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A fast convergence speed of an observer helps improve the capability to track the states
of a system for an arbitrary divergence between a real and an estimated initial conditions.
This property of the observers is significantly useful if a system has fast dynamics and its
states change rapidly. Thus, the convergence time is one of the main performance criteria
of linear and non-linear state observers.
This article presents a comparative analysis of observers for both linear and nonlinear
systems in terms of the time of convergence of the observers. The following observers was
chosen for this study: the Kalman filter (KF), extended Kalman filter (EKF), unscented
Kalman filter (UKF), particle filter (PF), Luenberger observer (LO), and fuzzy-based
Luenberger observer (Fuzzy-LO). The listed observers were studied using a non-linear
mathematical model of an open-link locomotion module, which movements were studied in
stochastic terrain conditions. The mathematical model was then simplified and simulated
as a linear model with the purpose to estimate the efficiency of the linear observers. The
Fuzzy-LO with an adaptive gain to the estimation error gives better results than the LO,
especially in steady states. The PF with a simple Gaussian distribution provides a lower
convergence speed than the KF, EKF, and UKF. To faster the convergence of the PF, a
novel approach, PF*, that utilizes mixture probability density function of the distribution
of initial particles was introduced in the article.
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1. Introduction

Very often, control strategies are designed with an assumption that information about the control
object is known. Usually, this information can be provided by sensors. However, there are multiple
types of signals that cannot be directly measured at the plant or there is a need in special sensors,
which can greatly increase the cost of the entire control system. In such cases, application of observers
is justified.

It is well known that observers’ efficiency is influenced both by the error between the real and
presumed initial conditions of systems. Concurrently, the real-time system requires convergence of the
observer states to the original system state in a fixed (defined a priori) time [1]. Thus, convergence
time of multiple estimation approaches are investigated and evaluated in this article. Huangfu et al. [2]
compares the super-twisting sliding mode observer (STSMO) with the adaptive extended Kalman filter
(AEKF); as this study indicated, the STSMO has a faster convergence speed when real values deviates
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from initial states. However, the convergence of the STSMO is provided by the proper tuning procedure
after many rounds of experiments. In the article written by Guo and Zhao [3], the convergence of various
nonlinear extended state observers is proved for applications in nonlinear systems but these observers
are not compared with the widespread classical estimation algorithms.

Insufficient convergence speeds of observers can negatively influence the observation process in
real-time applications, including vehicle dynamics and terrain mobility control. At that time, in order
to estimate a fast dynamics of tire-terrain interrelation, the observer should have the convergence
rate in several times faster than considered plant has [4]. In an article by Bogdanski and Best [5], the
UKF, EKF and PF are used for the identification of tire and vehicle parameters; results obtained in the
article testify that the PF’s convergence is slow, hence, this observer is recommended for simple models
and systems. Presently, in the scientific literature there is no common approach to the application of
different observes with unknown initial conditions to ground vehicles. This article aims to study this
technical problem. The next section briefly describes the estimation algorithms, which were then
simulated for the states estimation of an open-link locomotion module. The main outcomes of this
article are modification of well-known classical algorithms that increase the convergence rate and reduce
computational costs. Firstly, the mixed Gaussian probability function is introduced in particle filter
PF* as initial distribution of particles to increase the convergence rate. The mixture distribution is
presented by a mixture probability density function that includes three components which reflect the
three more probable system states. Secondly, in contrast to the usual fuzzy-Luenberger observer which
combines several linear observers switched by fuzzy logic, it is proposed to reduce computational costs
by using one observer with nonlinear system model and observer‘ gain calculated basing on Takagi-
Sugeno model.

2. State observers

State observers are designed using mathematical models of physical plants, and the accuracy to esti-
mate a plant’s states significantly depends on the accuracy of its model. Therefore, it is important
to build a more detailed mathematical model to adequately describe the plant. However, high fidelity
mathematical model may increase the computational time needed to estimate the plant’s states. To
satisfy requirements for the real-time operation, the model can be linearized and, thus, the compu-
tational time can be reduced. Therefore, the applicability of various observers for both linear and
nonlinear models is also studied in this article.

