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1. Inyroduction. Discrete continuum is ideally elastic if
it’s material particles are interconnected by light standard
ideally elastic constraint elements. Discrete continuum is a
standard hereditary continuum if it’s material particles are
interconnected by light standard hereditary elements. Discrete
continuum is a standard creep continuum (see Refs. [9], [15])
if its material particles are interconnected by light standard
creep elements (see Refs. [2], [3] and [4]). Discrete continuum
is a termo- or piezo-modified continuum if its material
particles are interconnected by light standard thermo- or piezo-
rheological hereditary elements.

We shall define discrete chain system [15] as a system of
discrete material particles that can move along a line and are
interconnected by standard constraint light elements. The
chain is ideally elastic if material particles are interconnected
by ideally elastic elements. The chain is standard hereditary
if material particles are interconnected by standard hereditary
elements. The chain is standard creep if material particles are
interconnected by standard creep elements. The number of
degrees of freedom of each of these chains is equal to the
number of particles in it, since we hypothesize that each
material particle moves in the direction of the chain line.
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If all material particles of the discrete continuum move in
the same plane they have two degrees of motion freedom and
are interconnected by standard constraint light elements; such
material system we shall call the plane material net [9]. The
net can be elastic, standard hereditary or standard hereditary
plane material net depending on the type of constraint elements
that interconnects its material particles. It is a plane discrete
material surface through which we can follow the propagation
of deformation waves, which can be elastic, hereditary or creep
excited by thermo- or piezo modifications in two orthogonal
directions.

Fig. 1 shows two material particles, with masses 1m   and
2m , the positions of which are determined by following

vectors position 1r
r

 and 2r
r

, constrained by light standard piezo-
thermo-rheological hereditary element, negligable mass. At
ends of the hereditary element in the extension  stress-strain
state,  the force of deformation ( )tP  apears, which depends
on generalized coordinate of element deformation 0ρρ − ,
as well on corresponding temperatures, ( )tTK  and ( )tTM   and
polarisations voltages ( )tU K  and ( )tU M  of piezo-thermo–
modification of hereditary element. This system was studied
in the papers [20], [7] and [8] and in monograph [2].

The paper [20] presents the discrete continuum method
on examples of homogenous discrete systems’ with limited
number of degrees of motion freedom dynamics. These
systems are in the form of homogenous chains [15] and nets
in space and plain. Material points of these nets and chains
are tied by elastic, standard hereditary or creep elements.
These systems’ dynamics is described by a system of integro-
differential equations or differential equations with fractional
derivatives. A light standard creep element is defined by a
constitutive relation of stress-strain state, for the creation of
which fractional order derivatives were used.

The fast development of science of material and
experimental mechanics, as well as  methods of numerical
analysis, led to the creation of different models of real material
bodies and methods for studying dynamics and processes
which happen in them during the transduction of disturbance
through deformable bodies (see Refs. [5], [6], [10], [11], 12],
[16-20]).

There also exist different approaches to creating real body
models. One such approach is represented by a model of
discrete system of material particles which are connected by
certain ties, and the number of which is then increased to

create a continuum, the motion and deformable wave
propagation of which was then described by using partial
differential equations. And then, due to the impossibility of
solving them analytical, the approximation method was used
for the purpose. Methods of discretization of systems of partial
differential equations and methods of physical discretization
of continuum were used.

2. Equations of dynamics of a discrete system with
finite constraints and standard creep-elements. We
investigate dynamical system (see Fig. 2.)  of N material
particles with masses νm , N,...,3,2,1=ν ,  the position vectors
of which are  ;3,2,1, == ieyr i

i rr
νν  N,...,3,2,1=ν . Material

particles are constrained by S finite constraints:

( ) ( )N
N yyyfrrrf 321

21 ,...,,,...,, µµ =
rrr

          S,...,3,2,1=µ                                (1)

and where we introduce the following notations:
3 3 1 2 3k ( k )y : y ,k , , ;ν− −

ν = = 3 3 1 2 3km m ,k , , ,ν− ν= =
1 2 3, , ,...,Nν = ; as well as by  K  standard hereditary elements

neglected mass and material properties parameters of which
are: 1( , )kn ν ν+  , 1 2 3k , , ,....,K= , are times of relaxation, and

kc )1,( +νν  and  1( , )kc ν ν+% . are an instantaneous rigid stiffness
modulus as  prolonged ones; and as well as by C  standard
creep elements neglected mass and material properties
parameters of which are: 1( , )cν ν+α  , 1 2 3c , , ,....,Cν= , are
proper (own) material constants of the characteristic creep
law of creep elements materials, cE )1,(0 +νν , νCc ,....,3,2,1=
and cE )1,( +ννα , νCc ,....,3,2,1=  are modulus of elasticity and
creeping properties of standard creep elements.

