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proposed for an arbitrary eccentricity 0 < e 6 1. The kinematic characteristics of Halley’s
comet are calculated as the function of time. Mass of Galaxy + NGC 224 system using
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1. Introduction

It’s well known from the celestial mechanics, the relative motion of two point gravitating bodies system
with masses m1 and m2 occurs by Keplerian orbits

r = p{1 + e cos v}−1, (1)

where r and v are polar coordinates, and the focal parameter p and eccentricity e are determined by
the masses of bodies and integrals of motion — angular momentum l and energy E (see [1]):

p = l2µ−2K−1, e = {1 + 2E l2µ−3K−2}1/2. (2)

K = G(m1 + m2) is the so-called gravitational parameter, G is the gravitational constant, µ =
m1m2(m1 + m2)−1. Using expression for the angular momentum l = r2µdv/dt (where t is time),
equation of the orbit (1) and expression for p from equations (2), we obtain the equation for the time
dependence of true anomaly v(t) in the form

p3/2K−1/2

∫ v(t)

0
[1 + e cos v]−2dv = t. (3)

Due to the condition v(t) = 0 at t = 0, equation (3) determines the time of motion from the pericenter
to the point of orbit with the given value of anomaly v(t). The trivial case e = 0 corresponds to the
uniform motion by the circular orbit. In the case e = 1 at E = 0 the motion occurs by the parabolic
orbit, and equation (3) takes the form

tan
v

2
+

1

3
tan3 v

2
=

2K1/2t

p3/2
=

2πt

Tp
= tp. (4)

Tp = πK−1/2p3/2 is the characteristic time scale, which is an independent value and corresponds to
the motion on the interval p. Equation (4) is known as the Barger equation [1, 2]. It has an exact
analytical solution,

v(t) = 2 arctan
{

[(1 + S2(t))1/2 + S(t)]1/3 − [(1 + S2(t))1/2 − S(t)]1/3
}
,

where S(t) = 3p−3/2K1/2t.
As can be easily verified, v(t) has asymptotics

v(t)→
{

4
3S(t) at t≪ Tp,

2 arctan(2S(t))1/3 at t≫ Tp.
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The integral in equation (3) at 0 < e < 1 is also expressed in elementary functions, as the result
we obtain the well-known relation(

1− e
1 + e

)1/2

tan
v

2
= tan

{
t∗
2

+
e

2
(1− e2)1/2

sin v

1 + e cos v

}
, (5)

in which t∗ = 2πt/T , T = 2πa3/2K−1/2 is the orbital period, a = p(1 − e2)−1 is the semi-major axis
of ellipse, the independent parameters are a and e. Equation (5) is the transcendental and its exact
analytical solutions are unknown. It is possible to use numerical methods. To find an approximate
analytical solutions at small values of eccentricity iterative methods can be used, putting in zero
approximation v(t∗) = t∗, which means replacing the elliptical orbit with the circular one (e = 0).

Another approach makes use of substitution
(

1− e
1 + e

)1/2

tan
v

2
= tan

Ee

2
, (6)

where Ee is an auxiliary function, the so-called eccentric anomaly. As the result, equation (5) is
significantly simplified and takes the form [2,3]

Ee − e sinEe = t∗. (7)

This is Kepler’s equation with unknown in the finite form analytical solutions. Functions v(t∗) and
Ee(t∗) are periodic functions of time with period 2π at the elliptical motion, therefore, it is sufficient
to consider solutions of equations (5) and (7) on the interval 0 6 t∗ 6 2π. The advantage of usage of
equation (7) consists in that the deviation Ee(t∗) from zero approximation E0(t∗) = t∗ is much smaller
than the deviation v(t∗) from v0(t∗) = t∗.
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Fig. 1. Dependence of true anomaly v(t∗) on time at
different values of eccentricity e (curve 1 — e = 0.5,

5 — e = 0.9; ∆e = 0.1). Dashed curve — e = 0.

Fig. 2. Dependence of eccentric anomaly Ee(t∗) on
time at different values of eccentricity e (curve 1 – e =

0.6, 5 — e = 1.0; ∆e = 0.1). Dashed curve — e = 0.

Solutions of equations (5) and (7) obtained by the numerical method are shown in Figures 1 and 2.
The most well-known methods of finding approximate analytical solutions of Kepler’s equation

are the iterative Lagrange method (expansions by powers of eccentricity) and Fourier series method.
As one can see from expression (6), functions v and Ee coincide at e = 0. In Lagrange method,
zero approximation is choosing Ee(t∗) = t∗, that corresponds to the circular orbit, and solution of
equation (7) is represented by the infinite series [3]

Ee(t∗) = t∗ +
∞∑

k=1

ek

k!

dk−1

dtk−1
∗

{
sink t∗

}
.

