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The article deals with constructing and implementing mathematical models of non-
isothermal moisture transfer during drying of anisotropic capillary-porous materials, in
particular wood, taking into account the movement of the evaporation zone for non-steady
drying schedules, as well as to the development of effective analytical and numerical meth-
ods for their implementation. An analytical-numerical method for the determination of
non-isothermal moisture transfer under non-steady schedules of the drying process has
been developed, taking into account the dynamics of the phase transition boundary change.
Calculation relationships are established for determining the phase transition temperature
taking into account transport gradients and time for which the relative saturation reaches
the boundaries of the phase transition.
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1. Introduction

The intensification of the technology of drying colloidal capillary-porous materials leads to further
development of mathematical modeling of heat-and-mass transfer processes, phase transformations
taking into account the deepening of the moisture evaporation zone, which would adequately describe
the laws of moisture removing in the materials being dried. The processes of drying moist materials,
in particular of natural origin, are characterized by significant energy consumption. This is due to the
high specific heat of evaporation of moisture in large quantities. The drying process of capillary-porous
materials is accompanied by a deepening of the zone of moisture evaporation inside the material. The
presence of a moving boundary of phase transformations at the interface between phases with differ-
ent thermophysical and mechanical characteristics considerably complicates the mathematical models
of heat-and-mass transfer processes during the drying of capillaryporous materials. The simulation
of heat-and-mass transfer with phase transitions in the drying process is reduced to solving Stefan
problems which are the most complicated even for minor changes in the density of the material in
the evaporation zone. Therefore, there is an objective need to construct mathematical models of
non-isothermal moisture transfer and study the influence of thermodiffusion on mass transfer in the
drying of capillary-porous materials, taking into account the motion of the evaporation zone for non-
stationary drying schedules, as well as to develop effective analytical and numerical methods for their
implementation. The vast majority of drying processes of capillary-porous materials, in particular
wood, is accompanied by a deepening of the zone of moisture evaporation inside the material [1–4].
The boundary of the phase transition itself depends on time, and its identification is carried out in
the process of finding a solution, which determines the nonlinearity of the mathematical models under
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study. From a mathematical point of view, the boundary value problems of heat conduction in the
region with a moving boundary (the so-called generalized boundary value problems) are fundamen-
tally different from the classical problems of heat conduction. The application of classical methods of
separation of variable, integral Fourier transforms is problematic here. This is due to the fact that it is
not possible to match the solution of the heat conduction equation with the motion of the boundary in
the heat transfer region. The use of classical methods was successful for the problems when the law of
the boundary motion is predetermined [5]. Analytical studies were carried out for limited cases of the
well-known law of boundary motion, for example, linear or parabolic. For this purpose, the methods of
thermal potentials, contour integration, power series, “instantaneous” Greenberg eigenfunctions were
used [6]. Obtaining analytical solutions of a generalized boundary-value problem in a region with a
moving phase transition boundary by arbitrary law was reduced to integro-differential equations [7].
Sufficiently effective method for solving the problems of heating and kinetics of drying moist mate-
rials is the method of differential series [8]. For numerical implementations of mathematical models
of heat and mass transfer with phase transitions, two main approaches are used. The first approach
uses methods with the phase boundary detection at each time span [9]. For the second approach,
end-to-end calculation methods are used, in particular, using the generalized formulation of the clas-
sical Stefan problem [10, 11]. To solve multidimensional problems of heat-and-mass transfer with a
phase transition, the use of numerical methods with explicit separation of the phase boundary in many
cases is accompanied by algorithmic and computational difficulties [12]. In this case, the methods of
end-to-end calculation have become widespread. To do this, a generalized formulation of the classical
Stefan problem is used. Based on the methods of solving quasilinear problems of heat conduction, the
corresponding numerical methods for solving the Stefan problem are constructed [13]. Such problems
also use the enthalpy formulation of Stefan problem and economic difference schemes [14]. In recent
years, the control volume approach [15] for solving these problems has become the most widespread.
Using this method (integral-interpolation method), a discrete formulation of Stefan’s problem was
obtained. It is reduced, depending on the dimension of the problem, to the problem of finding the
solution to a system of linear algebraic equations with a three-, five-, or seven-diagonal matrix. The
solution of such systems is obtained using the sweep method (for one-dimensional case) and the method
of alternating directions (for two- and three-dimensional cases). The finite-difference approximations
for the implementation of mathematical models, which provides accounting for the eridarity and self-
organization of the material, were used in the works [23, 26]. Non-integer integro-differentiation was
used in [21, 22] to model systems characterized by “memory” effects, structural heterogeneity, spatial
non-locality, deterministic chaos, and self-organization. Therefore, the paper is aimed at studying
mathematical models of non-isothermal moisture transfer and establishing patterns of thermodiffusion
influence on mass transfer during drying of anisotropic capillary-porous materials, taking into account
the movement of the evaporation zone for non-stationary drying schedules, as well as developing effec-
tive analytical and numerical methods for implementing the models. Such mathematical models and
methods of analysis will make it possible to develop new and improve existing technological processes
for hydroscopic treatment of organic materials, in particular wood.

