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Abstract. This article presents results related to the direct solution of the polynomial regression parameters based on the
analytical solving of regression equations. The analytical solution is based on the normalization of the values of independent
quantity with equidistance steps. The proposed solution does not need to directly solve a system of polynomial regression
equations. The direct expressions to calculate estimators of regression coefficients, their standard deviations, and also standard and
expanded deviation of polynomial functions are given. For a given number of measurement points, the parameters of these
expressions have the same values independently of the range of input quantity. The proposed solution is illustrated by a numerical

example used from a literature source.
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1. Introduction

In measurement practice and statistics, polyno-
mial regression of order k is widely used to determine
the relationship [1-8]:

Y=F(X)=B,+B, - X+.+B X +¢=

=Zk:ﬁj.xf+g (1)

between input (X) and output (Y) quantities of various
systems, where P = (ﬂo, B, By )T is a vector of i+l

regression coefficients; & is normally distributed
random noise with zero expected value (u = 0) and
unknown standard deviation ¢ [1-6]. For example,
relationship (1) in measurement is typically used to
describe the conversion functions of sensors and other
measurement systems [9], to build calibration function of
measurement instruments and systems [10], [11], and to
determine parameters of time series functions, etc. Using
an appropriate number of measurement points, the goal
is to determine the estimators of these coefficients and
evaluate the accuracy of both the coefficients and the
function itself.

Before using a sensor in a measurement system,
we need to know its conversion function [9], which very
often is described by polynomial function (1), and also
its uncertainty. In the same situation, while calibrating
the measuring instrument [10], [11], the main goal
relates to establishing the relation between quantity
values provided by measurement standards and the cor-
responding indications of a measuring system or instru-
ment. The calibration curve usually is presented in the
polynomial form (1).

Most of the theoretical and practical issues have
been developed by various authors. There are very exten-
sive literature sources on deep analysis of both theoretical

and different practical aspects of regression, but only
some of the literature sources are listed in [1-8]. In
classical regression analysis, only the effect of random
effects on the results of measuring the output quantity is
usually considered. However, one should take into
account the correlation of random effects as well as such
effects on both the input and output quantities [12], [13].

Based on the general algorithm for polynomial
regression of order up to 3, we present a modification of
it, which provides a simplification of all stages of
polynomial regression. Such a possibility arises in the
case with an equal distance of values of the independent
quantity. Then, by shifting the independent variable, all
average values of odd powers of the values of input
quantity are equal to zero. Due to this, in the system of
equations, describing the regression, the number of non-
zero coefficients is reduced by twice. The next modifi-
cation is to normalize the values of the independent
variable to the value of half of its range of variation. The
application of these modifications provides indepen-
dence of the coefficients of the normal system of equ-
ations from the absolute values and the range of vari-
ation of the independent quantity. I.e., with the same
number of measurement points for any values of this
quantity, the coefficients of the normal system of
equations remain unchanged. Due to these modifications,
all regression issues can be reduced to simple analytical
relationships instead of direct solving a system of
regression equations.

2. Drawbacks

A certain problem of applying the classical
approach in regression is the need to solve systems of
equations of the appropriate order, including the
calculation of the inverse matrix [1]-[8]. Another
problem is that with the same number of measurement



36 Measuring equipment and metrology. Vol. 83, No. 3, 2022

points, but with a different range of variation of the
independent quantity, all the elements of the system of
equations, including the corresponding matrices, must be
recalculated. This results in solving the system of
equations again and recalculating the inverse matrix.

3. Goal

The goal of this article consists in the derivation
of the simple analytical formulas, that make it possible to
calculate directly the estimators of the coefficients, their
standard deviation, and the standard deviation of the
function with its expanded uncertainty, without the need
to solve the system of equations and calculate the inverse
matrix.

4. Modification of Classical Regression
Solution
4.1. Classical regression solution

Traditionally, most publications on polynomial
regression [1]-[11] to determinate regression coef-

ficients b= (b, b,,..,b,) usually maximal likelihood

estimation (MLE) or the least squares method (LSM)
used [1]-[11]. In general, these coefficients are
determined by n measurement points, i.e. pairs (x;; y;,
i=1,2,..., n) of non-random values x; (vector

X = (xl, Xys s X, )T ) of the input (independent) quantity X

that are matched by values y; (vector y = (yl, Vases Yy )T)
of the output quantity Y. With some simplification, the
results of the classical solution of the polynomial
regression problem are the dependencies for estimating

and the

standard deviations of these estimators and also the
regression function.

