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Abstract. The article shows that the commonly used method of estimating the Type A uncertainty of measurements based on 
the standard deviation of estimators of population parameters does not meet the definition of uncertainty. For correct determination of 
the standard uncertainty, it is necessary to use the distribution of the corresponding population parameter at the values of population 
estimators determined from the experiment but not the probability distribution of the estimator. The joint probability distribution of 
population parameters can be derived by transforming the joint distribution of estimators using a Jacobian equal to the ratio of the 
scale parameter estimator to the population scale parameter itself. Independently on population distribution, the standard uncertainties 
of the location and scale parameters of the population depend on the number of observation n as a function of 1 3n − , i.e. can be 
determined when n ≥ 4. When the number of observations is small then the uncertainty value calculated by the usual method may 
differ significantly from the correct value. The given numerical example confirms this statement. 
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1. Introduction 

The evaluation of the uncertainty of the obtained 
results is an obligatory element of the processing of 
measurement observations. Guide [1] directly states: 
“When reporting the result of a measurement of a 
physical quantity, some quantitative indication of the 
quality of the result must be given so that those who use 
it can assess its reliability”. In Guide [1] and the VIM [2] 
we can find the definition: “uncertainty – parameter, 
associated with the result of a measurement, that charac-
terizes the dispersion of the values that could reasonably 
be attributed to the measurand”.  

Here it should be noted that in this definition the 
uncertainty refers to the possible values of the measu-
rand but not to an estimate of the measurand. This is 
important for the correct evaluation of the uncertainty of 
measurement in the development of multiple obser-
vations. The problem of evaluating the standard uncer-
tainty of such measurements is not quite correctly pre-
sented even in the Guide [1] and other documents related 
to Guide.  

From the very beginning of the implementation of 
Guide [1], some metrologists [3–9] pointed out that the 
estimation of Type A uncertainty is inconsistent with the 
definition of the “uncertainty”. 

Namely, using n independent observations 
1 2, , ... nx x x , derived from a Gaussian (normal) popu-

lation, which probability density distribution function 
(PDF) is 
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where “μ” is the unknown expected value and “σ” is the 
unknown standard deviation, when measurand is μ the 
best estimator of μ is the arithmetic mean [1]:  

1
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This is explained [1]  as: “In most cases, the best 
available estimate of the expectation or expected value μq 
of a quantity q … is the arithmetic mean or average q of 
the n observations”. In this article, we used “x” instead of 
quantity q. 

In [1] the Type A uncertainty is determined by the 
experimental variance 2S  of the observations, which 
estimates the variance σ2: 

( )22

1

1
1

n
i

i
S x x

n =
= −∑

−
.                         (3) 

Then the standard uncertainty (Type A) is defined as:  

( ) ( )
2

A
S Su x S x
n n

= = = .                     (4) 

However, the evaluation of uncertainty according 
to (4) has not exact theoretical justification.  

In the theory of estimation [10–13] when we 
estimate location parameter μ and scale parameter σ of 
(1) (and also another population) the estimators m for μ 
and s for σ are the random quantities. For these esti-
mators, the corresponding probability density func-
tions ( ),mp m µ σ , ( )sp s σ  are determined using the 
appropriate estimation method, for example, the Likelihood 
method (MLE) [10–13]. When the population is Gaussian, 

then the PDF of these estimates ,
1

nx s S
n

 
=  − 

 are given 

as [10]:  
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From (5) the expected values and variances of 

mean x  and experimental standard deviation 
1

ns S
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=
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are equal:  
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Analogically from (6) and (7), the standard devia-
tions of mean x  and experimental standard deviation s 
described by well-known formulas:  

2
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. (8) 

From the first part of (8), we can see that “stan-
dard uncertainty” (4) of the mean value x  is obtained by 
substitution of the population standard deviation σ in 
standard deviation xσ  (8) into experimental standard 
deviation S in (4). 

From the definition given in Guide [1] standard 
uncertainty has to be applied to the measurand, i.e. 
unknown expectation μ but not to the estimator, i.e. arith-
metic mean x , which value after measurement experiment is 
known, or is not random. 

The same problem relates to evaluation uncer-
tainty in other measurement procedures, for example, in 
linear regression, which is not analyzed in this article. 