2.1. State observers for linear plant model

Kalman filter. The Kalman Filter (KF) is one of the most widespread techniques to estimate and
identify unknown parameters that has been in use since 1960 [6]. The KF allows for estimating an
unmeasured state vector with a process noise by using a plant model and measuring available signals
that may contain the measurement noise. The diagram of the KF algorithm is given in Fig. 1a. The
basic element of the algorithm is the Kalman feedback gain, Kk, which determines a more trustable
data: either the propagation or the measurement data. If the value of the Kalman gain is high, the
observer relies on the measurements. Otherwise, the observer relies on the propagation data that come
from the model.

Luenberger observer. The Luenberger observer was introduced in 1964 [7] for the state estimation of
linear systems. The LO algorithm can be described by a diagram in Fig. 1b. Here, Lk is the observer
gain that should be chosen in a way to minimize the observation error, ek, which is the error between
the real system states and the estimated states. In order to satisfy the minimization of ek at least in
a steady state, the Lk should be determined with a condition that the real parts of the eigenvalues of
(Ak − LkCk) are negative. For this purpose, the pole-placement method can be used.
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Fig. 1. Diagram of (a) a discrete linear Kalman filter, (b) a discrete linear Luenberger observer (z−1 is a time
delay). Here Xk−1 is the state vector, Ak is the value of the system matrix at time tk, Bk is the value of the
input matrix, Uk is the vector of inputs, Yk is the vector of outputs, Ck is the value of the measurement matrix.

A fuzzy-Luenberger observer for linear systems. The traditional LO utilizes one gain Lk that should
converge the estimation error to zero. The error convergence speed can be made faster by tuning Lk to
its higher value. However, it makes the observer more sensitive to various noises. Thus, the main idea
of a fuzzy-Luenberger approach is to design an observer with several observer matrices, which are tuned
on different dynamics of the estimation error. The gains are combined in the algorithm depending on
the error, which is the difference between the estimated output, Ŷk, and the measurements, Yk. For
practicality of such tuning, the error range can be divided into many sub-regions with the membership
functions that define instant error values in each sub-regions. However, a large amount of sub-regions
complicates the algorithm and cannot really improve its accuracy. In this study, three membership
functions were used (see Fig. 2). Thus, the error can be characterised as ‘Small’, ‘Medium’, and ‘Large’.
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Fig. 2. The membership functions.

When the error is ‘Small’, the observer gain
takes small values to make the observer more
robust to noises and to avoid the instability at
the state mode. The observers gain values in-
crease as the error value changes from ‘Medium’

to ‘Small’. When the output error of the system is ‘Large,’ and values of the Luenberger matrix are
high, the output of the observer may diverge from real data. To avoid such divergence and reduce the
output error of the system’s signal, the value of the matrix Lk is lowered as compared to its value in the
case of the ‘Medium’ error. The fuzzy-LO works according to the diagram of the LO (see Fig. 1b), but
in contrast to LO, the fuzzy-LO gain is calculated as the Takagi–Sugeno (T-S) Fuzzy Model output:

Lk =
υ1Ls,m,h + υ2Ls,m,h + . . .+ υNLs,m,h∑

j υj
. (1)

Here, υj is the membership function for the fuzzy set of the j-rule, j = 1, 2, . . ., N , N is a number
of the rules N = M2, M is the number of measurements (i.e., sensors); Ls,m,h is the observer gain
denoted as s, m, h for each sub-regions. In a case of a single measurement, the value of υj is equal to
the membership function, µi.
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x̂ik1
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x̂ik
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Fig. 3. Visualisation of the Particle Filter algorithm.