Relations between reactions and deformations of the
standard hereditary light element in the discrete system can
be defined in the relaxational forms by using integral stress
strain state relations [2],  [8]:
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kernels of relaxation (see Refs. [2], [3], [4] and [7]), and

kkkk rr )()1()1,()1,( νννννν ρρ
rrr

−== +++ ,                (a)

0)1,()()1(0)1,()1,()1,( kkkkkk rr +++++ −−=−= νννννννννν ρρρρ
rrr .

and 1 0( , )kν ν+ρ   is length of a hereditary element in natural
stress-strain state, when the strain and stress in the element
are equal to zero.

Relations between reactions and deformations of the creep
light element in the discrete system (see Ref. [6]) can be
defined in the form by using fractional derivative order  stress
strain state relations:
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Fig. 1. Discrete system consisted of two material particles
constrained by light standard piezo-thermo-rhelogical hereditary
element
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1 0 1 1 1 1

( , )c
( , )c ( , )c ( , )c ( , )c t ( , )cP E E ν ν+α

ν ν+ ν ν+ ν ν+ α ν ν+ ν ν+ = ρ + ρ D ,

 N,...,3,2,1=ν ,    νCc ,....,3,2,1=                   (4)

where  [ ]t
αD   is notation of the fractional order derivative

operator defined by following expression:
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ρ
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∫D D

(5)

where ( )1, cν ν+α are ratio numbers from interval
( )10 1, cν ν+< α <  ; ( )cP 1, +νν  are normal forces in the cross

section of the standard light line creep elements, ( ) ( )1, c tν ν+ρ
are relative extension of the standard line creep element.

By using velocity conditions we can write ortogonality
conditions ( ) 0, =ν

µν vfgrad r
,  ν = 1 2 3, , ,..., N ,

µ = 1 2 3, , ,...., S   between mass particles and gradients  of
the finite constraints, for ideal constraints reactions we can
write the following:

( )N

S

rrfgrad rrr
,...,1

1
µν

µ

µ
µν λ∑

=

=

=R , N,...,3,2,1=ν         (6)

in which the  µλ  , µ = 1 2 3, , , .... , S   are Lagrange’ss
multiplicators of the finite constraints.

From a principle of the work on the virtual system
displacements can be written in the following form:

       { }
1

0
N

H C
TI F R P P R r

ν=

ν ν ν ν ν ν ν
ν=

+ + + + + δ =∑
r r r r r r r .          (7)

Dynamical Lagrange’s equations first kind arise from
previous equation in the following form

Fig. 2. Model of discrete creep-hereditary system with rheonomic constraints and with
N material particles; a* — hereditary or creep and rheonomic elements in series
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3. Covariant integro-differential equations of
fractional order derivatives, of the motion of the discrete
creep-hereditary system. The virtual displacements can be
expressed by using generalized coordinates in the form:

1

n r
r q

q

α=
αν

ν α
α=

∂
δ = δ

∂
∑

r
r

 and introduced into the previous equation

(7) for the work of the active and reactive forces  on the virtual
displacements,  we obtain the following system of equations
in the covariant coordinates:

* H CDqa Q Q P P
dt

β

αβ α α α α= + + +
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;

α = = −1 2 3 3, , ,..., ;n n N S ,                   (9)

where, by analyzing the members, we have the following
expressions of the fictive,  active and reactive forces:
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4. Light standard thermo-rheological hereditary
element. When standard hereditary element is modified by

two temperatures ( )tTK  and ( )tTM , which are introduced by
thermo-modification of visco-elastic properties by
temperature ( )tTK , and by thermo-modification of elasto-
viscosic  properties by temperature ( )tTM , than constitutive
relation between stress and strain state  of the thermo-
rheological hereditary element is [2]:

( ) ( ) ( ) ( ) ( ) ( ) 0M KnP t P t nF t F t nc t c t+ + + = ρ + ρ −ρ  & & & %  (16)

in which (see Ref. [1], [5] and [10])

( ) ( )M M M MF t c T t= α , ( ) ( )K K K KF t c T t= α       (17)

are thermoelastic forces, and ( )tρ  is rheological coordinate,
M Kc ,c  are coefficients of thermo-elastic rigidity, M K,α α

are coefficients of thermo-elastic dilatations, n is time of
relaxation, and c,c% an instantaneous rigidity and a prolonged
one of an element.