2. The Aim of the Research  

The aim presented in the article is to explain the 
causes of the situation of incorrect determination of Type 
A standard uncertainty and to present a correct solution 
to this problem. 

 

3. Statistical Problems in Evaluation  
of Standard Uncertainty by Type A Method 

The basic problem in the evaluation of standard 
uncertainty by the Type A method is the theoretically 
unjustified transfer of statistical properties of estimators 
onto measurand properties [14].  

As it was mentioned above, the calculation of the 
standard uncertainty according to (3), (4) ((5) in [1] 
chapter 4.2.3) does not correspond to the definition of 
uncertainty given in Guide [1] because relate to the 
estimator (arithmetic mean) but not an expectation – 
measurand. From the definition of uncertainty, it means, 
that “the dispersion of the values” is not applied to the 
estimate of the result but applied to the dispersion of the 
values of measurand (here expectation) around estimated 
result (here arithmetic mean [14]. The parameters of the 
dispersion of the estimators can be derived from the res-
pective probability distribution functions ( ),mp m µ σ , 

( )sp s σ . Here m is an estimator of a location parameter 
μ of the population (not always expected as in Gaussian 
distribution) and s is an estimator of a scale parameter σ 
of the population (not always standard deviation as in 
Gaussian distribution). However, we must remember that 
in the theory of estimation location parameter μ and 
scale parameter σ of the population ( ),pp x µ σ  are 
constant but unknown, and estimated values m and s are 
the random quantities.  

Therefore, the standard deviations determined from 
distributions ( ),mp m µ σ , ( )sp s σ  relate to the possible 
dispersion of the estimator values around the relevant 
population parameters if the subsequent series of ob-
servations are registered. The standard deviation (and other 
all parameters) of estimators unequivocally depend on 
population parameters. Therefore in general determined 
standard deviation of the estimator can not be used directly 
to determine the uncertainty of the population parameter.   

Another problem is that presented in Guide [1] the 
Type A uncertainty analysis practically only applies to 
the expectation of the population when the estimator – 
measurement result is an arithmetic mean. Theoretically, 
this applies only to Gaussian distribution. When the 
distribution of a population essentially differs from 
Gaussian then the arithmetic means may not be the 
“best” estimator of such population location parameter 
and standard deviation also may not be the adequate base 
to determinate standard uncertainty of measurand [14]. 
The Guide [1] and the Dictionary [2] clearly state that 
Type A evaluation of uncertainty method base on 
“statistical analysis of series of observations”, however, 
apart from the method based on the experimental stan-
dard deviation of the random sample, no other methods 
are presented. For such populations, we cannot use a di-
rect procedure that is related to the Gaussian population. 
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4. Evaluation of Standard Uncertainty  
of Measurand by Solution of Inverse Problem 

It is clear that to determine the standard uncer-
tainty of measurand ( )Au µ  (and similarly the standard 

uncertainty ( )Au σ  when σ is measurand) we must have 

probability density functions ( ),p m sµ µ  (and also 

( ))p sσ σ  of the population parameters, which for the 

given population depend on the determined from experiment 
the estimator values m and s. After the measurement 
experiment the estimated numerical values m and s are 
known i.e. are not random, however, the possible values 
of unknown parameters µ and σ of a population are 
random. The randomness of the parameters µ and σ is 
understood as their possible values, for which in 
measurement experiments after processing of the 
observations could give the observed numerical values m 
and s obtained in a given experiment.  

The distributions ( ),p m sµ µ , ( )p sσ σ  of the 

possible values of the population parameters µ and σ in 
the given experiment cannot be obtained directly using 
the estimation procedure. For this purpose, other 
procedures should be used. 

One of such procedures applied to uncertainty 
evaluation is based on the Bayesian approach. Various 
aspects and problems related to the choice of Bayesian 
method to uncertainty evaluation by Type A method are 
presented in numerous literature [4–9, 12]. In this 
method, the prior distributions ( ), ppµ µ  ( ), ppσ σ  which 

represent the states of knowledge of the population 
parameters should be used. In such tasks, Jeffrey’s rule 
is used to construct these prior distributions. Namely, for 
μ and σ2 these a priori distributions are given as [15, 16]: 

( ) 1p µ ∝ , µ−∞ ≤ ≤ ∞ , 2
2

1( )p σ
σ

∝ , 20 σ≤ ≤ ∞ .    (9) 

Choosing the proper a priori distributions is a 
fundamental problem of the Bayesian method that gives 
rise to many discussions on this subject.  

