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1. Introduction

A theory of functional stability arose at the end of the 20th century to improve the control of pro-
cesses in computing devices of complex aircrafts operating in extreme conditions, which were pricey
and potentially hazard during their use. The theory combined various aspects of already well-known
theories: reliability, backing, safety, restoration, etc. [1]. The main advantages of this theory are the
ability to detect, identify, locate and eliminate the disadvantages of extraordinary situations that occur
not only due to the external disturbances but also due to the possible failures within the very sys-
tem. Subsequently, this theory was extended to cover other multiplex systems and complexes [2–10].
An important component of this theory is the detection of an emergency situation — identification
of the state of the objects. The mathematical body allows us to find optimal solutions using known
theories: the principle of maximum, dynamic programming, Lyapunov functions, classical variation
calculus, analytic constructing of regulators, the method of inverse problems of dynamics, fuzzy sets,
etc. A practical application of any method consists in the construction of the control trajectories that
implement the extreme values of the functionals. We also note that solving most tasks requires sig-
nificant computing capacities, e.g., in the analytical construction of regulators for a fifth-order linear
system based on the Riccati equations. It is also necessary to take into account the sensitivity of such
algorithms to specific values of the parameters of the objects to be controlled [2–4,9, 10].

2. Statement of the problem

We suggest considering the design of algorithms for the objects to be controlled in the case of emergency
situations, in the conditions of uncertainty from the positions of inverse problems of dynamics. The
application of such concepts allows constructing effective methods of control, provided the program
trajectories of motion are implemented. At the same time, what is essential, a possibility to obtain
control in a closed form U(X(t)) for both linear and nonlinear systems.
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In the direct formulation, the problem of the synthesis of algorithms of adaptive control systems
of a programmatic movement (Fig. 1) is reduced to the definition of the laws of the formation of
the control functions U0

n (e.g., the movement of control mechanisms of the system, the deviation in
the steering box), provided some indicators attainment that indirectly characterize the quality of the
control process J (Fig. 1).

In the inverse statement (Fig. 1), the problem of determination of U0
n is considered in two stages.

In the first stage, the controlling forces F that provide the system with the required movement are
determined. These forces can correspond to the real physical forces and momenta that must be applied
to the object of the control to provide the optimal programmatic motion X0

n(t). In the second stage,
the issues of practical implementation of the necessary forces are considered and the control functions
U0
n(t) are determined.

It is essential, that such a statement of the problem opens a possibility of construction of control
systems on the basis on constructive schemes fundamentally different from the usual [1–4,9, 10].

The direct task of synthesis

Definition of the laws
of formation of control

functions

The inverse problem of synthesis

Determination
of controlling

forces

Determination
of control
functions

1 stage 2 stage

J

F
U0
n(t) U0

n(t)

U0
n(t)

Fig. 1. The block diagram of the statement of the problem of synthesis of control by
the method of inverse problems of dynamics.

Such systems are often used as the one-degree-of-freedom system. This limits the possibility of
applying the method of solving inverse problems in the cases where it is necessary to control simulta-
neously all or several phase coordinates of the n-th dimensional object.

3. Description of the mathematical model

Let us consider the application of the method of inverse problems to a multidimensional object, which
is described by the matrix equation in operator form [1,3, 4]

A(p)X = B(p)U, (1)

where
A(p) = {aij(p)}, i, j = 1, n, (2)

XT = [X1 . . . Xn], (3)

B(p) = {bij(p)}, i = 1, n, j = 1, r, (4)

UT = [U1 . . . Ur]. (5)

It is known that this control can be presented in the Cauchy form.
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We construct a control algorithm in which the motion of an object from the point X(0) at the
origin of coordinates is carried out along the program trajectory

Xn(t) =




C11e
λ1t + . . .+ C1ke

λkt

C21e
λ1t + . . .+ C2ke

λkt

. . . . . . . . . . . . . . . . . . . . .
Cn1e

λ1t + . . .+ Cnke
λkt


 , (6)

or in a matrix form
Xn(t) = CeΛt, (7)

where
C = {Cij}, i = 1, n, i = 1, k, (8)