Constitutive relation (17) thermo-rhelogical hereditary
element from diferential form we can rewrite in two integro-
differential form. By using explicit form with respect to the
force ( )tP we can write:

( ) ( ) ( ) ( ) ( )0 0
0

t

MP t c t t d F t
 

= ρ − ρ − ρ τ − ρ − τ τ − +   
  

∫ R

( ) ( ) ( )
0

t

M K
c F F t d

c c
+ τ − τ − τ τ  − ∫ R

%
             (18)

in which

( )
t
nc ct e

nc

−τ
−−

τ =R
%-   is a kernel of relaxation     (19)

5. Light standard piezo- and thermo-rheological
hereditary elements. When standard hereditary element is
modified by two polarization voltages ( )tUK  and ( )tUM ,
which are introduced by piezo-modification of visco-elastic
properties of subelement of piezoceramics, by ( )tUK and by
piezo-modification of elasto-viscosic properties by ( )tUM ,
and thermo-modified by two temperatures ( )tTK  and ( )tTM ,
than constitutive relation between stress and strain state  of
the piezo-rheological hereditary hybrid element is in the form
(16) in which (see Ref. [1], [10], and Fig. 3.)  are:

( ) ( ) ( )tTctUctF MTMTMMUMUMM αα += ,

( ) ( ) ( )tTctUctF KTKTKKUKUKK αα +=             (20)

are thermoelastic forces, and ( )tρ  is rheological coordinate,
TM TKc ,c  are coefficients of thermo-elastic rigidity, TM TK,α α

are coefficients of thermo-elastic dilatations, UM UKc ,c  are
coefficients of piezo-elastic r igidity, UM UK,α α  are
coefficients of piezo-elastic dilatations n is time of relaxation,
and cc ~,  an instantaneous rigidity and a prolonged one of an
hybrid element.

6. Thermo-rheological oscillator. In Fig. 4. a thermo-
rheological oscillator is presented, containing material particle
of mass m  with one degree of freedom defined by generalized
coordinate x , and a standard light thermo-visco-elastic
element termomodified by temperature ( )T t .
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Now, we take into account that this standard light thermo-
visco-elastic element termomodified by temperature ( )T t  is
in the dynamic state, and that we didn’t neglect
thermodification of the element strain, then we can write that
is ( )( )0TT t x∆ = α +l l , and that the constitutive relation of
the thermo-visco-elastic stress-strain state is in the following
form:

( ) ( ) ( ) ( )01 T TP t c x bx cx T t T t bx= ∆ + + = + α + α +  & &l l

            (21)

In previous considerations and presented models  the
rheolinear member ( ) ( )TT t x tα  was neglected as a small
member with comparison with other members in constitutive
relations. Tnis is acceptable if we research dynamics of the
thermorheological oscillator around main resonance motion,
but we can show that it is not acceplable if we investigate
phenomena around parametric resonance state.

Differential equation of the thermo-rheological oscillator
presented in Figure 4. is:

( ) ( )01 T Tmx cx T t T t bx= − + α − α −  && &l  (22)

or in the form:

( ) ( )2
0 01 2x T t x x h T t + ω + γ + δ = − 

% %&& &            (23)

where

2
0

c
m

ω = , 0TTγ = α , 2 b
m

δ = ,

0 0
0

T Th
m

α
=

l , ( ) ( )
0

1T t T t
T

=% .               (24)

From (23) we can conclude that dynamics of the thermo-
rheological oscillator presented in Figure 4. is described by
Mathieu-Hill rheolinear differential equation, if temperature

( )T t  is deterministic function, and for the case that is
stochastic, random function, we have stochastic differential.
rheolinear equation.