The general method of the determination of the 
posterior distributions of the population parameters method 
of Type A uncertainty evaluation, which does not need 
any a priori distribution, is based on the solution of the 
inverse problem of uncertainty proposed and analyzed in 
detail in [14]. In this method previously the joint 
distribution ( ), , ,m sp m s µ σ  of both estimators m and s 

should be determined. The distribution ( ), , ,m sp m s µ σ  is a 

result of the solution so-called forward problem using an 
appropriate estimation method applied to population 
distribution ( ),pp x µ σ . In the next stage, when values of 

estimators m and s are known, the a posteriori joint 

distribution ( ), , ,p m sµ σ µ σ  of the location μ and scale σ 

parameters of the population is determined by transformation 
of the estimators’ joint distribution ( ), , ,m sp m s µ σ  by 

Jacobian which is a ratio of estimate (s) to scale parameter 
(σ) of the population [14]: 

( ), sJ s σ
σ

= ,                                (10) 

i.e. 

( ) ( ), ,, , , ,m s
sp m s p m sµ σ µ σ µ σ
σ

= ⋅ .         (11) 

The distributions ( ),p m sµ µ  of location µ and 

( )p sσ σ  of scale σ parameters are determined by the 

integration of the joint distribution (11): 

( ) ( ),
0

, , ,m s
sp m s p m s dµ µ µ σ σ
σ

∞
= ⋅∫ ,           (12) 

( ) ( ) ( ),
0

, ,m s s
s sp s p m s d p sσ σ µ σ µ σ
σ σ

∞  = ⋅ =∫  
 

. (13) 

Type A standard uncertainties ( )Au sµ , ( )Au sσ  

of the population parameters are determined after previous 
determination of the expected values ( ),E m sµ , ( )E sσ  

and variances ( )var ,m sµ , ( )var sσ  using PDF 

( ),p m sµ µ  and ( )p sσ σ  by known formulas: 

( ), ,E m s p m s dµµ µ µ µ
∞

−∞
  = ⋅∫  , 

( )E s p s dσσ σ σ σ
∞

−∞
  = ⋅∫  ,                   (14) 

( )2 2var , ,s p m s d E m sµµ µ µ µ µ
∞

−∞
  = ⋅ −  ∫    , 

( )2 2var s p s d E sσσ σ σ σ σ
∞

−∞
  = ⋅ −  ∫    ,      (15) 

( ) varAu s sµ µ=    ,  ( ) varAu s sσ σ=    .  (16) 

For asymmetrical population distribution, 
1

p
x

p
µ

σ σ
 − 
 
 

 the distribution ( ),f m sµ µ  is sym-

metric also. Therefore the expected value ( ),E m sµ  of 

µ always is equal to the estimated value m: 

( ) ( ),E m s E mµ µ= = .                      (17) 

For asymmetrical populations, the expected value 
( ),E m sµ  of a location parameter is not equal to the 

estimated value m and is dependent on the estimated 
value s of the scale parameter.  

From (18) never expected value ( )E sσ  of scale 

parameter σ never equals to estimated value s. 
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The properties of the expected values, variances, 
and standard uncertainties ( )Au sµ , ( )Au sσ  and also 

expanded uncertainties depend on the properties of PDF 
( ),p m sµ µ , ( )p sσ σ  and some observations. In [14] 

was shown, that independently of the kinds of population 
distribution, because with an unlimited increase of the 
ratio m sµ− → ∞ , and sσ → ∞  the distribution 

( ),f m sµ µ  decreases proportionally to the power n of 

this ratio ( )nm sµ− and the distribution ( )f sσ σ  

decreases proportionally to ( )nsσ :  

( ) 1, ~m n
s

p m s
m

s
s

µ µµ
µ

−
→∞

→
 − 

⋅ 
 

, 

   ( ) 1~
n

s

sp s
s

σσ σ
σ→∞

 ⋅  
 

                         (18) 