Functions sinEe(t∗), cosEe(t∗), v(t∗) are represented similarly. As was shown by Laplace, expansions
by powers of eccentricity coincide absolutely only in the region 0 < e < ē = 0.66274 . . . (see [3]).
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Using Fourier series expansion, solution (7) takes the form [3]

Ee(t∗) = t∗ +

∞∑

k=1

2

k
Ik(ke) sin (kt∗), (8)

where Ik(ke) are Bessel functions of an integer order of the first kind [4]

Ik(ke) =
1

π

∫ π

0
cos[k(z − e sin z)]dz.

In case when values of e, are close to unit and values of t∗ are small, series (8) is convergent weakly
and requires taking into account dozens of terms. That’s why method is cumbersome and irrational.

Exact solutions of Kepler’s equation obtained with help of complex variable functions should be
considered to prove this equation solutions [5, 6] existence. They are too much cumbersome and
inconvenient for practical use and demand numerical calculations of the quadratures, appearing in
solutions. We propose simple and fast-convergent analytical iterative algorithms, which are convenient
to use, based on the renormalized perturbation theory — an universal method of modern theoretical
physics.

2. The approximate analytical images of Kepler’s equation solutions

The time dependence of eccentric anomaly in general terms is illustrated in Figure 2. One can notice,
that E(t∗) is a monotonically increasing function of time, and its derivatives in the vicinity of points
t∗ = 0 and t∗ = 2π are big. From equation (7) follows, that on the interval π 6 t∗ 6 2π

Ee(t∗) = 2π − Ee(2π − t∗),
therefore, it is enough to find solutions in the region 0 6 t∗ 6 π.

To find the approximate analytical solutions of equation (7), we will apply the following algorithm
of successive approximations, which is suitable in the whole region 0 < e 6 1. For this purpose, let us
rewrite equation (7) in the form

Ee(t∗)− e
k0∑

k=0

(−1)k
E

(2k+1)
e (t∗)

(2k + 1)!
= t∗ + efk0(Ee(t∗)), (9)

where

fk0(Ee(t∗)) = sinEe(t∗)−
k0∑

k=0

(−1)k
E

(2k+1)
e (t∗)
(2k + 1)!

,

f∞(Ee(t∗)) = 0. For zero approximation E
(0)
e (t∗) we choose the solution of equation (9) at

fk0(Ee(t∗)) = 0. Substituting E(0)
e (t∗) into the right-hand side of equation (9), we obtain equation of

the first approximation and etc.
The simplest option of solution is realized at k0 = 1, and equation of zero, the first and other

approximations are cubic. According to Cardano’s formulae, we obtain

E(0)
e (t∗) =

{[
q30 + s20

]1/2
+ s0

}1/3 −
{[
q30 + s20

]1/2 − s0
}1/3

,

q0 =
2

e
(1− e), s0 =

3

e
t∗;

(10)

E(1)
e (t∗) =

{[
q30 + s21

]1/2
+ s1

}1/3 −
{[
q30 + s21

]1/2 − s1
}1/3

,

s1 =
3

e

{
t∗ + ef1

(
E(0)

e (t∗)
)}
,

(11)

and etc. Such algorithm has a good convergence. In the region t∗ . 1 the approximation E
(0)
e (t∗) is

close to the solution calculated numerically, and E(0)
e (t∗) has the following asymptotics for small values

of t∗
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E(0)
e (t∗)⇒





t∗
1− e + . . . at t∗ <

e

3

[
2

e
(1− e)

]3/2
,

(
6

e
t∗

)1/3

+ . . . at t∗ >
e

3

[
2

e
(1− e)

]3/2
.

In the particular case e = 1

E
(0)
1 (t∗) = (6t∗)1/3 (12)

at all values of t∗ with the region 0 6 t∗ 6 π. The time dependence of eccentric anomaly in different
approximations is shown in Figure 3 for e = 0.8.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  0.5  1  1.5  2  2.5  3  3.5

1

2

E
e
 (t*)

t*

Fig. 3. The time dependence of eccentric
anomaly Ee(t∗) in different approximation at e =
0.8. Curve 1 corresponds to approximation (10),

curve 2 — (11).

Zero approximation E
(0)
e (t∗) at k0 = 1 corre-

sponds to the curve 1. The first iteration E
(1)
e (t∗)

represents the curve 2, which coincides with the re-
sults obtained numerically. Such approximation is
sufficient for the calculation at all values of eccen-
tricity e < 1.