Particle filter. The Particle Filter (PF) is one of
the Monte–Carlo sequential methods that was in-
troduced by Gordon et al. [8] as a Bayesian boot-
strap filter for nonlinear and non-Gaussian sys-
tems. The filter is easily adopted to linear system
as well. This technique can be applied to Markov
system models, which rely on the Bayes rule, i.e.,
the estimation problem is considered as search for
a probability density function that can be approx-
imated by a large number of weighted particles.
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A graphical representation of the Particle Filter algorithm is shown in Fig. 3. Here, the first line
from the top consists of an initial set of particles distributed according to the initial probability den-
sity function. The second set of the particles is determined by distributing the initial set through the
plant model, which can be described by a chosen probability density function p(xjk|x̂

j
k−1). The next

step is to weigh the particles in accordance with the probability density function of the measurement
distribution, p(Yk|xjk). The last line in Fig. 3 includes a new generation of the particles, x̂jk, obtained
after applying a resampling algorithm, which duplicates particles with higher weights.
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Fig. 4. Diagram of the probability density func-
tions (PDF) for the initial particles distribution,
which build mixture probability density function.

Particle filter with a mixture distribution model.
The initial set of the particles is commonly dis-
tributed according to the Gaussian distribution. In
this article, it is proposed to choose a mixture prob-
ability density for initial distribution as shown in
Fig. 4. The results for the PF with this initial mix-
ture distribution are denoted as the PF*. The mix-
ture distribution consists of three components with
the three means and variations which are chosen to
represent the three most likely points in which the
system states can be: minimal values, maximum values and difference between maximum and mini-
mum values of the system states.

2.2. State observers for a non-linear plant model

Extended Kalman filter and Unscented Kalman filter. The traditional algorithm of the KF was
modified to make it applicable to nonlinear plant models. The main idea behind the EKF and the
UKF filters is similar to the KF. For the gain calculation, different linearization techniques are usually
used. In the EKF applications, nonlinear models are linearized by using the Taylor series. In order to
overcome the EKF drawback related to Jacobian matrix calculation, which requires the differentiability
of the nonlinear system and can cause a substantial estimation error due to the linearization of the
system, the UKF was proposed by Julier et al. [9] using an unscented transformation to approximate
a nonlinear system. The unscented transformation is a numerical high-order approximation technique
that approximates nonlinearities using a minimal set of deterministically selected sample points known
as sigma-points.

A fuzzy-Luenberger observer for non-linear models. For a nonlinear system, the extended LO can be
designed, however, this observer requires to calculate Lie derivatives, which complicates the algorithm.
Therefore, in order to avoid the calculation of Lie derivatives, the Fuzzy–Luenberger observer was
proposed for nonlinear systems. This observer combines several linear LOs, which are synthesized at
certain points of the linearized nonlinear system by Taylor series; a fuzzy logic switcher selects between
the LOs depending on the location of the states. The fuzzification is based on the states or the inputs,
which are components of nonlinearity factors. Unlike the conventional fuzzy-LO, in this article, it is
proposed to calculate only an observer gain using fuzzy logic. Thus, the observer equations can be
simplified and written down as follows

X̂k = f(X̂k−1, Uk) + Lk(Yk−1 − Ŷk−1)

Ŷk = h(X̂k, Uk)

Lk =
β1L1 + β2L2 + . . .+ βKLK∑

l βl

(2)

here, βl is the membership function for the fuzzy set of l rule, l = 1, 2, . . .,K and K is the number of
rules K = S, S is the number of the linearized models; Ll is the observer gain for the l-th linear model.
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In case of a single fuzzy input (input that determines in which region of the linear model the states
are located), the βl is equal to the membership function µi. Gain Ll for l-th linear model is defined
by (2) similar to the Fuzzy–Luenberger linear observer.

Particle filter for nonlinear models. The PF and PF* for a non-linear model is the same as for a
linear model, however the probability density functions of states and measurements distributions are
selected based on a nonlinear behaviour of the system.

3. Technical application

In order to compare the above-considered observers, a mathematical model of an open-link locomotion
module of an off-road vehicle is introduced below. Fig. 5 shows a layout of the module that comprises
several vehicle sub-systems to build one corner of the vehicle. In this study, only normal and longitu-
dinal dynamics of the module is analysed; steering and curvilinear movements are out of the scope of
this article. The results presented in this article will be also valid for application other than the one
considered as an example in this article.