Cumulative distributions, which is used for deter-
mination of expanded uncertainties ( ),pU m sµ  and 

( )pU sσ  (p is confidence level) due to (23):  

( ) ( ) 1
1, , ~ nF m s p m s d
m

s

µ

µ µµ µ µ
µ

−
−∞

= ∫
 − 
 
 

, 

( ) ( )
1

0
~

nsF s p s d
σ

σ σσ σ σ
σ

−
 = ∫  
 

.         (19) 

From (18) and (19) follows that independently on 
the population distribution: 

(i) the expanded uncertainties ( ),pU m sµ  and 

( )pU sσ  of population parameters can be determined 
when the number of observations n ≥ 2; 

(ii) the expected values ( ),E m sµ  and ( )E sσ  
(14) of population parameters can be determined when 
some observations n ≥ 3; 

(iii) independently on population distribution 
variances (15) of the location and scale parameters of the 
population have the multiplier ( )1 3n − , and as 
consequence, the standard uncertainties (16) of these 
parameters have  the multiplier 1 3n − : 

( ) ~
3A

su s
n

µ
−

,  ( ) ~
3A

su s
n

σ
−

.       (20) 

Therefore standard uncertainties ( )Au s sµ µ=  

( )varu s sµ µ= , ( ) ( )varAu s sσ σ=  of the population 
parameters can be determined only if the number of 
observations is greater than 3, i.e.: 4n ≥ .  

For the Gaussian population the posterior distribu-
tion of location parameter  ( ),p m sµ µ  is given by [14]: 

( )
2 22, 1 .

1
2

nn
mp m s

n ss
µ

µµ
π

− Γ   −  = ⋅ +   −    ⋅Γ ⋅ 
 

  (21) 

Distribution (21) is well known as a Student type 
distribution with v = n – 1 degrees of freedom [1], which 
is given not in standard form. From (21) the variance and 
standard uncertainty of µ are equal: 

( )
2 2 1var
3 3

s S ns
n n n

µ −
= = ⋅

− −
,  

( ) ( ) 1var
33A

s S nu s s
nn n

µ µ −
= = = ⋅

−−
,  

n ≥ 4,                                        (22) 
These values are consistent with (20). 
The posterior distribution ( )f sσ σ  of scale para-

meter is given as.: 
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,  

s >0.                                           (23) 
Distribution (23) is a well-known χ (Chi)-

distribution with v = n – 1 degrees of freedom [17]. 
When σ is a measurand then from (23) the expected 
value, variance, and standard uncertainty are given as 
[14]:  

( )
1

2
12
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n
nE s s

n
σ

 Γ − 
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− Γ 
 

, n ≥ 3; 

2

2
1

3 2var 1
13 2

2

n
n ns s

nn
σ

    Γ −  −     = ⋅ − ⋅ ⋅   −−    Γ      

, 

n ≥ 4,                                  (24) 
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n
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nn
σ
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−−   Γ    

 

2

1
1 3 21

13 2
2

n
n ns S

nn

  Γ −  − −   ⋅ = ⋅ − ⋅ ⋅
−−   Γ    

, n ≥ 4.  (25) 

After comparison uncertainties (4) and (18), (22), 
we can see that in Guide [1] uncertainty (4) relates to the 
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arithmetic means ( ( )Au x ) but uncertainty (22) ( )Au µ  re-

lates to the measurand μ. From the analysis of (22), we 

can considerate that “uncertainty” ( )Au x  in (4) is the only 

approach of uncertainty ( )Au µ  (22) and this approaching 
can be used only for a large number of observations: 

( )A
su
n

µ ≈ , n → ∞ (n>> 3).            (26) 

A similar consideration is applied to the standard 
uncertainty ( )Au σ  when the standard deviation σ of the 
population is a measurand.  

