Differential equation of the thermo-rheol ogical oscillator
presentedin Figured. is:

i = - cxgl+a T (t)g- arloT (t)- bk (22)

or intheform:

&+wj gL+ git (t) px + 2dk = - by (1) (23)
where
V\lg=%,g:aTTo,2d=%,
_arllo 4 -1
hp ==t 20, T() =2 T (). (24)

From (23) we can concludethat dynamicsof the thermo-
rheological oscillator presented in Figure 4. is described by
Mathieu-Hill rheolinear differential equation, if temperature
T(t) is deterministic function, and for the case that is
stochastic, random function, we have stochastic differential.
rheolinear equation.

For solving this equation (23) , and for investigation we
can use Mthie-Hill functions [23], and known Ince-Strutt
stability cart [23]. But we can usedifferent way. Weintend to
investigate role of the temperature T(t) for dynamic
phenomena of the appearance of themain resonance regime,
and parametric resonance regime. For that reason we take
into account temperature excitation in the form: I*
T(t) =sin(W+b) with deterministic constant value
frequency W and constant deterministaic phase b and 11*
we propose that random, bonded noise temperature excitation

istaken in the following form T (t) :sing%vt+sB(t)+b9

a
with deterministic constant value frequency W2 and: that
B(t) is the standard Wiener process, and b is a random
uniformly distributed variablein interval [0,2p] , then T(t)
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is a stationary process having autocorrelation function and
spectral density function (see Ref. [1]):

s2t

R(t)= %mze- 2 cosWt (25)
and
s2
¥ . 1 \/\/2+\/\/2+7
S(w)= oR(t)e"dt =Emsz% — 5. (26)
‘*‘ ?ﬁ-w&ig +s202U
o

Stochastic process [T(t)| £1 is bounded for all values of
time t . For first, and for both cases, wetakeinto consideration
asymptotic aproksimation of the amplitude and phase of the
dynamic process close around I* main resonance when
W w, and II* around parametric resonancewhen W» 2w, .

Solution od the basic linear equation &+w2x=0is
X(t) = Reos(wot +j ) where, anmplitude R and phase j
areconstant.

I* For this first case with deterministic temperature
function T (t) = sin(Wt +b) , we can introducethat:

Dyt =Wo - W, and F (t)=Wt+f .

Now, we take into consideration that solution isin the
form x(t) = R(t)cosF (t), and that first derivative of this
solution issameasin casethat anmplitude R and phase |
are constant. By this condition and from equation (23) we
obtain two wquationsin the following forms:

RcosF - #RsinF =- Dy RsinF
RsinF +Rf cosF =- 2dRsinF +w,gl (t) RcosF +

+&'ﬁ(t) +RDye COSF .

(27)
Wo

After solving with rwspwect to R and # we obtain:

R=-dR(1- cosZF)+%w0g?'%(t)sin2F +Wﬁ%(t)sin|=
0

f = Dyq (1- cos2F )- dsin2F +lwogf/0 t)(1+cos2F )+
et >

+1® (1) cosF .

R (28)

Now, we must apply the method of averaging (see Refs.
[21], [22] and [13]) totheright-hand sides of equationswith
respect tothefull phase F (t) . After averaging theright-hand
sides of both equations with respect to the full phase F (t),

we obtain the system of averaged differential equations of
thefirst approximation in thefollowing form:

#:-dR+%cos(f -b), =Dy - 2WioRsin(f - b),

Dyet =W, - W. (29)
From averaged system equations (29) we can see that in
firgt approximation parametric temperatureexcitation issmall
and neggnectible, and in first approximation haven't influence
to thevibrations closed to the one frequency vibrations with
W>» W .
I1* For second casewith stochastic temperaturefunction

T(t) = sing%vt +sB(t)+ b® wecan introducethat:
2

w w
Dy =wp- -, and F(t):EHf _

Now, we take into consideration that solution isin the
form x(t) = R(t)cosF (t), and that first derivative of this
solution issameasin casethat anmplitude R and phase |
are constant. By this condition and from equation (23) we
obtain two wquationsin the following forms:

RcosF - fRsinF =- DyRsinF

RsinF +Rf cosF =- 2dRsinF +w,gl (t) RcosF +

+&'ﬁ (t)+ RD4 cosF . (30)
Wo

After solving with rwspwect to R and # we obtain:

R=-dR(1- cosZF)+%w0g?'%(t)sin2F +Wﬁ%(t)sin|=
0

f =Dy (1- cos2F )- dsin2F +%Wog'% (t)(1+cos2F ) +

+"o (1) cosF . (31)
WyR

Now, we must apply the method of averaging (see Refs.
[21], [22] and[13]) totheright-hand sides of equationswith
respect to thefull phase F (tt); After averaging theright-hand
sides of both equations with respect to the full phase F (t) ,
we obtain the system of averaged differential equations of
thefirst approximation in thefollowing form:

PgQ:-dR+W°—2§Rcos(f - sB(t)- b)

f =Dy - W—;gsin(f - sB(t)- b), Dg =wp - VEV (32)

From averaged system eguations(32) we can seethat infirgt
approximation parametric temperature excitation is main and
not neglectable, and in first approximation have main role, and
that this influenceto the vibrati ons closed to the one frequency
vibrationswith  W» 2w, .Comparing obtained results, we can
concludethat temperature excitation frequency to the standard
thermorheol ogical eement haveimportant ralefor decidionwich
member in differential equation ispossibleneglect.
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The changeof variables[1] in the following waysand in

thefollowing forms: r (t) =InR, J(t) =f (t)- %y , Where

y =sB(t)+b and transforming the averaged system of
differential equations (32) into the system of averaged
stochastic differential equations Ito-tipe with respect to the
unknown amplitude R(t) and unknown phase f (t), results
in thefollowing forms:

dr (t):%lfedt, dJ (t) = (t)dt- %dy (33)
or
dr (t) =-ddt- %WOQRCOSZJ dt,
dJ¥ (t) = Dyt - %wogsinZJ';dt- %sdB(t) . (34)
TheLyapunov exponent of system mode process | , (see

Ref. [1]) may be introduced by using the time mode and
which by making use of the averaged equations become:

2 1, 20 1
! -Jg@—'n.ex( )i+ @Oy =l () @9

Now, we can use Lyapunov exponent as ameasure of the
average exponentia growth of theamplitude R(t) of process.

The Lyapunov exponent | isadeterministic number with
probability one (w. p. 1) for the system given by averaged
equations. Solutions of the averaged differential equations
depend on initial values.

In order to calculate the expression and values for
Lyapunov exponent, it isnecessary to integrate both sides of
first stochastic differential equation of the system, so that,

from expression for Lyapunov exponent | , wecan writethe

foll owing expression:

| :—d—%WOQREgcosZJgH with probability 1. (36)

Using equations and results by Ariaratnam [1] and
Stratonovich (1967) [24] and also, previous stochastic
differential equation (34), the values of the mathematical

expectation EGCOSZJ

su,fortheproc&s J(t)=f(t)- %y ,

and y =sB(t)+g isfoundto bein theform of expressions:

E §oos2J" ?VO@R 4Dy °, (37)
S
where
1EI1+|q(z) |1|q(Z)U
z,q . (38)
P28, Tl

Hence, using previous expression for the Lyapunov exponents

I, withtheprevioudy cited result, wecan writethefollowing
expressionin theform:

1 avoo0R 4
| =-d- ZWygRF c—
5 OQRSS

—_ Wlth probability 1. (39)

By using previous expression for the Lyapunov exponent
[ in the forms of expressions (39) with probability 1for
evaluation of the stability or instability of thevibration process
of thethermorheol ogical oscill ator, wemust find the maximal
value of the Lyapunov exponent, and determine kinetic
parameters of the system such that this Lyapunov exponent
iswith negativeval ues. Also, we can consider the casewhen
Dy =W - W2 isequal to zero. For detail see[1].

7. Thermo-r heological coupled pendulums. InFig.5a
thermorheological system, containing two coupled pendulums
(seeRefs. [23], [2]), is presented. Wetakeinto consideration
two coupled mathematical pendulums, both with material
particles of mass m, with length | and with two degrees of
freedom defined by generalized coordinates j ; and j ,, and
astandard light thermo-visco-€l astic € ement termomaodified
by temperature T (t) , coupling pendulum at distance I .

Now, wetakeinto account that this standard light thermo-
visco-el astic e ement termomodified by temperature T (t) is
in the dynamic state, and that we didn’t neglect thermo-
dification of the element strain, then we can write that is
DI =a;T(t)(l,+X), and that the constitutiverelation of the
thermo-visco-eladtic Sress-gtrain Sateisin thefollowing form:

P(t)=cgDl+1(j o-i1)g+bl(kz- k)=
=cl(j o-j.)f+arT(t)g+arloT (t)+bl(k,- £1) (40)

sametypeasin previous part.
Differential equationsof the thermo-rheological coupled
pendulumspresented in Figure 5. are:

mi’y =cl?(j ,- j1)gl+arT(t)g+rarlodT(t)+
+b1? (5 - Jy)- mglj 4,

mi?f, =-cl?(j ,- j 1) @+arT(t)f- arloIT(t)-
b1 (5 - jq)-

mglj », (40)

or intheform:
By + W] 1+W§(j 17 z)él+9%(t)EI+
+2d(fy - )= -t (t),
f, + W 2"'W§(j 2] 1)@-"'9-%(08"'