Since the main matrix formulas related to the
classical procedure of solving polynomial regression will
be used with proposed modifications of input quantity, this
procedure is presented briefly here. When the values y; of
the output quantity Y are mutually uncorrelated (cov (y;
y)= 0, i#) then using LSM, the estimated values

b =(b,,b,,...b,) of the regression coefficients p = (8,
B, By )T can be determined by matrix equation [1]-[6]:

the regression coefficients b =(b,, b, .., b, |

b=(@®]'® y=M'®" .y, @)
here
1 x, X x; |
1 x, x ... x
®=: A (3)
1 ox,, xi—l x;l;—l
|1 x, X2 x!

M=(@'®), M'=(@®]" 4)
Because for the normally distributed random
effects & with standard deviation o the distribution

Py, (bj‘ B j,G) of estimate b; is normal too, and the

standard deviation of the estimated regression coeffi-
cients is given by the formula [1] — [6]:

olb,)=c-M];, . 5)
After estimation of the regression coefficients

(vectorb = (bo, b, ... b, )T ) the dependence y(x) between

input X and output Y quantities can be presented by
function:

k
y(x)=by+b - x+.+bx" =D b x. (6)
j=1
Therefore, using the standard deviation of
coefficients (5) the standard deviation of the estimated
regression function (6) is given by the formula:

()

4.2. Matrix after modification of the values of
input quantity

The first step of modification of the classical
algorithm (2)—(4) consists of the following. Using

denotations x’ for the arithmetic mean values xl.j of

the corresponding power j of x; and x/ y for the

arithmetic mean values of products xl.j ‘Y

— 1< . — 1< .
x’ :—le.’ ,j=0,2,.., k; x’y:—le.’ Vi,
nio n o

Jj=0, ..., k ®)
matrix solution (2) can be presented directly in another
form:

-1
b=M_ Y, 9)
here
1 )_c x2 Xk X
i x2 xl\—] X xk+]
1 2 - N
M =—(@®)=| ¥ '
n xk*l x2k—2
xl: o B
| xk xk+] .. x2k—2 x2k—] x2k |
Ed
Xy
x? y
Y=—0®'y= , (10)
n
xk—ly
xky
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and
-1 _ -1
M =(M))
is an inverse matrix of the modified normal equation.

The next step of modification is the normalization
of equidistance values of input quantity:

(11)

X —x 2i
= = -1,i=0,...,
xi Vv n—1

n-1, (12)
here x is a mean value and ¥ = R/2 is half of the range
(R = Xmax — Xmin)-

From (12) it can be seen that the range of new
modified by (12) quantity is: —1< ¥ <+1 and the
values of the variable y; are evenly symmetric. Then the
values of the corresponding to (8) arithmetic mean

values xl.j of the corresponding power j of y; and yy J

for the arithmetic mean values of products y;, - )(.j :

— 1 n-1 ) 7 1 -1
%J = %1] s : =
2 phg
Jj=0,..,k. (13)
Due to odd symmetries y, from origin all odd

components in the matrix (10) are equals to zero:
2/+1= Z%Zl+1= (14)

In measurement practice, polynomial relation-
ships (1) of the first (k = 1), second (k = 2), and third
degree (k = 3) are most often used. Therefore, for the
linear, quadratic, and cubic polynomials the matrix
components a given by expressions:

1 0 3
Mly=| —|; Y, = 2 (15)
0 x° yex
10 % ¥
M2y =10 2% 0[; Y2, =|y-x|, (16)
0 i X
1o 20 v
2 3 I
M3, =| 2 0 O Xy XL ()
x 0 x 0 y-x
0 954 0 956 y'x3
Three different coefficient denotations to

distinguish the three regressions are used:

ai :(axo;axl)—linear, (18)
bi (bx s, 15b, ) — quadratic, (19)

T . . . :
c, :(CZ,O’CZ,I’CZ,Z’CZJ) — cubic. (20)

The general solutions of these three matrix
components (15), (16) and (17) can be presented as:

-1
=ML'-Y1,, 1)

-1
b, =M2'Y2,, (22)

-1
=M3;'Y3,. (23)

For matrices (15), (16) and (17) the inverse
matrices are:

1 0
M=l L, (24)
%2
_ .
_Z 0 — X
14_ %2 14_ %2
1 —
2
. X
2
- - 1
S— 0 —
Lt -’ =)
-4 0 4 0
= . = o
6 4
[ — (— (26)
VT - x”z“(z") PR AR IV
—2 0 _ ! 0
= . = o
0 _x 0 _r
L -t xz~xﬁ—(x"i_

4.3. Analytical expressions for the coefficients
and function

Due to the form of inverse matrices (24), (25),
(26) it is possible to derive the analytical solutions for
the regression coefficients in the forms:

3
X

Vs == 27
X
- 3 —
bxo_x Pt MLV ;b,(1=y—s
P 2
x —\x x
. 2__2._
b,,=LE XY, (28)
x“—ixzj
AR ey AR A N A
€r0 4 2 > T 6 2 4 ’
X —x)z X x —(97)1
2 2 T 2 RS
C“:y_ai xz y;c“:x 161_2 x_Ay (29)
X —(x ) X x —(x)z

Using values of estimated regression coefficients
(27), (28), (29) it is possible to determine functions
directly functions dependently on previously determined
matrices components (15), (16) and (17):

Y- X
)

X

W(x)=y+=2 7, (30)
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R 2
)L LE LT T
x—(; X
2 2 7
IRAY St NP SYRS (1)
x“—‘xzj
4T 2 2 6 3 3
y3(x)=XY_XZYX+Xl6%_27(A;VX.
- -]
2 2 T ) 3 4 T
x_'_y_)i %2 y'%2+% 16%_2 %4.)/ .%3 (32)
X‘X)z X X _(7?)2

4.4. Analytical expressions for the variations
and covariations of coefficients and function
For the definition of the matrix M in (10) and

inverse matrix (11) for a known variation ¢° the variation
of the estimated coefficient ¢; can be presented by the
general formula:

2
o-z(cj)z %'[M;l]j,j

I. e. variations and nonzero covariations of
corresponding regression coefficients are:

(33)

2 2
T e O e
X
2 4
1
O i W
x =\ X
R DA
o (b)(,l) n ?,O' (b)(,z) ?_ %2 )
¢ -7
cov(bx’o,bxz) = 5 (35)
X —\x
2 4 2 6
S RS A RS L
X _X_ X X —\X i
TP A S I
e R )
2 2
COV(bZ,oabxz) C; ?_xxz 5
o (36)
_0_2. _l4
cov(bm,b )—7 F?_ pT

Because in most practical cases the variance 6> of
the random deviations in results y; (i=1, ..., n) of
measurement of output quantity is not known in (34)-
(36) the unbiased estimators are used [1]-[8]:

n

2
]‘ .
o )

i=1 \_j=0

G37)

Applying the denoting definition

PP —y,j

i=1\_j=0

(38)

of the so-called biased estimator of variation ¢, for
which §*=—""__¢?

n—k-
variances can be of can be presented directly, without
coefficients values:

, the biased estimators of

st =y - (pf EL (39)
x
e ) (y xz—?-;)z- (40)
52 - —— >
7-b 2 ( x“—(’?_z)z ;
5§32 = 2 (= _y'_X)Z_yiz_Zz'z; _
=r-b] 7 -
(:_ 7 7‘T, @1)

— e
where »’ =—Zy,.2 .

nig

4.5. Inverse substitutions

The dependencies of the estimated regression
functions directly on the value of the input variable are

obtained by substituting the values y = TX into the

corresponding relations (30)—(32):

(x)= y+u (x—;xj (42)
x

(43)

(44)

From (27)—(29) and (44)—(46) the initial values of
estimated coefficients are given as:

a, = ax’o —-a

)(,l';; = V . (45)
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T : 32 %
by=byg by, a2z 8 ZG)Z Ple)=— e === (50.3)
B B s n—
K 1% PR _(x4)
b = by _ 2b,,-x b, = b, (46) Estimated variances of regression functions:
v v v

] -
X el ) s (1(x)) = nsi 3 [l +£%—;Z]; (51)
2,1 V Vz V3 ’

_ _ 2
c 2¢,,-x 3c,4-|x 2 ((x_x)z_x 'sz —x
=t "’;3( L 02 =2 1 — +(x_2 =L 1: (52
3¢, x . (%4‘(? j'V“ a4
Cp Cpyt X s
c,=— % . =2 47
272 V3 3T (47) (x_;)z_ e 2
Estimated variances of coefficients can be deter- §2 ( 3(x))— §32 1+ x N
mined by formulas: 2 -4 (?_(? )'V“
, _
sz(ao)z S12(1+%'(%j } _ — 2
" _
* = (27 le=sf -7
5 . =" l+—— (53)
o*(a))=" ——: (48) v (%%(ﬁ)V