For the uniform population with distribution [13]: 

( ) 1, ,1,
0, ,2Up

x
p x

othevise
µ σ µ σ

µ σ
σ

− ≤ ≤ +
= 


         (27) 

where μ is a midrange and σ is a half-range, a 
posteriori distributions ( ),p m sµ µ  of μ and ( )p sσ σ  

of σ are given by equations [14]: 

( ) 1 1, .
2

1
n

np m s
s m

s

µ µ
µ

−
= ⋅

 − 
+ 

 

               (28) 

( ) ( )1
1

nn n s sp s
sσ σ

σ σ
−    = −   

   
, 1s

σ
≤ .      (29) 

 where estimators of population parameters are 
determined by a first (minimal) 1sx  and a last (maximal) 

snx  observation after sorting [13]: 

1

2
sn sx xm +

= ,  1

2
sn sx xs −

= , 1
1

nS s
n

+
= ⋅

−
.     (30) 

From (28) the variance and standard uncertainty 
of the midrange µ of the population are: 

( )
22var

2 3
ss

n n
µ = ⋅

− −
, 

( ) ( ) 2var
2 3A

su s s
n n

µ µ= = ⋅ =
− −

 

2 1
2 1 3

n S
n n n

−
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− + −
, n ≥ 4.             (31) 

From (29) the expectation, variation, and standard 
uncertainty of the half range σ of population, when 
experimental value s is determined, are: 

( )
2

nE s s
n

σ = ⋅
−

, n ≥ 3, ( )
( )

2

2
2var

32
n ss

nn
σ = ⋅

−−
, 

( ) ( ) 2var
2 3A
n su s s

n n
σ σ= = ⋅

− −
n ≥ 4.   (32) 

We can see that standard uncertainty in (31) and 
(32) of the parameters μ and σ for the uniform 
distribution are also consistent with (20). 

In [1–2] expanded uncertainty is defined as the 
product of the coverage factor kp,μ, and the standard 

uncertainty of measurement. For example, when measurand 
is μ then: 

( ) ( ),p p AU k u sµµ µ= ⋅ .                      (33) 

Because the standard uncertainty ( )Au sµ  exists 

when n ≥ 4 therefore the value of a coverage factor kp,μ 
can also be determined only when n ≥ 4: 

( )
( ),
p

p
A

U
k

u sµ
µ

µ
= .                         (34) 

For the Gaussian population from (23) kp,μ is 
given by: 

( ),
31
1p p

nk t n
nµ

−
= − ⋅

−
,                  (35) 

but not ( )1pt n −  as in [1]. 

When the number of observations is n = 2 and 
n = 3 the standard uncertainties of population parameters 
cannot be determined and due to this coverage factors 
kp,μ are not exist. This problem can be solved using 
suitable a priori distribution of μ. For example, from a 
physical point of view, the value of μ cannot be less than 
μL  and not more than μU, i.e. in the simplest case  

( ),
1, ,1

0, otherwise.
L U

a
U L

p µ
µ µ µ

µ
µ µ

≤ ≤
= − 

           (36) 

Therefore, the posterior distribution of μ is given 
as: 

( ), ,pp m sµ µ =  

( ), 1, ,
0, otherwise.

L U

U L

p m s
m mF F

s s

µ

µ µ

µ µ µ µ
µ µ

≤ ≤
= − −    −   

  

   (37) 

For the distribution (37) the expected value and 
variance of μ can be determined for any n ≥ 2: 

( )

( )

,

1 ,
U

L

p

U L

E m s

p m s d
m mF F

s s

µ

µ
µ

µ µ

µ

µ µ µ
µ µ

=

= ⋅∫− −   −   
  

,(38) 

( )

( ) ( )2 2

1var ,

, ,
U

L

p
U L

p

m s
m mF F

s s

p m s d E m s

µ µ

µ

µ
µ

µ
µ µ

µ µ µ µ

= ×
− −   −   

  

× ⋅ −∫

.   (39) 

Finally, posterior standard uncertainty of μ is: 

( ) ( ), var , , 2A p pu m s nµ µ= ≥ .                   (40)  

Independently on the population, the same properties 
have coverage factors kpL,σ and kpL,σ which corresponded 
to lower ( )pLU σ  and the upper ( )pUU σ  limits (because 

distribution ( )p sσ σ  always is asymmetrical) of the 

confidence interval: 
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( )
( ),

pL
pL

A

U
k

u sσ
σ

σ
= , 

( )
( ),

pU
pU

A

U
k

u sσ
σ

σ
= .            (41) 

5. Example of Type A Uncertainty 
Evaluation 

In Annex H.2 Simultaneous resistance and 
reactance measurement (GUM [1]) the resistance R, 
the reactance X, an impedance Z of a circuit element are 
determined by measuring the amplitude V of a sinu-
soidally-alternating potential difference across its terminals, 
the amplitude I of the alternating current passing through 
it, and the phase-shift angle φ of the alternating potential 
difference relative to the alternating current.  