+2d(jg‘z - jg‘l) = rb-% (t) (40)

where

W=, we=9,

| g=a;T,, 2d=

3o

c
m
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o]

Fig. 5. System with two pendulums interconnected by standard
light thermo-modified hereditary element

h=ree, #()==T() ()
Basclinear equations o theprevicussysemare
B + GG + W5l 1 - whj 5 =0;
f + G +wo lj 5 - woj 1 =0, (42)
with eihen frequencies:
w8, =42 +vinvz =] %0 43
WG +2w5
and with solution:
j 1(t) =Cycos(wit +a;)+C,cos(w,t +a,) ;
j 2(t)=Cycos(wit+a,)- Cycos(wt +a,), (44)

where C, C,, a, and a, areconstant.

If we make sum and difference between equations of the
previous system (40) of differencial equationsof thethermo-
rheological coupled pendulums presented in Figure 5. we
obtain following:

F&l"'f&z"'\%’g(j 1t] 2):0 (45)
By - B, +\%’S(j 10 2)+2V"§(j 1-] z)él+g%(t)E|+
+4d(fy - ) =- 2T (t). (46)

By the change of coordinates in the following ways
Xy =jq1t+] ,and X, =j 1 - ] , previoussystem takeform:

% +#dx, =0 (45%)

%, +Wx, +2w3 gL+ g () px, +4dk, =- 2T (1) . (46%)
First equation represent parcial pureharmonic oscillator

with frequency W3 = g/I of thefreevibrations. Thiscaseis

when both pendulum oscillate with same W3 =g/l as

. ]
w=d 0w BTN aegT X
H‘AAAAAAAA
.v‘&\\\\\\\\\\\\\\\\\\\\\\‘\
G =mg/l G =mg/l
a) b)

Fig. 6. Thermorheological oscillator 1 (a), thermorheological
oscillator (b)

decoupl ed pendulums, assingle mathematical pendulum, and
then standard light thermo-visco-€l astic element termomo-
dified by temperature T (t) haven't influenceto this coordi-
nate composed by sum X, =j; +j ,. On this coordinate os-
cillation arefree, without temperatureinfluence.

Second equation represent mathematical description of
thethermo-rheol ogical oscillator presentedin Figure 6., with
parallel coupled twolight standard thermo-visco-elastic ele-
ment termomodified by sametemperature T (t) and oneelas-
tic spriung with rigidity ¢ =mg/ 1 inthedynamic state. By
comparison equations (46*) and (23) we can see that these
equation isin mathematical analogy, and that it is possibleto
useall resultsfrom part VI. And all conclusion, without cal-
culations.

For this coordinate x, =j ;- j ,, we can separate two
main cases. For both cases, we take into consideration as-
ymptotic aproksimation of the amplitude and phase of the
dynamic process on thiscoordinate X, =j ; - j , cdosearound

I* main resonance when W» /W3 +2w3 and I1* around

parametric resonance when W»% W3 +2wj . Then, wecan

conclude that on this coordinate is possible to appear under
the corresponding kinetic parameters I* regimes closest to
main resonant state, aswell asone main resonant state, and
I1* regimes closest to parametric resonant state, as well as
oneresonant state under the thermo-viscoel astic temperature
singlefrequency excitation.

Alsowe can concludethat basic system (linear-unpertur-
bed system) corresponding to rheolinear —thermo-rheol ogical
perturbed system, have asamain normal coordinates x, and
X, , and that for thermo-rheological perturbed system resuls
in the forced and parametrically perturbation of the second
mode, when first modeis unperturbed.

For solving system differential equations (45) and (46)
we take into account the following:

110 =Gy (t)cosF (1) +C, ()eosF (1)
j 2(t)=Cy(t)cosF,(t)- C,(t)cosF,(t)

where Cy(t), Cy(t),

function of timet.

For solving system of the equation (40), and for
investigation we can useMthie-Hill function, and known Ince-
Strutt stability cart. But we can use different way. Weintend
to investigate role of the temperature T(t)for dynamic
phenomena of the appearance of themain resonance regime,
and parametric resonance regime. For that reason we take
into account temperature excitation in theform:

(47)

Fi(t) and F,(t) are unknown
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I* (t)=sin(W+b) with deterministic constant value
frequency yy and constant deterministaic phase b and I1*
we propose that random, bonded noi setemperatureexcitation
istaken in thefollowing form

%(t):gng’uss(t)mg

with deterministic constant value frequency W2 and: that
B(t) is the standard Wiener process, and b is a random
uniformly distributed variablein interval [0,2p], then T(t)
is a stationary process having autocorrelation function and
spectral density function in theform (25) and (26).