3.1. Mathematical model of plant under investigation

Fig. 5. Diagram of the open-link loco-
motion module.

The driveline of the module includes a DC electric motor and
a reduction gear set that transmits rotational motion from the
motor to the wheel (Fig. 5). The mechanical components of
the driveline are dynamically elastic and, thus, the rotational
dynamics of the driveline should include elastic and damping
properties of its mechanical components; an equivalent two-
mass rotational system is considered in this study for this pur-
pose [10]. The system includes the mass of the wheel with the
rotational inertia of Jw and an equivalent inertia Jeq that com-
prises the rotational mass of the motor rotor and, in addition,
the rotational mass of the gear set and connecting shafts, which
are reduced to the shaft of the rotor. The elastic and damping

properties of the shafts are described by the equivalent torsional stiffness, keq, and the equivalent tor-
sional damping, ceq, that are computed by reducing the stiffness and damping of the gears and shafts
to the rotor shaft using the velocity ratio i. The rotational dynamics can be written in a state space
form as follow [11]: 




dim
dt

=
1

La

(
ukbat
umax

−Raim − kemfωm

)
,

dωm
dt

=
1

Jeq

[
ktim − Ts − ceq (ωm − iωw)− Tfm

]
,

dTs
dt

= keq (ωm − iωw) ,

dωw
dt

=
1

Jw
[iTs + iceq (ωm − iωw)− Twl − Tfw] .

(3)

Here, the state vector X1 includes the electric current, im, the angular velocity of the e-motor, ωm
the internal elastic-damping torque, Ts, the angular velocity of the wheel, ωw; the input vector Uc1
includes only one element of the control voltage u; the vector of disturbances includes the load torque
Twl. Additionally, the model is characterized by the following parameters: the armature electric
resistance, Ra, the armature inductance, La, the e-motor constant, kt, the back EMF constant, kemf ,
the maximum voltage output of the Pulse Width Modulation battery, kbat, and the maximum control
voltage, umax.
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Nonlinear mechanical friction torque Tfm, which sufficient influence on e-motor dynamics is con-
sidered in [12,13], is always present in the e-motor and gear bearings and a mechanical friction torque
Tfw in the wheel bearings:

Tfm = α0m sign (ωm) + α1m exp (−α2m |ωm|) sign (ωm) , (4)

Tfw = α0w sign (ωw) + α1w exp (−α2w |ωw|) sign (ωw) . (5)

The normal dynamics of the locomotion module is based on the sprung-unsprung mass model




dRz
dt

= −Wwθn sin θn + ktg (żr − żu) + ctg (z̈r − z̈u) ,

z̈s =
ks
ms

(zu − zs) +
cs
ms

(żu − żs) ,

z̈u =
ktg
mu

(zr − zu) +
ctg
mu

(żr − żu)−
ks
mu

(zu − zs)−
cs
mu

(żu − żs) .

(6)

Here, Rz is the tire dynamic normal reaction θn is the slope of the surface of motion, Ww is the static
load on the wheel caused by the sprung mass and the unsprung mass, ktg is the tire-soil normal stiffness,
ctg is the tire-soil damping factor, zs and zu are the displacements of the sprung and unsprung masses,
ms and mu; zr is the height of the terrain profile, ks and cs are the reduced stiffness and damping of
the suspension respectively. The tire dynamic normal reaction and the elastic torque are core variables
in the wheel mobility assessment. Thus, the observers designed in this article use the mathematical
model given by (3)–(6).

The linear model of the module can be obtained from (3)–(6) by neglecting the nonlinear mechanical
friction torques in (3) and linearizing (6) around the steady state. Using the Euler discretized equation,
the state-space model was transformed in a discrete form that was run in computer simulations.