For solving this equation (23) , and for investigation we
can use Mthie-Hill functions [23], and known Ince-Strutt
stability cart [23]. But we can use different way. We intend to
investigate role of the temperature T(t) for dynamic
phenomena of the appearance of the main resonance regime,
and parametric resonance regime. For that reason we take
into account temperature excitation in the form: I*

( ) ( )T t sin t= Ω +β%  with deterministic constant value
frequency Ω  and constant deterministaic  phase β  and  II*
we propose that random, bonded noise temperature excitation

is taken in the following form ( ) ( )
2

T t sin t B tΩ = + σ + β 
 

%

with deterministic constant value frequency 2Ω  and: that
( )B t  is the standard Wiener process, and β  is a random

uniformly distributed variable in interval [ ]0 2, π , then  ( )T t%
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Fig. 3. Schematic notation of a thermo-elastic light element (a*);
schematic presentation of the thermo-modified Maxwell elasto viscosic light hereditary element (b*);

schematic presentation of the thermo-modified Kelvin-Foight visco-elastic light hereditary element (c*);
schematic presentation of the thermo-modified Burgers light hereditary element (d*)
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Fig. 4. Thermorheologocal oscillator
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is a stationary process having autocorrelation function and
spectral density function (see Ref. [1]):

( )
2

2 21
2

R e cos
σ τ

−
τ = µ Ωτ                     (25)

and

( ) ( )

2
2 2

2
22

2 2 2 2

1 4
2

4

iS R e d
+∞

ωτ

−∞

σ
ω + Ω +

ω = τ τ = µσ
  σ ω − Ω − + σ ω     

∫ .  (26)

Stochastic process ( ) 1T t ≤%  is bounded for all values of
time t . For first, and for both cases, we take into consideration
asymptotic aproksimation of the amplitude and phase of the
dynamic process close around I*  main resonance when

0Ω ≈ ω  and II* around parametric resonance when 02Ω ≈ ω .
Solution od the basic linear equation 2

0 0x x+ ω =&& is
( ) ( )0x t R cos t= ω + ϕ  where, anmplitude R  and  phase ϕ

are constant.
I* For this first case with deterministic temperature

function ( ) ( )T t sin t= Ω +β% , we can introduce that:

0det∆ = ω − Ω ,  and  ( )t tΦ = Ω + φ .

Now, we take into consideration that solution is in the
form ( ) ( ) ( )x t R t cos t= Φ , and that first derivative of this
solution is same as in case that anmplitude R  and  phase ϕ
are constant. By this condition and from equation (23) we
obtain two wquations in the following forms:

detR cos R sin R sinΦ − φ Φ = −∆ Φ&&

( )02R sin R cos R sin T t R cosΦ + φ Φ = − δ Φ + ω γ Φ +&& %

( )0

0
der

h
T t R cos+ + ∆ Φ

ω
% .                   (27)

After solving with rwspwct to R&  and φ&  we obtain:

( ) ( ) ( )0
0

0

11 2 2
2

h
R R cos RT t sin T t sin= −δ − Φ + ω γ Φ + Φ

ω
& % %

( ) ( )( )0
1

1 2 2 1 2
2det cos sin T t cosφ = ∆ − Φ − δ Φ + ω γ + Φ +& %

 ( )0

0

h
T t cos

R
+ Φ

ω
% .                         (28)

Now, we must apply the method of averaging (see Refs.
[21], [22] and [13]) to the right-hand sides of equations with
respect to the full phase ( )tΦ . After averaging the right-hand
sides of both equations with respect to the full phase ( )tΦ ,
we obtain the system of averaged differential equations  of
the first approximation in the following form:

( )0

02
h

R R cos= −δ + φ −β
ω

& , ( )0

02det
h

sin
R

φ = ∆ − φ −β
ω

& ,

0det∆ = ω − Ω .                            (29)

From averaged system equations (29) we can see that in
first approximation parametric temperature excitation is small
and neggnectible, and in first approximation haven’t influence
to the vibrations closed to the one frequency vibrations with

0Ω ≈ ω .
II* For second case with stochastic temperature function

( ) ( )
2

T t sin t B tΩ = + σ + β 
 

% , we can introduce that:

0 2st
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t tΩ
Φ = + φ .