Case e = 1 is special one, therefore, we used an-
other iteration method. In the role of zero approxi-
mation is given function (12). Substituting it under
the sine sign in equation (7), we obtain the following
approximation

E
(1)
1 (t∗) = t∗ + sinE

(0)
1 (t∗).

To improve the convergence of iterative process in the
role of new zero approximation we use the expression

0.5
{
E

(0)
1 (t∗) + E

(1)
1 (t∗)

}
= Ẽ

(0)
1 (t∗),

which is close to solution obtained numerically. The higher approximation we find by the method of
ordinary iterations, according to the relation

Ẽ
(n+1)
1 (t∗) = t∗ + sin(Ẽ

(n)
1 (t∗)), n > 0.

Taking to account asymptotics (12), the solution obtained by the iterations method can be approxi-
mated by the expression

E1(t∗) =
61/3t

1/3
∗ + a1t∗ + a2t

2
∗

1 + b1t∗ + b2t2∗
(13)

at coefficients a1 = 0.0905079, a2 = −0.00772944; b1 = −0.0134609, b2 = −0.00448793. It deviates
from the solution obtained by numerical method no more than 0.003%.

Analytical solutions of Kepler’s equation also can be obtained using other iterative algorithms and
their combinations. For example, we consider the algorithm that allows to represent the solution in
the form of the functional continued fraction. For this purpose, we will rewrite Kepler’s equation in
the form

Ee(t∗) =
t∗

1− e[Ee(t∗)]−1 sinEe(t∗)
. (14)

Choosing some kind of function E(0)
e (t∗) in the role of zero approximation, we will calculate the following

iterations according to the rule

E(n+1)
e (t∗) =

t∗

1− e
[
E

(n)
e (t∗)

]−1
sinE

(n)
e (t∗)

, n > 0.

The solution arises in the form of continued fraction of the finite order [7]. The main theorem of
continued fractions verifies, that the exact solution of equation of type (14) is between n-th and
(n + 1)-th fractions. To improve the convergence of iterative process, let’s choose in the role of zero
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approximation for equation (14) the linear combination

Ẽ(0)
e (t∗) = aE(n)

e (t∗) + bE(n+1)
e (t∗), (15)

where positive coefficients satisfy the condition a + b = 1. Next, the solution would be according to
the scheme

Ẽ(n+1)
e (t∗) =

t∗

1− e
[
Ẽ

(n)
e (t∗)

]−1
sin Ẽ

(n)
e (t∗)

, n > 0. (16)
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Fig. 4. Eccentric anomaly at e = 1 in different approx-

imations. Curve 1 corresponds to formula E
(0)
1 (t∗) =

(6t∗)1/3, curve 2 — (17), curve 3 — (18), curve 4 — (16),
(18), dashed curve — (19).

In Figure 4 curve 1 represents the function
E

(0)
1 (t∗) = (6t∗)1/3, curve 2 — the function

E
(1)
1 (t∗) =

t∗

1−
[
E

(0)
1 (t∗)

]−1
sinE

(0)
1 (t∗)

. (17)

Curve 3 represents function (15) at a = b,

Ẽ
(0)
1 (t∗) = 0.5

{
E

(0)
1 (t∗) + E

(1)
1 (t∗)

}
. (18)

Curve 4 corresponds to function Ẽ
(1)
1 calculated

by formulae (16), (18). Dashed curve represents
function (15) choosing the coefficients according
to the rule of “golden section”,

˜̃E
(0)
1 (t∗) = aE

(0)
1 (t∗) + (1− a)E

(1)
1 (t∗), (19)

where a = 0.5(
√

5 − 1). Functions Ẽ(1)
1 (t∗) and

˜̃E
(0)
1 (t∗) practically coincide with each other and

with function (13). Therefore, choosing the coef-
ficients according to the rule of “golden section”,
there is no need to calculate higher iterations.

Eccentric anomaly Ee(t∗) is the monotonically varying function of eccentricity. It makes possible to
simplify the construction of its analytical images at the large value of eccentricity, using the expansion
of function Ee(t∗) into Taylor series in the vicinity of value e = 1:

Ee(t∗) = E1(t∗) + (e− 1)

{
dEe(t∗)

de

}

e=1

+
(e− 1)2

2!

{
d2Ee(t∗)
de2

}

e=1

+ . . . .