3.2. Design of observers

An observer of the tire normal reaction and an elastic torque observer were designed by combining the
two observers in a cascade scheme that was integrated with the mathematical model of the locomotion
module (illustrated in Fig. 6). The proposed cascade-based approach makes the tuning procedure of
the observers simple and, thus, the observability problem can be omitted.
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Fig. 6. Diagram of the locomotion module model with the feedback controller and the observer model.
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The rotational and normal dynamics of the locomotion module are coupled due to the impact of
the tire normal reaction on the tire rolling resistance and the traction force. Moreover, the wheel
rotational inertia varies due to the changes of the tire rolling radius caused by dynamic changes of
the tire normal reaction. The feedback controller in Fig. 6 was designed by using the pole placement
method to satisfy a reference velocity profile of the locomotion module [10].

For the observer design, the following state vectors, inputs, outputs and variables, which are mea-
sured by virtual sensors, are further introduced using a state-space representation form as follows

X̂1 = [im, ωm, Ts, ωw]
T,

X̂2 = [zs, żs, zu, żu, Rz]
T,

(7)

Uc1 = [u], Ud2 =
[
zr, z̈r, z̈u, θn, θ̇n

]
, (8)

Z1 = [im, ωw]
T, Z2 = zr. (9)

It is assumed that the virtual sensors to measure the components of the vectors, Z1, Z2, have the
ideal transfer functions of unity. According to the chosen sensor signals in (9) and the vectors of the
estimated states in (7), the observation models Ŷ1 and Ŷ2 (see Fig. 6) can be written as follows:





Ŷ1 = h1(X̂1) = [im ωw]
T,

Ŷ2 = h2(X̂2, U2) =
1

ktg

(
Rz −Ww cos θn + ktgzu − ctg (żr − żu)

)
.

(10)

A white Gaussian noise was utilized in this study to model other possible disturbances, which
cannot be included in the mathematical model of the module due to their unknown nature but can
influence dynamics of the module and signals of the sensors. It is should be noted that any preceding
filter for sensor signals was not used.

3.3. Tuning of observers

Load torque Twl is an unknown stochastic disturbance that influences the rotational dynamics as shown
in Fig. 6. For the KF, EKF and UKF tuning, the influence of the stochastic load torque on the wheel
angular velocity is taken into account by the diagonal element in the process noise covariance matrix,
which introduces the wheel velocity variation. The diagonal element is tuned by assigning a higher
value than the values of other elements of the matrix. The initial conditions of the posterior covariance
matrix are assigned as high values to increase the degree of the convergence of estimate states to real
states.

The number of particles of the PF should be selected in a way that allows for decreasing the
computational time, but keeping up an appropriate estimation accuracy. Based on analysis that was
made in previous paper [11], the number of particles of the PF that satisfies to such requirements is
accepted as 250. The resampling method from [14] was used for replacing one set of particles and their
weights with another set.

The Luenberger observer was tuned using the pole-placement method to make the observer response
faster than the response of the closed-loop system in order to reduce the effect of the observer on the
system behaviour. The fuzzy–Luenberger observer for the linear model was tuned similarly to the
conventional LO considering the points mentioned in Section 2.1. The fuzzy–Luenberger observer
for the nonlinear model was tuned according to the recommendations given in Section 2.1 and 2.2.
The fuzzifer inputs are the rotational speeds of the wheel and the motor. The Luenberger observers
were tuned in case of continuos model. The observers were discretised by using the Euler discretized
equation.
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4. Results and discussions

In order to compare the efficiency of the observation algorithms the time of convergence was studied
under different values of the initial divergence of estimated states. The convergence time was defined
as the time that is required for the observer to reach 5% estimation error zone and remain there. The
initial divergence of estimated state, δ, was defined as a percentage of a possible maximum value of the
state; thus, the initial divergence ranged from zero to 100%. Fig. 7 through 12 illustrate computational
results of the above-selected criteria to estimate the designed observers. Additionally, Fig. 13 show the
influence of the observers’ outputs on the system output (i.e., the wheel velocity).

4.1. State observers for linear model

The compassion between the PF* with the initial mixture probability density function and the PF
with an initial Gaussian distribution of particles is given in Fig. 7. The PF* shows a faster convergence
rate in contrast to PF. Thus, the PF* will be considered herein.