Because for the polynomial regression of order k&

FEl L e -

sz(bo)— 52° 1+ [(x ) X +;( x j . the ratios th ; have 7-Student distribution with
n-3 il (7)2 2\ s

x -\ x d=n—-k—1 degree of freedom, therefore for a

R confidence level p expanded uncertainties of coefficients
2 - . .
(b)) = s27 1 [l +4(%j ) 1 ]; 49.1) Up(ﬂj) and regression function Up(Y(x)) can be
2
1

calculated from (48)—(53) wusing coverage factor
k,=t, (n—k —1) from ¢-Student distribution:

) _ §2° ) )
s7(by) =3 V4(?_(f)zj’ (49.2) U ()=t (1—k-1)- (5 )
Up(Y(x)):tp(n—k—l)-wlsz(y(x)). (54)

SZ(Co)=n_4'1+ = (?)z + 5. Example

In this example, the cubic polynomial model
(k=3) is built as example 8.1 in [3]. This example

—\2 [?(} V)Z _ (?)T relates to the treatment of algae density measures over
+;( X j _ : (50.1) time (7). The n= 14 solutions were randomly assigned
v\ P _(?)Z for measurement to one of each of 14 successive days
(n = 14) of the study,
ie.t=day=1 2 3 4 56 7
, 321 4 > 2 8 9 10 11 . 12 13 14.
S (Cl): 4 77 1+_4 Y7 + The dependent variable (Y=algae density)
x —\x reported is a log-scale measurement of the increased
absorbance of light by the solution:
., 2 In the first replicate: Y1 =10.530 1.183
(3)( -(X/V)Z —(?D 1.603 1.994 2.708 3.006 3.867
tee e | (50.2) 4059 4349 4.699 4.983 5.100
X (% X —()7)2) 5.288 5.374.
In the second replicate, Y2 =0.184 0.664
er) - —[ et J SR 4367 4531 4e%6 475
N v R 2 A 4842 4.969.
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For the data given above in [3] a cubic polyno-
mial model (k = 3) is applied which results in:

YO =P+ Byt + Py Byt
The first step is the determination of normalized
values y, of input quantity (days). For the given data the

mean value x=7.5 and half range V = 6.5. Therefore,

due to (12):
v=-1 -11/13 -9/13 -7/13 -5/13 -3/13
-1/13 1713 3/13 513  7/13  9/13
11/13 1.

Detailed results will be presented applying only
to the first replicate. The final results will be presented to
both replicates. Due to (13) parameters of corresponding
mean values are:

22 =0.38462; 7 =0.26445; 5°=0.21498;

y=3.48164; y- 7 =095988; y- x> =1.23621;

y-x’=0.64913
Therefore matrix (XX) components are:
1 0 0.38462 0
M = 0 0.38462 0 0.26445
*10.38462 0 0.26445 0
0 0.26445 0 0.21498
3.48164
| - 0.95988
*ol1.23621 |
0.64913

In usual regression solution matrix M=((I)T(I))
(4) is:

14 105 1.015-10°  1.1025-10°
| 105 1.015-10°  1.1025-10* 1.27687-10° | ,
1 1.015-10°  1.1025-10* 1.27687-10° 1.53982-10°
1.1025-10* 1.27687-10° 1.53982-10° 1.90923-10’

From a comparison of these matrices, we can see
that using the proposed modification we obtain a simple
matrix with limited values of its components. Besides it,
the condition number (which can be as multiplied
coefficients of random influences) is equal to about 53
and 5.1-107, i.e. about -10° bigger. Le., even using the
usual method of solving a system of regression equations
is simpler and more accurate.

The values of estimates of coefficients b,; (29)
are:

byo=3.8212, b, ,=2.7210, b,,=—0.88293,

b,3=—0.32766.

The values of estimates recalculation by (47) are:
bo=0.009478, b; = 0.53074, b= 0.005947,
b3;=-0.001193,

which are consistent with [3].
From (41) the biased estimate of variation:

sf, =0.009756 . Therefore from (49) the standard devia-
tions of these estimates are:
s(bo) = 0.1676, s(b;) = 0.09343,
s(by) = 0.01422, s(b;) = 0.000625.

which are consistent with values determined by the
classical method in [3].