I* For this first case with deterministic temperature
function T (t) = sin(Wt +b) , wecan introducethat:

Dyer(i) =W - W, and Fi(t)=wt+f, ,i=12.

Now, we takeinto consideration that solutionsare in the
form (47) and that first derivatives of these solutions are
same as in case that amplitudes C, (t), C,(t) and phases
f1(t) and f,(t) are constant. By this condition and from
equations (40) we obtain four quations with respect to the
derivativesof theamplitudes &, (t) , &, (t) and phases #, (t)
and , (t) . After solving with respect to the derivatives of
theamplitudes & (t), &, (t) and phases #, (t) and #, (t)
we obtain system of four differential equations first oreder.
Now, we must apply the method of averaging to the right-
hand sides of thefour equationswith respect to thefull phases
F1(t) and F,(t) . After averaging the right-hand sides of
all of thefour equationswith respect tothefull phases F, (t)
and F,(t), we obtain the system of averaged differential
equations of thefirst approximation in thefollowing form:

él :O, &1 :Dst(l)y Ddet(l) :W]_' W,

éz :'deZ +&COS(f2- b)y
Wo

k= Duer(2) -

h g fo-b
WOCzsm(2 )

Dyer(2) =W - W. (48)
From averaged system equations (48) we can see that in
firgt approximation parametric temperatureexcitation issmall
and neglectible, and infirst approximation haven’t influence
to the vibrations closed to the one frequency vibrationswith
W>»w,.and W»w,.
I1* For second casewith stochastic temperaturefunction

'%(t):sing%vt+58(t)+b9, we can introduce that:
o

Dy () =W

-W, and Fi(t)=wt+fi.
2 2

Now, wetake into consideration that solutionsarein the
form (47) and that first derivatives of these solutions are
same as in case that amplitudes C, (t), C,(t) and phases
f1(t) and f,(t) are congant. By this condition and from
equations (40) we obtain four quations with respect to the

derivativesof theamplitudes &, (t) , &, (t) and phases £, (t)
and ,(t) . After solving with respect to the derivatives of
theamplitudes & (t), &, (t) and phases #, (t) and f, (t)
we obtain system of four differential equationsfirst oreder.
Now, we must apply the method of averaging to the right-
hand sides of thefour equationswith respect to thefull phases
F1(t) and F,(t) . After averaging the right-hand sides of
all of the four equationswith respect tothefull phases F (t)
and F, (t) , We obtain the system of averaged differential
equations of thefirst approximation in the following form:

W
élzo, &1:D$(1)! Dg(l) :Wl' E,

@&, =-2dC, +w,gC, cos(f , - sB(t)- b)

f, = Dy () - w,gsin(f, - sB(t)- b),
(50)

From averaged system equations (32) we can seethat infirst
approximation parametric temperature excitation ismain and
not neglectable, and in first approximation have main role,
and that this influence to the vibrations closed to the one

frequency vibrationswith W» 2w, or W»% WE + 208

8. Concluding remarks. By using two examples: a
thermorheol ogical oscillator and athermorheological coupled
pendulums, we show and proof that standard light thermo-
rheological element with temperature excitation issource of
possi bl e appearance not only forced oscillations, but also and
parametric oscillations with possible unstabl e dynamics, and
appearance forced resonante state, as well as parametric
resonante state under the correspodnig ki netic parameters of
the system, as well as of external temperature excitation
frequency. Alsoin the system with more than one degree of
freedom is possible appearance of dynamical absorbtion on
oneor more modesof basiclinear (unperturbed system) when
one of the modes is unperturbed under the temperature
excitation.
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K. (CmeeaHosi4) Xedpix
AvHamika riGpuaHux cuctem 3 TepMOPEOSIOTiYHO CNagKoBUMM
enemMmeHTamu

Hiwcbkuli yHieepcumem, m. Hiw, Cepbis

Y 0onoeidi HasedeHi pedynbmamu 0ocridxeHb asmopa 8
obnacmi OuHamiku 2i6pudHux cucmem. AHanisyrombscsi Me3o- ma
mepmopeonioziyHi modesni. [ModaHi npuknadu 3acmocyeaHHs
po3pobrieHux Memodig Onsi po36'si3aHHs IHKXeHepHUX 3adad.
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