2. Mathematical modeling of heat-and-mass transfer during drying of capillary-porous
bodies, taking into account the phase transition boundary under unsteady conditions

A mathematical model of heat-and-mass transfer in the drying process, taking into account the phase
transition boundary for a capillary-porous plate with a thickness of 2L (−L 6 z 6 L) is constructed,
z is coordinate. The plate is attributed to the Cartesian reference system. During the drying process,
the plate is in contact with a gaseous environment, which is a mixture of dry air and vapor. It is
assumed that the thermal conditions on the surfaces of the plate are the same and the drying process
is symmetric with respect to the middle surface. During the drying process, a dried zone and a zone
saturated with moisture appear in the plate. The contact boundary Lm of these zones extends into
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the depth of the porous plate. The mathematical model of the process of heat-and-mass transfer in
a plate during drying, taking into account changes of the phase transition boundary Lm over time is
constructed as follows. The heat transfer equation in the region 0 6 Lm 6 L takes the form:

(
Π(cνρν + cαρα) + (1−Π) csρs

)∂T (z, τ)
∂τ

=
∂

∂z

(
λc
∂T (z, τ)

∂z

)
+ F, (1)

where λc is coefficient of heat conduction, cν , cα, cs are specific heat capacity of vapor, air, wood
carcass, are density values of the same moist plate components, F is internal source; Π is material
porosity T = T (z, τ) is temperature, τ is time.

The effect of the porous structure of the wood plate is taken into account by introducing effective
binary interaction coefficients into the Stefan–Maxwell equation. The Stefan–Maxwell equation system
is complemented by the Darcy filter equation with effective viscosity µg and permeability Kg charac-
teristics and the ideal gas equation. Then we write down the Stefan–Maxwell equation with respect to
functions ρα, ρν :

ρα
Kg

µg
∇
(
ρα
Mα

+
ρν
Mν

)
RT +D′∇ρα = 0, (2)

∇
(
ρν
Kg

µg
∇
(
ρα
Mα

+
ρν
Mν

)
RT +D′∇ρν

)
= 0, (3)

where Kg is the permeability coefficient depending on the radius of the capillaries, µg is the dynamic
viscosity coefficient of gas.

The recorded nonlinear system of differential equations (2), (3) is valid in the drying region which is
limited by the boundary surface and the surface that is determined by the coordinate Lm. For further
studies, it is assumed that on a moving surface z = Lm the vapor density is equal to the density of the
saturated vapor, i.e. ρν = ρνn. The conditions on the boundary surfaces z = L are written as follows:

ρν
K

µg

∂P

∂z
+D′∂ρν

∂z
= −j, ρα = ρα0, (4)

where j = β̃(ρν − ρν0); β̃ is the mass transfer coefficient. As the mass transfer problem is further
solved in a quasi-stationary formulation, and Tm is the unknown phase transition temperature which
is dependent on the saturation pressure, we shall assume Tm = f(Pn), where Pn is the saturated vapor
pressure.