, %

0

0.1

0.2

ti
m

e
,s

e
c

PF

PF*

0 10 20 30 40 50 60 70 80 90 100

a

0

1

PF

PF*

, %

ti
m

e
,s

e
c

0 10 20 30 40 50 60 70 80 90 100

b

Fig. 7. The time of a convergence of (a) estimated elastic torque and (b) estimated
normal reaction by the PF with Gaussian initial distribution and the PF* with the mixture

probability density function to 5% estimation error zone.
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Fig. 8. The time of convergence of (a) elastic torque and (b) normal reaction estimated
by linear observers to the zone of five-percentage error.
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The convergence time of the observers for the linear model of the module is given in the Fig. 8. It
can be concluded that the observers provide different values of the time convergence to observe the
elastic torque and the tire normal reaction. As seen, the PF* with the mixture probability density
function gives the best convergence results. The KF gives a slightly lower convergence rate than the
PF* but it is still faster than the LO and the fuzzy-LO. The fuzzy-LO provide a smaller convergence
time as compared to the KF at the initial divergence of 40%. However, in case of the normal reaction
estimation, the fuzzy-LO does not show such gainful behavior (see Fig. 8b) because the tuning of the
membership functions of the two observers, which are combined in the cascade scheme, is different. In
another words, the different tuning of the membership functions, different defuzzification algorithms
and fuzzy rule set can provides different convergence rate of the observer. This tuning procedure is
out of the scope of this paper. The fuzzy logic was tuned to get as possible good results after short
tuning procedure using a trial-error method.
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Fig. 9. Estimation of (a) elastic torque and (b) normal reaction by the linear observers.

Fig. 9 presents the estimation results of the elastic torque and the tire normal reaction in the time
domain. As is seen, the PF* gives the fastest convergence to the actual values. The deviation from
the actual values that are seen for fuzzy-LO in Fig. 9 is not much bigger than the deviation computed
for the conventional LO. Such dynamics of the fuzzy-LO comes from the properties of fuzzy logics.
For example, Fig. 10a presents the fuzzy-LO estimation dynamics obtained by combining dynamics of
separate classical LOs with three different gains. The proposed fuzzy-LO gives a better convergence
time and a lower estimation error in steady states than the classical LO as seen from Fig. 10b, which
presents the estimation error for the elastic torque.

4.2. State observers for non-linear model

Fig. 11 to Fig. 12 represent the results of states estimation for the nonlinear model of the open-link
locomotion module. The EKF and the UKF give similar results for the estimation of both elastic
torque and normal reaction. The PF* shows the best results at all values of initial divergences. The
LO has less convergence in contrast to others. The disadvantage of fuzzy-LO is a big instant divergence
of the estimated value from the actual value as shown in Figs. 12a, 12b.

Comparing the results for the linear and nonlinear models, it can be concluded that the three
observers that are based on the Kalman filter have had the same convergence properties when the
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Fig. 10. (a) Estimation error for the Luenberger observer and Fuzzy–Luenberger
observer; (b) Estimated normal reaction by LOs and Fuzzy-LO.
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Fig. 11. The time of convergence of (a) elastic torque and (b) normal reaction
estimated by the non-linear observers to the zone of the 5% error.

initial state differs from the real state. The PF* gives the best results for both the linear and nonlinear
models. For closed-loop systems, the speed of the convergence influences the dynamics of the system
outputs, as shown in Fig. 13. By comparing data in Fig. 13 with the results in Fig. 7 and Fig. 11, it
becomes obvious that the faster the convergence of the estimated value of the elastic torque, the faster
the system output returns to the desired dynamics. The desired dynamics of the system is the dynamics
that should be provided by the full state feedback controller when all system states are measured by
sensors. It is worth noting that the fuzzy-LO leads to a worse dynamics of the controlled output than
the other observers as in shown in Fig. 13.
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Fig. 12. Estimation of (a) elastic torque and (b) normal reaction by the
non-linear observers.
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Fig. 13. System output (the wheel velocity) provided by different observers
for (a) the linear model and (b) the non-linear model.
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5. Conclusions

It is often difficult to determine at which point of state space a dynamic system is located, especially
if the system is characterized by fast dynamics. In this case, the incorrect initial conditions cause the
incorrect real-time modeling of physical objects by using the math model. In particular, this relates
to the model-based state observers that are sensitive to inaccurate initial conditions. Therefore, the
studies conducted in this article provide guidance for choosing the method of state observer with the
highest convergence rate.