Now, we take into consideration that solution is in the
form ( ) ( ) ( )x t R t cos t= Φ , and that first derivative of this
solution is same as in case that anmplitude R  and  phase ϕ
are constant. By this condition and from equation (23) we
obtain two wquations in the following forms:

dtR cos R sin R sinΦ − φ Φ = −∆ Φ&&

( )02R sin R cos R sin T t R cosΦ + φ Φ = − δ Φ + ω γ Φ +&& %

( )0

0
st

h
T t R cos+ + ∆ Φ

ω
% .                     (30)

After solving with rwspwct to R&  and φ&  we obtain:

( ) ( ) ( )0
0

0

11 2 2
2

h
R R cos RT t sin T t sin= −δ − Φ + ω γ Φ + Φ

ω
& % %

( ) ( )( )0
11 2 2 1 2
2st cos sin T t cosφ = ∆ − Φ − δ Φ + ω γ + Φ +& %

 ( )0

0

h
T t cos

R
+ Φ

ω
% .                         (31)

Now, we must apply the method of averaging (see Refs.
[21], [22] and [13]) to the right-hand sides of equations with
respect to the full phase ( )tΦ . After averaging the right-hand
sides of both equations with respect to the full phase ( )tΦ ,
we obtain the system of averaged differential equations  of
the first approximation in the following form:

( )( )0

2
RR R cos B tω γ

= −δ + φ − σ − β& ,

( )( )0

2det sin B t
ω γ

φ = ∆ − φ − σ − β& , 0 2st
Ω

∆ = ω − .  (32)

From averaged system equations (32) we can see that in first
approximation parametric temperature excitation is main and
not neglectable, and in first approximation have main role, and
that this  influence to the vibrations closed to the one frequency
vibrations with   02Ω ≈ ω .Comparing obtained results, we can
conclude that temperature excitation frequency to the standard
thermorheological element have important role for decidion wich
member in differential equation is possible neglect.
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The change of variables [1] in the following ways and in

the following forms: ( )t ln Rρ = , ( ) ( ) 1
2

t tϑ = φ − ψ ,  where

( )B tψ = σ + β  and transforming the averaged system of
differential equations (32) into the system of averaged
stochastic differential equations Ito-tipe with respect to the
unknown amplitude  ( )R t  and unknown phase  ( )tφ ,  results
in the following forms:

( ) 1d t Rdt
R

ρ = & , ( ) ( ) 1
2

d t t dt dϑ = φ − ψ&            (33)

or

( ) 0
1 2
2

d t dt R cos dtρ = −δ − ω γ ϑ ,

( ) ( )0
1 12
2 2

k k
s st sd t dt sin dt dB tϑ = ∆ − ω γ ϑ − σ .     (34)

The Lyapunov exponent of system mode process  λ ,  (see
Ref.  [1])  may be introduced by using the time mode and
which by making use of the averaged equations become:

( ) ( ) ( )2 2
2
0

1 1 1
2t t

lim ln x t x t lim t
t t→∞ →∞

  λ = + = ρ       ω  
&    (35)

Now, we can use Lyapunov exponent as a measure of the
average exponential growth of the amplitude ( )R t  of process.

The Lyapunov exponent λ is a deterministic number with
probability one (w. p. 1) for the system given by averaged
equations. Solutions of the averaged differential equations
depend on initial values.

In order to calculate the expression and values for
Lyapunov exponent, it is necessary to integrate both sides of
first stochastic differential equation of the system, so that,
from expression for Lyapunov  exponent λ , we can write the
following expression:

  2
0

1 2
2 sR cos λ = −δ − ω γ ϑ E    with probability 1.   (36)

Using equations and results by Ariaratnam [1] and
Stratonovich (1967) [24] and also, previous stochastic
differential equation (34), the values of the mathematical

expectation 2 k
sE cos ϑ  , for the process   ( ) ( ) 1

2
t tϑ = φ − ψ ,

and ( )B tψ = σ + γ   is found to be in the form of expressions:

0
2 2

4
2 k st

s
R

E cos ,
ω γ ∆  ϑ =    σ σ 

F ,               (37)

where

( ) ( )
( )

( )
( )

1 11
2

iq iq

iq iq

z z
z,q

z z
+ −

−

 
= + 

  

I I
F

I I
.              (38)

Hence, using previous expression for the Lyapunov exponents
λ ,  with the previously cited result, we can write the following
expression in the form:

0
0 2 2

41
2

stRR ,ω γ ∆ λ = −δ − ω γ  σ σ 
F   with probability 1.  (39)

By using previous expression for the Lyapunov exponent
λ in the forms of expressions (39) with probability 1for
evaluation of the stability or instability of the vibration process
of the thermorheological oscillator, we must find the maximal
value of the Lyapunov exponent, and determine kinetic
parameters of the system such that this Lyapunov  exponent
is with negative values. Also, we can consider the case when

( ) 2st s k∆ = ω − Ω  is equal to zero.  For detail see [1].
7.  Thermo-rheological coupled pendulums. In Fig. 5 a

thermorheological system, containing two coupled pendulums
(see Refs. [23], [2]), is presented. We take into consideration
two coupled mathematical  pendulums, both with material
particles of mass m, with length l  and with two degrees of
freedom defined by generalized coordinates 1ϕ  and 2ϕ , and
a standard light thermo-visco-elastic element termomodified
by temperature ( )T t , coupling pendulum at distance l .

Now, we take into account that this standard light thermo-
visco-elastic element termomodified by temperature ( )T t  is
in the dynamic state, and that we didn’t neglect thermo-
dification of the element strain, then we can write that is

( )( )0TT t x∆ = α +l l , and that the constitutive relation of the
thermo-visco-elastic stress-strain state is in the following form:

( ) ( ) ( )2 1 2 1P t c b= ∆ + ϕ − ϕ + ϕ − ϕ =   & &l l l

( ) ( ) ( ) ( )2 1 0 2 11 T Tc T t T t b= ϕ − ϕ + α + α + ϕ − ϕ   & &l l l  (40)

same type as in previous part.
Differential equations of the thermo-rheological coupled

pendulums presented in Figure 5. are:

( ) ( ) ( )2 2
1 2 1 01 T Tm c T t T tϕ = ϕ − ϕ + α + α +  &&l l l l

( )2
2 1 1b mg+ ϕ − ϕ − ϕ& &l l ,

( ) ( ) ( )2 2
2 2 1 01 T Tm c T t T tϕ = − ϕ − ϕ + α − α −  &&l l l l

( )2
2 1 2b mg− ϕ − ϕ − ϕ& &l l ,                     (40)

or in the form:

( ) ( )2 2
1 0 1 0 1 2 1 T t ϕ + ω ϕ + ω ϕ − ϕ + γ + 

%&& %

( ) ( )1 2 02 h T t+ δ ϕ − ϕ = − %& & ,

( ) ( )2 2
2 0 2 0 2 1 1 T t ϕ + ω ϕ + ω ϕ − ϕ + γ + 

%&& %

( ) ( )2 1 02 h T t+ δ ϕ − ϕ = %& & ,                       (40)
where

2
0

c
m

ω = , 2
0

g
ω =%

l
, 0TTγ = α , 2 b

m
δ = ,
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0 0
0

T Th
m

α
=

l

l
, ( ) ( )

0

1T t T t
T

=% .                (41)

Basic linear equations of the previous system are:

2 2 2
1 0 0 1 0 2 0 ϕ + ω + ω ϕ − ω ϕ = && % ;

2 2 2
2 0 0 2 0 1 0 ϕ + ω + ω ϕ − ω ϕ = && % ,                  (42)

with eihen frequencies:

2
02 2 2 2

1 2 0 0 0 2 2
0 02

,
 ωω = ω + ω ω = 

ω + ω

%
% m

%
            (43)

and with solution:

( ) ( ) ( )1 1 1 1 2 2 2t C cos t C cos tϕ = ω + α + ω + α ;

( ) ( ) ( )2 1 1 1 2 2 2t C cos t C cos tϕ = ω + α − ω + α ,     (44)

where 1C , 2C , 1α  and 2α  are constant.
If we make sum and difference between equations of the

previous system (40) of differencial equations of the thermo-
rheological coupled pendulums presented in Figure 5. we
obtain following:

( )2
1 2 0 1 2 0ϕ + ϕ + ω ϕ + ϕ =&& && % ,                 (45)

( ) ( ) ( )2 2
1 2 0 1 2 0 1 22 1 T t ϕ − ϕ + ω ϕ − ϕ + ω ϕ − ϕ + γ + 

%&& && %

( ) ( )1 2 04 2h T t+ δ ϕ − ϕ = − %& & .                 (46)