The equation of energy balance at the moving boundary of phase transitions z = Lm is written in
the form:

−λc
∂T

∂z
|z=Lm+0 = rk

Kg

µg

∂Pg
∂z
|z=Lm+0, T = Tm. (5)

The boundary conditions at the boundary z = L express the heat transfer between the surfaces of
the plate and the drying agent according to Newton’s

λc

∂T

∂z
+ α̃(T − Tα(τ)) = 0, (6)

where α̃ is the coefficient of heat exchange; Tα(τ) is time-varying temperature of the drying agent. To
model time-varying multi-stage drying schedules [16, 24], the function Tα(τ) can be represented as a
polynomial in exponential functions

Tα = T1 + (T2 − T1)
N∑

i=1

(αie
−biτ ) = α0 +

N∑

i=1

(αie
−biτ ). (7)

Here, for convenience, it is redesignated:

α0 = T1, αi = (T2 − T1) ai, D′ = D1
ij = (1/D∞

i + (1− αijzi) /Dij)
−1 , (8)

D1
να = D1

αν = D′ is effective diffusion coefficient; Dνα = Dαν = Dij is effective binary diffusion
coefficient in macropores; the second term in the expression D∞

ν = D∞ takes into account the effect
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of the Knudsen flow of vapor in the micropores. The parameters αi, bi,
(
i = 1, N

)
are determined

by approximating a specific temperature regime of the drying agent. The parameter N can specify a
predetermined number of required steps of the drying agent regime parameters.

At the initial moment, the temperature of the plate satisfies the condition

T (t = 0) = f(z), (9)

where f(z) are temperature functions of periods of constant and decreasing drying rates.
The speed of movement of the phase transition interface zm = Lm/L is determined from the

conditions of mass balance, where ρL is the density of water

dzm
dτ

= −j (zm)
ΠρLL

. (10)

Equations (1)–(10) make up a nonlinear mathematical model that describes the process of con-
vective drying of a capillary-porous body (plate) taking into account the moving boundary of phase
transitions.

An analytical-numerical method has been developed for the implementation of a mathematical
model for the non-stationary regime of a drying agent which varies according to the exponential law (7).
To do this, we turn to the dimensionless coordinate system, using substitutions τ = αT t/L

2, z =
z/L, zm = Lm/L, where zm is the dimensionless coordinate of the phase transition boundary.

The analytical solution to the model is presented in the form

T = χ0 +

N∑

i=1

χie
−biτ + T ∗, (11)

where T1 = χ0+
∑N

i=1 χie
−biτ is a solution of the heat conduction equation that satisfies the boundary

conditions of the problem but does not satisfy the initial condition. But T ∗ is a solution to the problem
of heat conduction which satisfies the initial condition and homogeneous boundary conditions. The
dominant function of a mathematical model with homogeneous boundary conditions is constructed:

G(z̄, z̄m, ξ, τ) =
∞∑

n=1

2HT

sinµn(z−zm)
µn

(cosµn(1− ξ) +HT
sinµn(1−ξ)

µn
)e−µ

2
nτ

cosµn(1− zm)((µ2n +H2
T )(1 − zm) +HT )

, (12)

where µg are the roots of the transcendental equation tg µg(1 − zm) = −µg/H. Using the boundary
conditions, formulas were obtained to determine χ0 and χi, (i = 1, n).

To find T ∗(z, zm, τ) we use function [12], which satisfies the conditions Tm(zm, τ) = 0, u(1, τ) = 0.
If the initial temperature distribution is uniform, i.e. T (z, 0) = T0, then it is obtained

T ∗
0 (z, zm) =

∞∑

n=1

sinµn(z − zm)
µn

2T0HT

∆n

(
sinµn(1− zm)

µn
− HT

µ2n
(cosµn(1− zm)− 1)

)
, (13)

The temperature during non-steady convective drying can be written

T (z̄, τ) = χ0(z̄) +

N∑

i=1

χi(z̄)e
−biτ +

∞∑

n=1

sinµn(z̄ − z̄m)
µn

Zn(z̄m)e
−µ2nτ , (14)

where

Zn(zm) =
2T0HT

∆n

(
sinµn(1− zm)

µn
− HT

µ2n
(cosµn(1− zm)− 1)

)
+ (Zn1 − Zn2), (15)

Zn1 =
N∑

i=1

Ci

(
−cos

(√
bi(1− zm)

)

2
(√
bi − µn

) − cos
(√
bi(1− zm)

)

2(
√
bi + µn)

+
cos (µn(1− zm))
2(
√
bi − µn)

+
cos (µn(1− zm))
2(
√
bi + µn)

)
,

(16)
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Zn2 =

N∑

i=1

CiHT

µn

(
sin
(√
bi(1− zm)

)

2(
√
bi − µn)

− sin
(√
bi(1− zm)

)

2(
√
bi + µn)

− sin (µn(1− zm))
2(
√
bi − µn)

+
sin (µn(1− zm))
2(
√
bi + µn)

)
.