The observers designed for the linear and nonlinear models of the locomotion module were simulated
and compared when the initial state values were assigned different to the actual values. The best
convergence results were obtained for the PF* when the observer was applied for either the linear and
nonlinear models of the module under different values of the divergence between the real and presumed
initial conditions. For divergence of 100%, the PF* is faster than KF by 0.0120 sec, faster than EKF
by 0.0120 sec, faster than UKF by 0.0120 sec, faster than LO by 0.0290 sec and faster the fuzzy-LO by
0.0240 sec. The KF, EKF, UKF have demonstrated a slower convergence than the PF* but they have
faster convergence than the LO and the fuzzy-LO. The fuzzy-LO with the given degrees of freedom
of the fuzzy switcher converges faster than the LO, however, it has a more complex tuning procedure
and leads to a worse dynamics of the controlled output than the output achieved with the use of the
other observers.
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Точнiсть спостерiгачiв координат вектора стану за неточних
початкових умов
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Швидка збiжнiсть спостерiгача забезпечує можливiсть вiдстежувати стани системи
для довiльного розузгодження мiж реальними та заданими початковими умовами.
Така властивiсть спостерiгача особливо необхiдна, якщо система має швидку дина-
мiку, а її стани швидко змiнюються. Отже, час збiжностi є одним iз головних критерiїв
вибору спостерiгачiв як для лiнiйних, так i для нелiнiйних систем.
У цiй роботi подано порiвняльний аналiз спостерiгачiв для лiнiйних i нелiнiйних сис-
тем з погляду часу збiжностi. На основi аналiзу лiтературних джерел для цього до-
слiдження вибранi такi спостерiгачi: фiльтр Калмана (KF), розширений фiльтр Кал-
мана (EKF), σ-точковий фiльтр Калмана (UKF), фiльтр частинок (PF), спостерiгач
Люенбергера (LO) та нечiткий спостерiгач Люенбергера (Fuzzy-LО). Перелiчених спо-
стерiгачiв дослiджували на нелiнiйнiй математичнiй моделi модуля руху, який описує
рух однiєї четвертої частини електромобiля в умовах стохастичного рельєфу. З метою
оцiнки ефективностi лiнiйних спостерiгачiв математичну модель спростили до лiнiй-
ної, нехтуючи усiма нелiнiйностями. Математичним моделюванням було встановле-
но, що Fuzzy-LO з адаптивним налаштуванням коефiцiєнтiв матрицi спостерiгача дає
кращi результати, нiж традицiйний LO, особливо в усталених режимах. PF з почат-
ковим гауссiвським розподiлом точок простору стану системи забезпечує повiльнiшу
швидкодiю спостерiгача, нiж KF, EKF та UKF. З метою пiдвищення швидкодiї PF, у
роботi запропоновано новий алгоритм PF*, в якому використано сумiш гауссiвських
розподiлiв для початкової генерацiї точок. Покращений алгоритм фiльтра частинок
PF* забезпечив найшвидшу динамiку збiжностi оцiнених станiв динамiчної системи
до значень станiв реальної системи порiвняно iз роглянутими спостерiгачами.

Ключовi слова: алгоритми оцiнки, спостерiгачi простору станiв, модель в сис-
темi простору станiв, нечiтка логiка, сумiш розподiлiв.

2000 MSC: 93B07

УДК: 681.516.4

Mathematical Modeling and Computing, Vol. 6, No. 2, pp. 320–332 (2019)