By the change of coordinates in the following ways
1 1 2ξ = ϕ + ϕ  and 2 1 2ξ = ϕ − ϕ  previous system take form:

2
1 0 1 0ξ + ω ξ =&& % ,                           (45*)

( ) ( )2 2
2 0 2 0 2 2 02 1 4 2T t h T t ξ + ω ξ + ω + γ ξ + δξ = − 

&& &% %% .  (46*)

First equation represent parcial pure harmonic oscillator
with frequency 2

0 gω =% l  of the free vibrations. This case is
when both pendulum oscillate with same 2

0 gω =% l  as

decoupled pendulums, as single  mathematical pendulum, and
then standard light thermo-visco-elastic element termomo-
dified by temperature ( )T t  haven’t influence to this coordi-
nate composed by sum 1 1 2ξ = ϕ + ϕ . On this coordinate os-
cillation are free, without temperature influence.

Second equation represent mathematical description of
the thermo-rheological oscillator presented in Figure 6., with
parallel coupled two light standard thermo-visco-elastic ele-
ment termomodified by same temperature ( )T t  and one elas-
tic spriung with rigidity 0c mg /= l   in the dynamic state. By
comparison equations (46*) and (23) we can see that these
equation is in mathematical analogy, and that it is possible to
use all results from part VI. And all conclusion, without cal-
culations.

For this coordinate 2 1 2ξ = ϕ − ϕ , we can separate two
main cases. For both cases, we take into consideration as-
ymptotic aproksimation of the amplitude and phase of the
dynamic process on this coordinate 2 1 2ξ = ϕ − ϕ  close around

I*  main resonance when 2 2
0 02Ω ≈ ω + ω%  and II* around

parametric resonance when 2 2
0 0

1 2
2

Ω ≈ ω + ω% . Then, we can

conclude that on this coordinate is possible to appear under
the corresponding kinetic parameters I*  regimes closest to
main resonant state , as well as one main resonant state, and
II*  regimes closest to parametric resonant state, as well as
one resonant state under the thermo-viscoelastic temperature
single frequency excitation.

Also we can conclude that basic system (linear-unpertur-
bed system) corresponding to rheolinear – thermo-rheological
perturbed system, have as a main normal coordinates 1ξ  and

2ξ , and that for thermo-rheological perturbed system  resuls
in the forced and parametrically perturbation of the second
mode, when first mode is unperturbed.

For solving system differential equations  (45) and (46)
we take into account the following:

( ) ( ) ( ) ( ) ( )1 1 1 2 2t C t cos t C t cos tϕ = Φ + Φ ,

( ) ( ) ( ) ( ) ( )2 1 1 2 2t C t cos t C t cos tϕ = Φ − Φ (47)

where ( )1C t , ( )2C t , ( )1 tΦ  and ( )2 tΦ  are unknown
function of time t.

For solving system of the equation (40), and for
investigation we can use Mthie-Hill function, and known Ince-
Strutt stability cart. But we can use different way. We intend
to investigate role of the temperature  T(t)for dynamic
phenomena of the appearance of the main resonance regime,
and parametric resonance regime. For that reason we take
into account temperature excitation in the form:

 

( )tP

1m  
2m  

gm1  

gm2  

a  

1l  2l  1ϕ  2ϕ  

10  20  

1h  

2h  

Fig. 5. System with two pendulums interconnected by  standard
light thermo-modified hereditary element
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1ξ  l

g
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0
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Fig. 6. Thermorheological oscillator 1 (a), thermorheological
oscillator (b)
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I* ( ) ( )T t sin t= Ω +β%   with deterministic constant value
frequency Ω  and constant deterministaic  phase β  and  II*
we propose that random, bonded noise temperature excitation
is taken in the following form

( ) ( )
2

T t sin t B tΩ = + σ + β 
 

%

with deterministic constant value frequency 2Ω  and: that
( )B t  is the standard Wiener process, and β  is a random

uniformly distributed variable in interval 0 2, π , then  ( )T t%

is a stationary process having autocorrelation function and
spectral density function in the form (25) and (26).

I* For this first case with deterministic temperature
function ( ) ( )T t sin t= Ω +β% , we can introduce that:

( ) idet i∆ = ω − Ω ,  and ( )i it tΦ = Ω + φ  , 1 2i ,= .