(17)
In this case, T ∗ = T ∗

0 + T ∗
χ satisfies the conditions T ∗(zm, zm) = T ∗(zm, 1) = 0. This formula allows

calculating the temperature at an arbitrary point of the plate at an arbitrary point in the drying time,
depending on the coordinate of the phase transition plane.

The ratio was found to determine the dimensionless vapor density, the vapor pressure at an arbitrary
point z̄ of the wood plate during the drying process [17, 20]. An equation was obtained to determine
change in relative moisture content over time and the equation of motion of the phase boundary of the
dried and moist zones

dz̄∗m
dt

=
j(z̄∗m)
ΠρLL

=
βρn
ΠρLL

(
−α1 +A1z̄

∗
m

√
A2 +A3z̄∗m +A2

1z̄
∗2
m

)
. (18)

The solution of equation (18) was obtained under the initial condition z̄∗m = 0. In the process
of convective drying, an important characteristic is the duration of drying. Based on the proposed
approach, the time is determined at which relative saturation reaches a value z̄∗m = 0. It can be
represented by a formula

2HmA1τ = ln

∣∣∣∣
2A1φ−A3

2A1

√
A2 −A3

∣∣∣∣+
1

2
(A2

3 − 4A2
1A2)

(
1

(2A1φ−A3)2
− 1

(2A1
√
φA2 −A3)2

)
. (19)

A formula was also obtained to determine the complete drying time of a wood plate, taking into account
the moving boundary of the phase transition [20, 25].

3. Mathematical modeling of the effect of thermodiffusion on the moisture-mass trans-
fer during drying of capillary-porous materials, taking into account the phase tran-
sition boundary

Mathematical modeling of the effect of thermal diffusion on the mass transfer of moisture during drying
of wood plate was carried out. The mathematical model for studying mass transfer in the dried zone
of a plate with allowance for diffusion, convective, heat fluxes is described by a system of differential
equations:

ρν
K

µg

∂2P

∂z

((
D + 1.064

√
RT/Mνε

)(∂ρν
∂z

+ δ
∂T

∂z

))
= 0, (20)

ρα
K

µg

∂2P

∂z2
+D

∂2ρα
∂z2

= 0, (21)

where ε is the coefficient of molecular flow of vapor. Here we assume that the density of air is related
to temperature directly due to the density of vapor.

The boundary conditions are as follows:

ρν
K

µg

∂P

∂z
+
(
D + 1.064ε

√
RT/Mν

)
·
(
∂ρν
∂z

+ δ
∂T

∂z

)
= −j, (22)

ρα = ρα0, z = L, ρν = ρn, j = β (ρν − ρ0) , z = Lm,

where β is the mass transfer coefficient, ρn is the density of saturated vapor at a given temperature, ρ0
is the vapor density in the environment outside the plate, ρα0 is the air density on the outer surfaces
of the plate.
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A relation is established to determine the vapor density and pressure at an arbitrary point of the
plate

ρ̄ν = −A+
√
A2 − 2A1(ρ̄ν1 − ρ̄ν0)(z̄ − z̄m)− 2Aδ′(T − Tm), (23)

P (z̄, z̄m) =
(
−A+

√
A2 − 2A1(ρ̄ν1 − ρ̄ν0)(z̄ − z̄m)− 2Aδ′(T (z̄, z̄m)− Tm)

) ρn
Mν

RT (z̄, z̄m). (24)

Further, using (23), (24) and linearized boundary conditions (22) on the surface z̄ = 1. The flow
density j and the mass of moisture lost during the drying of the plate were determined. The established
dependences made it possible to obtain an equation for determining the change in relative moisture
content over time and the equation of motion of the phase boundary in the drying process of the wood
plate under

dz̄∗m
dτ

=
j (z̄∗m)
ΠρLL

=
βz̄∗m
ΠρLL

(
−(α1 +Bz̄∗m) +

√
A2 +A3z̄∗m +A2

1z̄
∗
m − 2Aδ′(T1 − Tm)

)
. (25)

A dependence is established for determining the time at which the relative saturation in the plate
being dried reaches a value z̄∗m provided ∂ (T1 − Tm) /∂z̄∗m ≪ 1, but taking into account the thermal
gradient component

2H1A1τ = ln

∣∣∣∣
2A1φ− (A+ ρ0)

2A1

√
A2 −A3

∣∣∣∣+
1

2

(
A2

3 − 4A2
1

(
A2 − 2Aδ′ (T1 − Tm)zn=1

) )

×
(

1

(2A1φ−A3)
2 −

1
(
2A1A2

√
φ−A3

)2

)
.