The set of the n = 5 results of measurement of the 
amplitude V (V) current I (mA) and phase-shift angle φ 
(rad) are included in Table H.2 [1]. The experimental 
standard deviation of means (which are used as standard 
uncertainties to determinate combined standard uncertain-
ties) are calculated using (4) s(V) = 0.0032, s(I) = 0.0095, 
and s(φ) = 0.00075 are given in this Table H.2 [1]. 

If we determine standard uncertainties of voltage, 
current and phase-shift angle by (21) we obtain the 
following values: ( )Au V  ≈ 0.00454, ( )Au I  ≈ 0.013, 

( )Au φ  ≈ 0.00116, which are ( ) ( )1 3 2n n− − =  (about 

41 %) bigger than presented in Table H.2 [1] values.  
Therefore calculated and presented in Table H.3 

[1] values of combined uncertainties (absolute and 
relative) of resistance R: uc(R) = 0.071 Ω, reactance X: 
uc(X) = 0.295 Ω and impedance Z: uc(Z) = 0.236 Ω are 

2  as small as they should be!  
We can see that for the small number of obser-

vations using (4) to determinate standard uncertainty of 
measurand (here μ) causes significant inaccuracies. It 
should be noted, that Guide [1] also clearly indicated this 
inaccuracy. Namely in E4.3 is stated, “Evaluations based 
on repeated observations are not necessarily superior to 
those obtained by other means”. And next in E4.4 [1] we 
can find that: “the relative standard deviation of s(q), 
which is given by the ratio σ [s(q)] σ (q) and which can 
be taken as a measure of the relative uncertainty of s(q), 
is approximately [2(n −1)]−1/2. This “uncertainty of the 
uncertainty” of q, which arises from the purely statistical 
reason of limited sampling, can be surprisingly large; for 
n = 10 observations it is 24 percent”. 

6. Conclusions 
The following conclusions apply to all population mo-

dels ( ),pp x µ σ , which are described by two parameters of 
location μ and scale σ and for which a variance exists.  

According to the definition, the uncertainty refers 
to measurand and not to the measurand estimator. 
Therefore, when the standard uncertainty of measurand 
is determined based on the n independent random 

observations 1 2, , ... nx x x , which are consistent with an 

assumed model ( ),pp x µ σ , we must use probability 
distributions of this measurand, but not probability 
distributions of the estimator of this measurand. 

When measurand is a population location para-
meter μ then standard uncertainty ( )Au µ  may only be 

determined from density distribution ( ),p m sµ µ  (where 

m and s are the estimators of population parameters μ 
and σ), but not from density distribution ( ),mp m µ σ  of 

estimator m. We similarly proceed when measurand is a 
population scale parameter σ, i.e. by using density 
distribution ( )p sσ σ . 

The density distributions ( ),p m sµ µ  and ( )p sσ σ  

can be determined from the joint distribution 
( ), , ,p m sµ σ µ σ  which in turn is determined by 

transformation joint distribution ( ), , ,m sp m s µ σ  of 

estimators by Jacobian which is a ratio of estimate 
(s) to scale parameter (σ) of population. 

The standard uncertainty determined from the 
estimator distribution (when substituting σ for its estimator S) 
is ( ) ( )1 3n n− −  times less than the correct value of the 

uncertainty determined from the distribution of the 
population parameter. Independently of the population 
distribution the correct standard uncertainty of measurand 
can be determined when some observations are more 
than 3, i.e. n ≥ 4. Therefore, if the number of observations is 
small the evaluation of standard uncertainty according  
to the method presented in the Guide significantly 
underestimates its correct value. The method of Guide 
can only be used for large n. 

When n = 2 and 3 the standard uncertainty of 
measurand can be determined only by using a priori 
density distribution of measurand.  

Since the correct value of the standard uncertainty 
differs from the GUM value, to present the expanded 
uncertainty as to the product of the standard uncertainty 
and the coverage factor the value of this factor must be 
recalculated.  
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