[
eΛt
]T

=
[
eλ1teλ2t . . . eλkt

]
, (9)

where λl (l = 1, k) are various real or complex bound numbers satisfying Re eλ1 < 0.
The constant coefficients Cij, i = 1, n, i = 1, k are unambiguously defined by the initial values of

the phase coordinates and by their (k − 1) derivatives
Provided an arbitrary manner in choosing the acceptable values of the parameters Cij, i = 1, n,

i = 1, k, λl (l = 1, k), we obtain a variety of different programmatic movements. The use of arbitrary
selection can be used to choose the programmatic movements Xn(t) that are the solution of Eq. (1)
and satisfy different constraints (e.g., constructive constraints or constraints on traffic safety)

X(0) =




C11 + C12 + . . . + C1k

C21 + C22 + . . . + C2k

. . . . . . . . . . . . . . . . . . . . .
Cn1 + Cn2 + . . .+ Cnk


 ,

Ẋ(0) =




C11λ1 + C12λ2 + . . .+ C1kλk
C21λ1 + C22λ2 + . . .+ C2kλk
. . . . . . . . . . . . . . . . . . . . . . . . . . .
Cn1λ1 + Cn2λ2 + . . .+ Cnkλk


 ,

X(k−1)(0) =




C11λ
k−1
1 + C12λ

k−1
2 + . . .+ C1kλ

k−1
k

C21λ
k−1
1 + C22λ

k−1
2 + . . .+ C2kλ

k−1
k

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cn1λ
k−1
1 + Cn2λ

k−1
2 + . . .+ Cnkλ

k−1
k


 ,

The controlling force that realizes the trajectory Xn(t) is denoted by fn(t). Let us search for such
a trajectory in the form

fn(t) = A(p)Xn(t). (10)

To obtain a programmatic law governing the change of a controlling force, we substitute the expres-
sion (6) into (10),

fn(t) =




a11(p)(c11e
λ1t + . . .+ c1ke

λkt) + . . .+ a1n(p)(c11e
λ1t + . . . + c1ke

λkt)
a21(p)(c11e

λ1t + . . .+ c1ke
λkt) + . . .+ a2n(p)(c11e

λ1t + . . . + c1ke
λkt)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
an1(p)(c11e

λ1t + . . .+ c1ke
λkt) + . . .+ ann(p)(c11e

λ1t + . . .+ c1ke
λkt)


 . (11)

Besides, for A(p) can be written

A(p) = {aij(p)} =
{
mijp

2 + rijp+ hij
}
, i, j = 1, n. (12)
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Substituting the expression (12) into the expression (11), it is possible to obtain the following expression
of the controlling force in the matrix form

fn[t] = (MCΛ2
d +RCΛd +HC)eλt, (13)

where
M = {mij} , i, j = 1, n;

C = {cij} , i = 1, n, j = 1, k;

Λd = diag{λi}, i = 1, k;

R = {rij} , i, j = 1, n;
[
eλt
]T

=
{
eλit
}
, i = 1, k.

In order the trajectory Xn(t) to begin at the point

Xn(0) =




X10 Ẋ10 Ẍ10 . . . X
(k−1)
10

X20 Ẋ20 Ẍ20 . . . X
(k−1)
20

. . . . . . . . . . . . . . .

Xn0 Ẋn0 Ẍn0 . . . X
(k−1)
n0



,

the elements of the matrix C = {cij}, i = 1, n, j = 1, k should be determined by solving the n systems
of k algebraic equations





C11 + C12 + . . . + C1k = X10,

C11λ1 + C12λ2 + . . .+ C1kλk = Ẋ10,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

C11λ
(k−1)
1 + C12λ

(k−1)
2 + . . .+ C1kλ

(k−1)
k = X

(k−1)
10 ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,



Cn1 + Cn2 + . . .+ Cnk = Xn0,

Cn1λ1 + Cn2λ2 + . . . + Cnkλk = Ẋn0,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

Cn1λ
(k−1) + Cn2λ

(k−1)
2 + . . . + Cnkλ

(k−1)
k = X

(k−1)
n0 .

Or in the matrix form




1 1 . . . 1
λ1 λ2 . . . λk
. . . . . . . . . . . .

λk−1
1 λk−1

2 . . . λk−1
k


×




C11

C12

. . .
C1k


 =




X10

Ẋ10

. . .

X
(k−1)
10


 ,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·


1 1 . . . 1
λ1 λ2 . . . λk
. . . . . . . . . . . .