Also, a formula is obtained for determining the total drying time of wood taking into account
the change of the moving boundaries of the phase transition. An analytical dependence is found to
determine the phase transition temperature taking into account the temperature gradient over the
plate thickness,
(
HT

√
A2x1 + x2

)
T 2
m +

(
x1 (1 +HTΨ)

√
A2 − x2Tmk/αmk + rkKgTmkHT

√
A2

)
Tm

+ rkKgTmkΨ(z̄m, τ)
√
A2

(
1 +HT (1− z̄m)

)
= 0. (26)

The notation is introduced here:

−λcµgαmk + rkKg = x1;

rkKg

(
A1(ρ̄ν1 − ρ̄ν0)(1 +HT (1− z̄m))αmk

)
= x2;

−rkKgTmkHT

√
A2 = x3.

The coefficients of the equation obtained are functions of the coordinate of the phase transition, the
specific temperature of vaporization, the coefficients of heat and mass transfer, the conductivity and
dynamic viscosity of the gas, the parameters of the drying schedule, the relative moisture saturation of
the surface layer and the drying agent and the temperature gradient, average carcass temperature. If
we neglect the influence of the phase transition gradient in this formula, then we obtain the following
dependence of the phase transition temperature

Tm =
rkKgTmk

(
A1(ρ̄ν1 − ρ̄ν0) (1 +HT (1− z̄m))−HT

√
A2

)

HT

√
A2(−λcµgαmk + rkKg) + rkKg (A1(ρ̄ν1 − ρ̄ν0) (1 +HT (1− z̄m))αmk)

. (27)

From this formula it follows that the phase transition temperature is a nonlinear function of the
coefficients of heat exchange and mass transfer of the material, the temperature of the drying agent,
the specific heat of vaporization, the location of the phase transition coordinate.

Mathematical Modeling and Computing, Vol. 8, No. 4, pp. 830–841 (2021)



836 Sokolovskyy Ya. I., Boretska I. B., Gayvas B. I., Kroshnyy I. M., Nechepurenko A. V.

4. Mathematical modeling of heat transfer during drying of anisotropic capillary-porous
materials taking into account the phase transition boundary

A two-dimensional mathematical model of the process of convective drying of anisotropic porous ma-
terials is constructed taking into account the motion of the phase transition boundary. Determined
is the influence of the main components and the orientation of the main axes of the heat transfer
tensor on unsteady temperature fields in a prismatic bar of rectangular cross-section {2L1, 2L2} taking
into account the motion of the boundaries of phase transitions. An analytical-numerical method is
developed and algorithms for the implementation of a nonlinear mathematical model under variable
temperature conditions of the environment are constructed. We believe that the drying conditions
along the length of the bar are the same. Therefore, we consider the problem of heat distribution and
the formation of a dried zone in its cross-section, the external contour of which in variables x1, x2 is
described by the equation

F0 =
(
x21 − L2

1

) (
x22 − L2

2

)
. (28)

In the process of heat exchange of the body with the drying agent, a dried zone is formed, extending
from the outer surface to the depth of the body. Let the dried and damp zone be separated by a
cylindrical surface, whose generators are parallel to the axis of the bar, and the closed contour of its
cross-section is their guide line. Its equation takes the form:

Fm = F0 − ε(τ), (29)

where ε(τ) is an unknown function of time.
The temperature of the porous prismatic orthotropic body in the dried zone is described by the

equation:

(
Π(Cνρν + Cαρα) + (1−Π)Csρs

)∂T
∂τ

=
∂

∂x1

(
λ11

∂T

∂x1

)

+
∂

∂x2

(
λ22

∂T

∂x2

)
+ (λ12 + λ21)

∂2T

∂x1∂x2
+ F (x1, x2, τ). (30)

Here, the indices ν, α, s denote the components of vapor, air, carcass, and Π, Cν , Cα, Cs, ρν , ρα, ρs
denote porosity, heat capacity, vapor density, air, carcass, respectively; λij are components of the heat
conduction tensor; T is temperature. On the surface of the body, there are boundary conditions of the
third kind.