Now, we take into consideration that solutions are in the
form  (47) and that first derivatives of these solutions are
same as in case that amplitudes ( )1C t , ( )2C t  and phases

( )1 tφ  and ( )2 tφ  are constant. By this condition and from
equations (40) we obtain four quations with respect to the
derivatives of the amplitudes ( )1C t& , ( )2C t&  and phases ( )1 tφ&
and ( )2 tφ& . After solving with respect to the derivatives of
the amplitudes ( )1C t& , ( )2C t&  and  phases ( )1 tφ&  and ( )2 tφ&
we obtain system of four differential equations first oreder.
Now, we must apply the method of averaging to the right-
hand sides of the four equations with respect to the full phases

( )1 tΦ  and ( )2 tΦ . After averaging the right-hand sides of
all of the four  equations with respect to the full phases ( )1 tΦ
and ( )2 tΦ , we obtain the system of averaged differential
equations  of the first approximation in the following form:

1 0C =& , 1 1st( )φ = ∆& , ( ) 11det∆ = ω − Ω ,

( )0
2 2 2

0
2

h
C C cos= − δ + φ −β

ω
& ,

( ) ( )0
2 22

0 2
det

h
sin

C
φ = ∆ − φ −β

ω
& ,

( ) 22det∆ = ω − Ω .                         (48)

From averaged system equations (48) we can see that in
first approximation parametric temperature excitation is small
and neglectible, and in first approximation haven’t influence
to the vibrations closed to the one frequency vibrations with

1Ω ≈ ω . and  2Ω ≈ ω .
II* For second case with stochastic temperature function

( ) ( )
2

T t sin t B tΩ = + σ + β 
 

% ,  we can introduce that:

( ) 2ist i
Ω

∆ = ω − , and ( )
2i it tΩ

Φ = + φ .

Now, we take into consideration that solutions are in the
form  (47) and that first derivatives of these solutions are
same as in case that amplitudes ( )1C t , ( )2C t  and phases

( )1 tφ  and ( )2 tφ  are constant. By this condition and from
equations (40) we obtain four quations with respect to the

derivatives of the amplitudes ( )1C t& , ( )2C t&  and phases ( )1 tφ&
and ( )2 tφ& . After solving with respect to the derivatives of
the amplitudes ( )1C t& , ( )2C t&  and  phases ( )1 tφ&  and ( )2 tφ&
we obtain system of four differential equations first oreder.
Now, we must apply the method of averaging to the right-
hand sides of the four equations with respect to the full phases

( )1 tΦ  and ( )2 tΦ . After averaging the right-hand sides of
all of the four  equations with respect to the full phases ( )1 tΦ
and ( )2 tΦ , we obtain the system of averaged differential
equations  of the first approximation in the following form:

1 0C =& , 1 1st( )φ = ∆& , ( ) 11 2st
Ω

∆ = ω − ,

( )( )2 2 2 2 22C C C cos B t= − δ + ω γ φ − σ −β& ,

( ) ( )( )2 2 22st sin B tφ = ∆ − ω γ φ − σ −β& ,

( ) 21 2st
Ω

∆ = ω − .                            (50)

From averaged system equations (32) we can see that in first
approximation parametric temperature excitation is main and
not neglectable, and in first approximation have main role,
and that this  influence to the vibrations closed to the one

frequency vibrations with 22Ω ≈ ω  or 2 2
0 0

1 2
2

Ω ≈ ω + ω%

8. Concluding remarks. By using two examples: a
thermorheological oscillator and a thermorheological coupled
pendulums, we show and proof that standard light thermo-
rheological element with temperature excitation is source of
possible appearance not only forced oscillations, but also and
parametric oscillations with possible unstable dynamics, and
appearance forced resonante state, as well as parametric
resonante state under the correspodnig kinetic parameters of
the system, as well as of external temperature excitation
frequency. Also in the system with more than one degree of
freedom is possible appearance of dynamical absorbtion on
one or more modes of basic linear (unperturbed system) when
one of the modes is unperturbed under the temperature
excitation.
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елементами

Нішський університет, м. Ніш, Сербія

У доповіді наведені результати досліджень автора в
області динаміки гібридних систем. Аналізуються п’єзо- та
термореологічні моделі.  Подані приклади застосування
розроблених методів для розв’язання інженерних задач.
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