λk−1
1 λk−1

2 . . . λk−1
k


×




Cn1
Cn2
. . .
Cnk


 =




Xn0

Ẋn0

. . .

X
(k−1)
n0


 .

The solution of these matrix equations has the form:

[C11 . . . C1k]T = Φ−1
[
X10 Ẋ10 . . . X

(k−1)
10

]T
, (14)
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[Cn1 . . . Cnk]
T = Φ−1

[
Xn0 Ẋn0 . . . X

(k−1)
n0

]T
, (15)

where

Φ =




1 1 . . . 1
λ1 λ2 . . . λk
. . . . . . . . . . . .

λk−1
1 λk−1

2 . . . λk−1
k


 . (16)

Note that ∆ = ‖Φ‖ is a Vandermonde determinant, which can be written as follows

∏

16i6j6k

(λj − λi).

This determinant can be equal to zero and only if λj = λi, j 6= i.
As the variables λi, i = 1, k are chosen to be different, then in our case a Vandermont determinant

is nonzero, and, therefore, there exists an invertible matrix Φ−1.
Substituting the expression (16) into the expressions (14), (15), we obtain

C =




X10 Ẋ10 . . .

X20 Ẋ20 . . .
. . . . . . . . .

Xn0 Ẋn0 . . .

X
(k−1)
10

X
(k−1)
20

. . .

X
(k−1)
n0


 = Φ−1 = X(0)Φ−1T. (17)

An expression for a vector of a controlling force can be found by substituting the expression (17)
into the expression (13). We have

fn[t] =
{
M
(
X(0)

[
Φ−1

]T )
Λ2
d +R

(
X(0)

[
Φ−1

]T )
Λd +H

(
X(0)

[
Φ−1

]T )}
eΛt. (18)

4. Numerical analysis of the mathematical model

Evaluate the control algorithm efficiency on the basis of solving the inverse problem of dynam-
ics for stochastic multidimensional automatic system. The investigation will be conducted using
MATLAB [11].

Let us consider the system

Ẋ(t) =




0 1 0
0 0 1

−0.3 −3 −0.1


 ·X(t) +




2 1 4
0 3 2
1 0 1


 · U(t) +




1
0
1


 · ξ(t).

The equation of the determinant has the form

Z(t) =

[
1 0 0
0 1 0

]
·X(t) + η(t).

The characteristics of random functions have the form

σ2ξ = 0.01;

Pη =

[
0.01 0

0 0.01

]
.
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For the perturbed (in mathematical expectation) mode, the parameters of the control law are deter-
mined from the condition of approximation of X(t) to the state vector X(t) of the system

Ẏ (t) =




0 1 0
0 0 1
−1 −3 −3


 · Y (t).

The following functional is adopted as a measure of approximation X(t) → Y (t):

J(c) =

∫ T

0

[
X(t, c) − Y (t)

]T
V
[
X(t, c) − Y (t)

]
dt,

V =




100 0 0
0 10 0
0 0 1


 .

The optimal parameters for the perturbed mode equal

{C∗
ij} =




0.386 6.308
0.009 1.666
−0.197 −3.672


 .

In Fig. 2, the graphs present the change in mean-square values

σij =
√
αij

of the coordinates state Xi for the case when the control law U(x) = CHX.

0 2.5 5 7.5 12.510

0 1.

0 2.

0 3.

0 4.

t, s

σ

σ11

σ22

σ33

Fig. 2. Graph of changing the mean-square values σij =
√
αij for C = C∗.

5. Conclusions

Analyzing the obtained expression (18), we consider that in order to obtain the desired controlling
force it is necessary to do in advance the following: describe the object to be controlled by setting the
elements of the matrices M , R, H; impose the initial conditions for each control coordinate and their
first (k−1) derivatives; set the programmatic trajectory of the movement, by choosing the appropriate
elements λi, i = 1, k. By obtaining the expression for the controlling force, the first stage of solving
the formulated task ends.

Analyzing the shown in Fig. 2 dependencies, the following conclusions can be drawn:

1. The level of random components in the coordinate state is very high.
2. The parameters Cij found for the perturbed (in mathematical expectation) control mode cannot

be considered to be optimal for the unperturbed mode.

The obtained results allow for a functional-stable system to complete the stage of determining the
controlling forces; and to continue the investigation and to determine the control functions.
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