The main coefficients of heat conduction are determined through the coefficients of heat conduction
of the orthotropic material

x1 = λ12x
′
1/∆

′ +
√
λ22 − λ2 · x′2/∆′′; x2 = (λ11 − λ1) · x′1/∆′ + λ21x

′
2/∆

′′; (31)

∆′ =
√

(λ11 − λ1)2 + λ212; ∆′′ =
√
(λ22 − λ2)2 + λ221.

The variables (x′1, x
′
2) coincide with the main directions of anisotropy of the heat conduction of the

plate. If we pass on to the variables ξ1 = (λ/λ1)
1/2x′1, ξ2 = (λ/λ2)

1/2x′2, then in the drying zone we
use the equation

∂T

∂τ∗
=

(
∂2T

∂ξ21
+
∂2T

∂ξ22

)
. (32)

It is important to obtain boundary conditions on the surfaces of an orthotropic prism in variables
ξ1, ξ2:

∂T

∂ξi
±Hi · (T − u (t)) = 0, (33)

where H∗
i =

√
λi/λ

l1
m1l2+m2l1

Hi, Hi = α̃i/λi, α̃i are heat exchange coefficients.

Mathematical Modeling and Computing, Vol. 8, No. 4, pp. 830–841 (2021)



Mathematical modeling of convection drying process of wood taking into account the boundary . . . 837

The contour of the cross-section of the bar in the variables ξ1, ξ2 is described by the equation

F0(ξ1, ξ2) =
(
ξ21 −∆2

1

) (
ξ21 −∆2

2

) (
ξ22 −∆2

3

) (
ξ22 −∆2

4

)
= 0. (34)

From this surface, the drying process moves inside the body. Given that the volume of the dried area
of the bar is a function of time, we present the equation of the boundary of the dried and moist areas
in the form:

Fm(ξ1, ξ2, τ) =
(
ξ21 −∆2

1

) (
ξ21 −∆2

2

) (
ξ22 −∆2

3

) (
ξ22 −∆2

4

)
− δε(τ) = 0. (35)

We introduce the following values: (T (ξ1, ξ2, τ)− Tm) / (TΠ − Tm) = η, β = ρmcmᾱ/λm = ᾱ/ᾱm,
τ∗ = τᾱ, where TΠ, Tm is the temperature at the cross-section contour of the bar and at the boundary
of the phase transition. From the condition of continuity of the heat flux between surfaces F0 and Fm,
we find the value of η:

η =
((
ξ21 −∆2

1

) (
ξ21 −∆2

2

) (
ξ22 −∆2

3

) (
ξ22 −∆2

4

)
− δε(τ)

)
/ (−δε(τ)) , δ = ∆2

1∆
2
2∆

2
3∆

2
4. (36)

The equation of the phase transition curve in the cross-section of the bar is explicitly defined:

ξ2 = ±

√√√√δ3 ±
√
δ24 +

δε(τ)(
ξ21 −∆2

1

) (
ξ21 −∆2

2

) . (37)

To devise an analytical-numerical method for implementing the mathematical model, the heat balance
equation [1,2] is adapted, taking into account the moving boundary of the phase transition, in the region
limited by the outer contour of the cross section of the bar and the contour of the phase transition
boundary:

∫∫ F0=0

Fm

dη

dτ∗
ds =

∮

F0

∂η

∂n
dl + βη

∂V

∂τ∗
, V (Fm, F0) =

∫∫ F0=0

Fm=0
ds =

∫∫

SΠ

ds−
∫∫

SΦ

ds. (38)

In order to calculate the integrals included in formula (38), the equation of the line of the phase
transition contour is explicitly obtained, as well as the boundaries of the corresponding integrals are
established. The double integrals in (38) on the surface between the closed contour Fm and the outer
contour F0 will be found as the difference between the integral over the surface of the entire cross-section
and the integral over the surface SΦ, bounded by the contour Fm.