From (53) using the values of parameters x=7=7.5, V=6.5, x> =0.38462, 7' =0.26445; y°=0.21498

and V2 =1625, 'V =11.1731 (?— (?)Z )V“ =208, ( L (?T)V‘* ~22.7625 the standard deviations of

function related to first replicate is:

s(() =

2
0.009756 1+((t—7.5) —16.25)Z +(

10 208

16.25

22.7625

t-7.5) {1+ (0.38462~(t—7.5)2 —11.1731)7 .

Expanded uncertainty of function related to the first replicate is:

U, 1) =1,(10)

208

For the second replicate the values of estimates are:

16.25 22.7625

2 2 2
0.0?(9)756 l+((t—7.5) —16.25)Z +(t—7.5) ’[1+(0.38462~(t—7.5) —11.1731)ZJ .

bo=-0.55173, b; = 0.69885, b,=—-0.01263, b3 =—-0.0006796.
For the second replicate, the biased estimate of variation is: sf, =0.007202 . Therefore from (49) the standard

deviations of these estimates are:

s(bo) = 0.144, s(by) = 0.0803, s(b,) = 0.0122, s(b5) = 0.000537.
From (53) and (54) we can see that the same values of input quantity standard deviation and expanded

uncertainty of function differ only by values of estimated standard deviation s, =\/:; . Therefore the standard

deviation and expanded uncertainty of function related to the second replicate are:
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0.007202

(0.38462: (- 7.5¢ ~11.1731]

s(v2(t))

1+
10 208

((t ~7.5) -1 6.25)Z . ((-75)
16.25

{H J ,

22.7625

2 2
0.007202 1+((t—7.5) —16.25)Z +(r—7.5) '

U,(v2(e) =1,(10)

10 208

The expanded uncertainties U, (y(t)) of both

regression functions for a confidence level of p = 0.95,
which ks = ,45(10)=2.228, are sown in Fig. I, a.
Expanded uncertainty with the part for the forward
prediction is shown in Fig. 1, b.

From the results obtained and from Fig. 1, we see
that despite the different values of the input quantity in
the two data series, in both cases the standard deviations
and the expanded uncertainties are described by the same

0.2

0.16[%

0.12

0.08
0.04

0
1 2 3 4 5 6 7 8 9 1011 12 13 14

0.6

16.25

| 038462 (= 7.5F 111731
227625

relationships only with different values of the estimated
variances as scale factors. In addition, Fig. 1, b shows
that if based on the estimated regression function we
want to forecast the values of the function beyond the
given range of variability of the input quantity, the
uncertainty of such a forecast increases rapidly. For
example, if we set a forecast for the 16th day (2 days
ahead), the forecast uncertainty increases almost 3 times!
This is a known effect [7] but is sometimes forgotten.

0.5l Unosr(0) b

0.4

0.3 .

0.2\\-\_'-—'—'._._—‘—-%__._-——-—'1—_,_.':-'//4‘(-

0.1 5 ‘ p
012345678910111213141516

Fig. 1. Estimated expanded uncertainties of functions (a), expanded uncertainty for the prediction (b)
1 — first replicate, 2 — second replicate

6. Conclusions

The obtained results can be applied to
polynomial regression of order up to 3 with a constant
interval of the independent (input) variable.

The use of a modification of the values of the
input quantity, which consists in centering these values
by the mean and subsequent normalization to the value
of half of the range, provides the possibility of deriving
analytical relationships both for the determination of
coefficients and regression functions as well as for
determining all values of estimated variances, standard
deviations, and uncertainties.

Relationships have been derived for the direct
calculation of parameters, related to the regression
analysis, the main ones are:

— coefficient estimators and regression functions
of orders 1, 2, and 3;

— standard deviations of coefficient estimators
and regression functions;

— uncertainties of the expanded regression function.

The derived formulas depend only on the means
of the 2nd, 4th and 6th powers of the normalized values
of the input quantity, and the means of the products of
the output quantity and zero, 1st, 2nd, and 3rd powers of
the normalized values of input quantity, as well as the
mean and half of range of the input quantity.

I. e, a complete regression analysis can be
performed easier without the necessity to directly solve
the corresponding system of equations and calculate the
corresponding inverse matrices.