Derivatives by eccentricity can be calculated using equation (7). Taking into consideration that

dEe(t∗)
de

=
sinEe(t∗)

1− e cosEe(t∗)
,

d2Ee(t∗)
de2

= − sinEe(t∗)

[1− e cosEe(t∗)]3
{
e(1 + cos2Ee(t∗))− 2 cosEe(t∗)

}
, . . .

and passing to the limit e→ 1, we obtain the following expansion by powers of multiplier (1− e):

Ee(t∗) = E1(t∗)− (1− e) sinE1(t∗)
1 − cosE1(t∗)

− 1

2!
(1− e)2 sinE1(t∗)

1− cosE1(t∗)
+ . . . . (20)

Even better results obtained, when function (20) applied in the region te∗ 6 t∗ 6 π, and in the region
0 6 t∗ 6 te∗ applied expression (10). The universal function E1(t∗) corresponds to the limiting case of
elliptical motion, when the trajectory is the straight line, as the ellipse degenerates.

According to relation (6) and relations

cos v(t∗) =
cosEe(t∗)− e

1− e cosEe(t∗)
,

sin v(t∗) =
Ee(t∗)− t∗

1− e cosEe(t∗)
· (1− e2)1/2

e
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Fig. 5. The position of Halley’s comet on the orbit
during half period. The focus of the orbit F is at

the origin (0, 0).
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Fig. 6. Dependence of the radial and the transver-
sal components, as well as the module of velocity
in units (K/p)1/2 ∼= 27.56 km/s on the dimension-

less time.

the analytical expression for eccentric anomaly also
gives the possibility to calculate in the analytical
form true anomaly, polar and cartesian coordinates
of a point on the orbit, velocity projections, etc.
As an example in Figure 5 it is shown the orbit of
Halley’s comet (orbital period T = 76 years, semi-
major axis of the orbit a = 17.942 a.u., eccentricity
e = 0.967 . . .) and its position on the orbit during
half period with the interval 1.9 year, marked with
asterisks. But the interval between the first three
points from the pericenter is equal 0.6333 year.

The time dependence of the radial component of
velocity is shown in Figure 6

Vrad(t) =
(
1− e2

)1/2
e

sinE(t∗)

1− e cosE(t∗)

(
K

p

)1/2

,

the transversal component

Vp(t) =
(
1− e2

) 1

1− e cosE(t∗)

(
K

p

)1/2

,

as well as the module of velocity

V ≡ |V| =
(
1− e2

)1/2
[

1 + e cosE(t∗)

1− e cosE(t∗)

]1/2

of Halley’s comet during half period in units
(K/p)1/2 ∼= 27.56 km/s.

3. Estimation of the mass of binary system of Galaxy + NGC 224

One way to estimate the mass of binary galaxies is based on models of their relative motion. Since
only the radial component of the relative velocity is known from observations, therefore in [8–10]
was used model of degenerate elliptical motion with eccentricity e = 1. It is assumed in this model,
that the Galaxy and NGC 224 are physical connected system, and at the time of their formation
they were nearby. Later they divergence for a certain maximal distance rmax having reached to the
apocenter. Then began to converge, according to modern observations. In such type model, the motion
of galaxies corresponds to the one-dimensional oscillatory process with an amplitude rmax/2. In the
present era the first period of this process is coming to final. Herewith, the relative radial velocity
Vrad(t) = −123 km/s, distance between galaxies r(t) = 770 kpc, time is equal to the age of the Universe
(t = 13.7 · 109 years). Based on Kepler’s equation for the case e = 1 and mentioned above observed
data in [8–10] there were assessments the masses sum of these galaxies. It is associated with the mass
of Local System in general. The method used in the cited works is known as the “timing argument”
method. It is used in modern studies of other binary galaxy systems [11].

However, the assumption about one-dimensional motion of system of these galaxies is not clear.
The relative motion by the elliptical orbit with eccentricity close to unit, in general is more likely than
the motion by the straight line with zero angular momentum. In this paper we consider the model
of non-degenerate elliptical relative motion of galaxies, where the eccentricity is a free parameter and
varies in the region 0.6 6 e 6 1.0, and eccentric anomaly is determined by formulae (7) and (20).

The distance between galaxies at the time moment t

r(t) = a{1− e cosE(t∗)}, (21)

where

t∗ =
2πt

T
, T = 2πa3/2(GM)−1/2, (22)
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M denotes the sum of galaxies masses, and eccentric anomaly is determined by equation (7). According
to the accepted model, at the moment of the maximal distance of galaxies (when E(t̃∗) = π)

rmax = a(1 + e), (23)

therefore, equation (21) is rewritten in the form

r(t) =
rmax

1 + e

{
1− e cosE(t∗)

}
. (24)

The radial component of velocity of relative motion at the time moment t

Vrad(t) =
dr(t)

dt
=
rmax

1 + e
e sinE(t∗)

dE(t∗)

dt
=
rmax

1 + e
e sinE(t∗)

1

1− e cosE(∗)

t∗
t
.