The volume of the dried zone, referred to the unit length of the bar, which is located between the
planes F0 = 0, Fm = 0, is determined by the formulas:

V (F0, Fm) =

∫∫ F0=0

Fm=0
dx1dx2 = 4L1L2 − 4

√
λ1/λ

√
λ2/λ

∫ γ

0

((
δ3

√(
ξ21 −∆2

1

) (
ξ21 −∆2

2

)

−
√
δ24
(
ξ21 −∆2

1

) (
ξ21 −∆2

2

)
+ δε

)1/2/( (
ξ21 −∆2

1

) (
ξ21 −∆2

2

) )1/4
)
dξ1. (39)

We determine the derivative of volume by time, taking into account the time dependence of the
value ε(τ∗) and the time dependence of the upper boundary of the integral:

∂V

∂τ∗
=
√
λ1/λ

√
λ2/λ

dε

dτ
(JV + J (ε) +A (ε)) , (40)

where A = f (γ(τ∗), τ∗) dγ(τ
∗)

dτ∗ is functional dependence, JV , J(ε) are integrals. Here, the functions of
time is the integration limit:

γ =

√
δ21 +

√
δ22 + ε∆2

1∆
2
2,

τ∗ = 1/2

√
δ21 +

√
δ22 + ε∆2

1∆
2
2∆

2
1∆

2
2/2
√
δ22 + ε∆2

1∆
2
2

dε

dτ∗
. (41)
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The proposed approach based on the heat balance equation (38) with phase transition and depen-
dences (39)–(41) made it possible to obtain an equation for determining the phase transition boundary
in an orthotropic bar during drying in the form:

∂ε

∂τ∗
I |JSΦ

− JΦ| = ε (c1Jγ1 + c2Jγ2) + ε2Iβη (JV −A) . (42)

The integrals JΦ(ε), A(ε), JV (ε) along the boundary of the phase transition are determined by the
numerical method [18]. The integrals Jγ1 and Jγ2 are calculated on the boundary of a given area in the
coordinate system (ξ1, ξ2). All other values included in this equation are calculated using the physical
and thermal characteristics of a particular wood material and operating parameters of drying.

Formulas are obtained for determining the temperature at an arbitrary point of a wood bar at
an arbitrary instant of drying, depending on the coordinate of the phase transition plane, changes in
temperature and humidity of the drying agent.

5. Simulation results

Application of the developed mathematical models and applied programmatic facilities is shown for
the research of processes of heat-mass transfer of wood during drying. For numeral experiments some
thermo-physical descriptions of wood are specified. Especially, on the basis of working of experimental
data dependence of coefficient of wood hydraulic conductivity as functions from a temperature and
humidity is used [1, 19]. On the basis of mathematical models, the dependences of the temperature
change during the drying process (Fig. 1) on different values of nondimensional time F0 and changes in
the evaporation boundary are analyzed (Fig. 2) in the wood plate (ρ0 = 460 kg/m3) on various values
of temperature and moisture content of convective drying agent. Fig. 2 characterizes the change in
the boundary of the evaporation zone in the wood plate during the drying process for different values
of the temperature of the drying agent. Curve 1 corresponds to tc = 50oC, curve 2 — tc = 60oC,
curve 3 — tc = 70oC, curve 4 — tc = 80oC, curve 5 — tc = 90oC. Fig. 3 describes the distribution
of the relative concentration of the vapor pressure P/P0 for different values of the drying process at
cross-section points when changing the coordinates of the phase transition boundary are shown in
Fig. 4. The obtained numerical results indicate that the effect of the temperature component T ∗(z, τ)
under mild schedule of wood drying (when the temperature of the drying agent varies from 20oC to
40oC is relatively small, and the intensity of phase transitions depends on the difference of pressure in
the pores and in the drying agent (Fig. 4).

τ

x/l

F0 = 1.5
F0 = 1.2
F0 = 1.0
F0 = 0.7
F0 = 0.5
F0 = 0.2
F0 = 0.15
F0 = 0.1

τ , hours

ξ

tc = 60◦

tc = 70◦

tc = 80◦

tc = 85◦

tc = 90◦

Fig. 1. The change in relative temperature during the
drying of the wood plate depending on the nondimen-

sional time F0.

Fig. 2. Changing the evaporation boundary in a wood
plate during drying for different values of the ambient

temperature tc.
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P

x/l

F0 = 2.15
F0 = 1.15
F0 = 0.6
F0 = 0.5
F0 = 0.1

z̄m

z̄ = 1
z̄ = 0.75
z̄ = 0.5
z̄ = 0.25
z̄ = 0

Fig. 3. Change in vapor pressure during the drying of
the wood plate for different values of drying time.