The obtained results show that for the same
number of measurement points (with a constant
distance), the standardized values of the input quantity
and the associated coefficient used to calculate the reg-
ression coefficients and functions and also corresponding
estimated standard deviations are the same for reg-
ressions of a given regression. This simplifies perfor-
ming regression analysis for different sets of the output
quantity.

A numerical example, taken from a literature
source, shows all the steps of the analysis, concerning
polynomial regression of order 3, performed only by ana-
Iytical dependences which gives the same results without
performing operations with systems of equations and
calculating the inverse matrix.
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BOI'TAH IBAHOBHUY CTAJIHUK
*01.06.1936 — 122.09.2022

IIIanoBHi KoJIerH Ta YNTAYI

3 TIMO00KUM CYyMOM cCHOBIIaeMo, mo 22 BepecHst 2022 poky Ha 87-My pOIll )KUTTS BiAIHIIOB y Kpamui CBIiT
Ham goporuii Bumrens i HacTaBHUK, 3 1982 p. HeaminHuii ['onoBHuil pepakrop 30ipHUKA, OaraToONiTHIA AUPEKTOP
[HCTUTYTY KOMIT IOTEPHHMX TEXHOJIOTIH, aBTOMATHKH Ta METPOJIOTIi Ta 3aBigyBad Kadenpu iHPpOpMamiiHO-BUMIpIO-
BaJIbHUX TEXHOJIOTIH, IOKTOpP TEXHIYHHUX Hayk, npodecop, 3aciayxeHnii Bunaxinuuk YPCP, nilichuii unen Axkazaemii
IHKCHEPHUX HAayK YKpainu, midicHuH wieH MiKHapomaHOT akaaemii TepMOCNCKTPHUKH, MIHCHHUN wieH AKaaemil
Merpostorii YKpaiHH, 3aCHOBHUK IIKOJIU 3aco0iB BUMIpIOBaHHS (Di3WMYHUX BEJUYUH, KOpU]El MIKOIU TepMOMETpii,
6aratopasoruii Doctor Honoris Causa, I[Touecuuii npodecop JIbBiBCbKOT MOMITEXHIKH.

BuiimoBmm 3 60¥kiBchKkoi oceni ¢. 'ipHe CkomiBchbkoro paiioHny JIbBIiBChKOi 00J1acTi, BiH HEYCTAaHHO “TyIaB
IO CKaIly” KHUTTS; Hi Jkap, Hi XOJOJA HOro He CIHHSB. BHUILIEKaB IeKilbka MOKOJIHb HAYKOBHX KaJpiB: OUIBII SIK
20 mokropiB Hayk Ta 38 kaHIUIATIB HayK. Byy4n HE3MIHHUM T'OJIOBOIO CIeliani30BaHOI BUSHOI pajiy, CIIPHUSB TIOHA
210 3axucTaM HAyKOBHUX POOIT — II€ iU IJIaCT HAYKOBIIB YKpaiHH Ta 3apyOiKoKs.

HeycranHo migTpuMyBaB 1 CTBEp/PKyBaB INpIOPUTETHICT, YKpaiHn B Haymi. Hamepemomni Ttimmscs
OMyOJIiKyBaHHIO Y MEPIIOMY B CBITI oHJaiiH — BunaBuuirsi IntechOpen posniny opurinansnoi Mmonorpadii “Update
to Thermoelectricity: https://www.intechopen.com/online-first/development-of-quantum-unit-of-temperature-standard- in-
thermoelectric-research, ne makpecieHo Halll IPIOPUTET y TBOPEHHI MEPILIOTro Y CBiTi KBAHTOBOI'O €TaJIOHA TeMIIepary-
PH, HaJl BUMIpIOBaHHSM sikol boraan IBaHOBMY MpaiioBaB yce KUTTSI.

Big mmporo cepus npocuMo pigHuX i OJM3BKUX, IPY3iB Ta BCE TOBAPUCTBO MOKIHHOTO MPUHHSATH CIIBYYTTSI.
Pozninsemo 3 Bamu Oinb Bix BTpatu.

CnouuBaii 3 borom, Ham goporuit Buutento.

[Tam’sTb ipo Tebe He 3racHe B HAIIKMX CEPIX 1 TisTHHSX.

Biynast mam’sITh.

Peoaxyiiina konezis Mixceioomuo20 Haykoeo-mexniuno2o 30ipHuka
“Bumiprosanvua mexnixa ma memponoeis” (“Measurement Equipment and Metrology”)