According to equation (24) for the moment of time t

Vrad(t)
t

r(t)
=

t∗e sinE(t∗)

[1− e cosE(t∗)]2
. (25)

Using observed data Vrad(t) and r(t) in the modern era (at t = 13.7 · 109 years), equation (25) is
rewritten in the form

t∗e sinE(t∗)

[1− e cosE(t∗)]2
= −2.23661 . . . . (26)

Analytical image of E(t∗) allows us to find t0∗ being the root of equation (26) as function of the
eccentricity (see Table 1), as well as to calculate E(t0∗).

Table 1. Dependence of the sum of galaxies masses, eccentric anomaly
and characteristic times on the eccentricity.

e t0∗ E(t0∗) M [1012M⊙]−1 tmax = πt/t0∗, 109 y. 2tmax − t, 109 y.

0.6 5.04837 4.46643 9.06078 8.52549 3.35098
0.7 5.05025 4.38698 7.44792 8.52231 3.34463
0.8 5.07347 4.33096 6.30248 8.48332 3.26664
0.9 5.1102 4.28949 5.44305 8.42233 3.14466
1.0 5.15615 4.25774 4.77373 8.34728 2.99455

To find galaxies mass we use Kepler’s equation (7) for t0∗, definition (22) and relations (23) and (24).
As a result, we find that

M =
r3(t)

G

{
1− e cosE(t0∗)

}−3( t0∗
t

)2

.

Since the dimensionless time of maximal divergence of galaxies according to Kepler’s equation tmax
∗ = π,

then the absolute time of divergence

tmax =
T

2
=
πt

t0∗
.

Difference 2tmax − t determines the time to the future “collision” of galaxies. As was shown in Table,
all characteristics (except for t0∗) are monotonically decreasing functions of eccentricity. The strongest
dependence of eccentricity has the sum of galaxies masses, decreasing almost two times at increasing
of the eccentricity from 0.6 to 1.0, while time to collision — only on 12%.

For comparison, we represent the estimate of mass obtained by other authors in the model with
one-dimensional motion: (3 ÷ 6) · 1012M⊙ [9], (3.8 ÷ 6.8) · 1012M⊙ [10]. In the book [12], where
considered the standard model with e = 1 was obtained the value 4.83 · 1012M⊙. In [13] it was shown,
that the consideration of non-radiality of relative motion of galaxies significantly affects on the value
of total mass, validating our results.

4. Conclusions

Kepler’s equation is one of the main relations in celestial mechanics, which determines the relevance of
the problem solving. The classical Lagrange method is the conventional perturbation theory, where zero
approximation is the solution of linear equation and corresponds to the motion by the circular orbit.
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The iterative algorithm proposed by authors can be called as the renormalized perturbation theory,
where zero approximation is the solution of non-linear (in the simplest case — of cubic) equation. This
leads to the significant reduction of perturbation and fast convergence, when it is enough to take into
account one or two iterations.

Representation of Kepler’s equation in form (14) and the usage of renormalized perturbation theory
allows to obtain solutions in the form of functional fractions of the finite order with fast convergence.

The analytical form of Kepler’s equation solutions is convenient for practical usage. It was illus-
trated by calculations of the time dependence of true anomaly and kinematic characteristics of object
motion by the elliptical orbits with large eccentricity using as an example Halley’s comet with eccentric-
ity e = 0.967. The generalized model of relative motion of binary system of galaxies proposed in paper
is another example of usage of Kepler’s equation. For the first time, it was studied the dependence of
the model characteristics on the eccentricity value.
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Аналiтичнi зображення розв’язкiв рiвняння Кеплера
та їх застосування

Ваврух М., Дзiковський Д., Стельмах О.

Львiвський нацiональний унiверситет iменi Iвана Франка,
вул. Кирила i Мефодiя, 8, 79005 Львiв, Україна

Запропоновано простi швидкозбiжнi алгоритми аналiтичного розрахунку ексцентрич-
ної аномалiї для довiльного ексцентриситету 0 < e 6 1. Для iлюстрацiй розраховано
кiнематичнi характеристики комети Галлея як функцiї часу та виконано оцiнку маси
системи Галактика + NGC 224 на основi моделi з елiптичним вiдносним рухом.

Ключовi слова: рiвняння Кеплера; ексцентрична аномалiя; iстинна аномалiя; ко-
мета Галлея; маса Мiсцевої системи Галактик.
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