Fig. 4. Dependence of pressure P (z, zm) at points of
cross-section of a plate when changing the coordinates

of the phase transition boundary.

An analysis of the graphical dependencies indicates that during the drying process of wood (ρ0 =
460 kg/m3) with an initial moisture content U0 = 0.6 kg/kg for the first period, intensive heating
is carried out, which leads to rapid vaporization. The temperature of the surface layers of wood
throughout the entire period is higher than in the middle layers. In the hottest layers of wood, by
the end of the first period of the drying process, their is a maximum residual pressure. This pressure
occurs for a material temperature that is lower than the saturation temperature for a given atmospheric
pressure. The second period of the drying process is characterized by a relative stabilization of the
growth of the temperature field. This is due to the absorption of a significant amount of heat in the
process of internal vaporization, which in turn causes a rapid increase in residual internal pressure.
The presence of such a pressure gradient directed into the inner layers of the wood intensifies the
process of moisture release. At the beginning of the period of constant drying rate, a combination of
the fronts of the maximum values of the internal residual pressure is observed. In the middle of this
period, its values reach their maximum magnitude, and after that their gradual decrease is observed.
An analysis of the temperature fields for the period of decreasing drying rate shows their growth in
the entire volume of the material until the temperature of the central layer is equal to the temperature
of the surface layers. Since this period is characterized by the release of bound moisture, the duration
of this period is quite long. However, the intensity of internal pressure drop is higher than in previous
periods.

6. Conclusions

A nonlinear mathematical model of non-isothermal moisture transfer during drying of capillary-porous
materials is constructed, taking into account the moving boundaries of the moisture evaporation zone.
Analytical dependences are obtained for determining the temperature, moisture content, vapor density,
vapor pressure in the wood plate at an arbitrary time of drying depending on the coordinate of the
phase transition, thermophysical characteristics of the material and the parameters of the drying agent.

An equation is obtained to determine the moving boundary between the dried and moist zones of the
wood plate. Calculation relationships are established to determine the phase transition temperature,
taking into account the transport gradients and the time for which the relative saturation reaches
the boundaries of the phase transition. The coefficients of the obtained equation are functions of
the phase transition coordinate, specific vaporization temperature, heat-and-mass transfer coefficients,
coefficients of conductivity and dynamic gas viscosity, the parameters of drying schedule, relative
saturation of the moist surface of the layer and drying medium and temperature gradient, average
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material temperature. The dependences are established for determining the total drying time, taking
into account the moving boundary of the phase transition.

A two-dimensional mathematical model of heat transfer is formulated for non-stationary schedules
of convective drying of anisotropic capillary porous materials, taking into account the moving bound-
aries of the evaporation zone. The heat balance equation is adapted, taking into account the moving
boundary of the phase transition. This made it possible to develop an analytical-numerical method
for calculating heat transfer in an orthotropic plate with a moving boundary of phase transitions and
to obtain an equation for determining the moving boundaries of a phase transition depending on the
orthotropic thermophysical characteristics of the material, temperature and relative humidity of the
drying agent.

Investigated was the influence of thermal diffusion, initial values of temperature and moisture
content, thermophysical characteristics of the material and schedule parameters of the drying agent on
the temperature of phase transitions. The patterns of diffusion and convective heat-and-mass transfer
for different periods of the drying process, depending on the zone of moisture evaporation, have been
established.
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Математичне моделювання конвективного процесу сушiння
деревини з урахуванням границi фазових переходiв
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У роботi розглядається побудова та впровадження математичних моделей неiзотер-
мiчного вологоперенесення пiд час сушiннi анiзотропних капiлярно-пористих ма-
терiалiв, зокрема деревини, з врахуванням руху зони випаровування для нестацiо-
нарних режимiв сушiння, а також розроблення ефективних аналiтичних та числових
методiв їх реалiзацiї. Розроблено аналiтико-числовий метод визначення неiзотермiч-
ного вологоперенесення для нестацiонарних режимiв процесу сушiння з урахуванням
динамiки змiни границi фазового переходу. Встановлено розрахунковi спiввiдношення
для визначення температури фазового переходу з урахуванням градiєнтiв перенесен-
ня та часу, для якого вiдносна насиченiсть досягає границь фазового переходу.

Ключовi слова: границя фазового переходу, неiзотермiчне вологоперенесення, ма-
тематична модель.
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