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In this paper, we suggest a new model for establishing a numerical study related to a
European options pricing problem where assets’ prices can be described by a stochastic
equation with a discontinuous sample path (Slow Growth Volatility with Jump SGVJ
model) which uses a non-standard volatility. A special attention is given to characteristics
of the proposed model represented by its non-standard volatility defined by the parameters
α and β. The mathematical modeling in the presence of jump shows that one has to resort
to a degenerate partial integro-differential equation (PIDE) which the resolution of this
one gives a price of the European option as a function of time, price of the underlying
asset and the instantaneous volatility. However, in general, an exact or closed solution to
this problem is not available. For this reason we approximate it using a finite difference
method. At the end of the paper, we present some numerical and comparison results with
some classical models known in the literature.
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1. Introduction

The history of the option pricing theory dates back to 1900 when the French mathematician Louis
Bachelier deduced the formula for evaluating options by assuming that the stock prices followed a
zero drift Brownian motion. Since then, many studies have contributed to this theory. Indeed, in
the early 1970s, Fisher Black and Myron Scholes [1] and Robert Merton [2] recorded a major advance
in the valuation of options by constructing the famous model so-called Black–Scholes (BS) that gives
in closed form the price of a European option derivative of security dependent on a non-dividend-
paying stock. However, this model based on strong assumptions such as constant volatility and normal
distribution of returns (Gaussian law) is not consistent with a number of stylized facts, such as the
asymmetric leptokurtic features and the volatility smile, as suggested by some empirical studies (see,
for example, [3,4]). To explain this empirical phenomena, a variety of models have been proposed in the
literature such as fractional Brownian motion, diffusions model with jumps and Stochastic volatility
models.

To incorporate the asymmetric leptokurtic features in asset pricing, Mandelbrot, Fisher and
Clavet [5] represent the price’s dynamics by a Brownian movement with a multifractal time change.
Heyde [6] explains these features based on the fractal activity time. Barndorff–Nielsen and Shephard [7]
show that Ornstein Uhlenbeck models offer the possibility of capturing important distributional de-
viations from Gaussianity and for flexible modeling of dependence structures. Based on fractional
stochastic volatility (FSV) of Comte and Renault [8], Gatheral et el. [9] develop a model that is able to
replicate the stylized facts of the time series and conclude that the log-volatility behaves as a fractional
brownian. Ibrahim et al. [10] present recently a closed-form pricing formula for call warrants under
mixed-fractional Brownian motion with jump-diffusion (MFBM-MJD). Their research indicates that
this model effectively captures both the long-memory phenomenon and the discontinuous behavior ob-
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served in logarithmic returns. Yanishevskyi et al. [11] derive a solution for the Fokker–Plank equation,
which describes the transition probability density of fractional Brownian motion, using a path integral
approach [12].

The jump-diffusion models proposed by Merton [13] and Kou [14], allow for more realistic repre-
sentation of price dynamics and a greater flexibility in modeling [15]. These models have finite jump
activity, unlike the more general approach with possibly infinite jump activity proposed by Carr et
al. [16]. Indeed, the presence of sudden changes in the price of the underlying asset has led Merton [13]
to study jumping model. The stochastic volatility models: proposed to incorporate the “volatility
smile” in option pricing like (a) stochastic volatility and Autoregressive Conditionally Heteroscedas-
tic ARCH models performed, for example, by Hull and White [17] and Gouriéroux [18]. The Heston
model [19], takes into account the leverage effect and volatility clusters, which allows the volatility itself
to be random and also allows it to take the non-normally distributed stock return into account. Yang
et al. [20], propose a hybrid model that can capture the stochastic property of volatility rate, interest
rate as well as the short term and long-term effects on the financial market. Sawal et al. [21] develop
a more general model that includes jumps, stochastic volatility, and stochastic interest rate. (b) The
Constant Elasticity of Variance (CEV) model proposed by Cox and Ross [22] is an extension of the
stochastic volatility diffusion model that can estimate the change in asset prices in continuous time.
A. Abaoud [23], derives an analytic approximation formula for European call options by combining the
(CEV) process for the asset price and stochastic volatility.

It is important to take into account that with the CEV model, the variance of the asset rate of
return depends on the price of the underlying asset, and time as well. In other words, the underlying
asset price St is assumed to follow a CEV model with a constant µ in drift, and its two characterized
parameters: the local volatility σ and the skew parameter α:

dSt
St

= µdt+ σ(St) dWt, (1)

where σ(St) = σSα−1
t and Wt is Brownian motion. The model with 0 < α < 1 is called restricted

CEV. The model with α = 1 is the standard BS lognormal process and models with α < 0 are called
unrestricted CEV. They fit the smile rather well.

This paper proposes a new model called Slow Growth Volatility with Jump (SGVJ) for European
option pricing. This model was initially presented by Benjaoud and al. [24]. It is of BS type and gen-
eralizes the CEV model. The SGVJ model is quite interesting because on the one hand it incorporates
a specific volatility given by

σt(St) = σSα−1
t logβ(1 + St),

which depends on the asset price and slowly increases with respect to this latter, where α and β are
two parameters of the model to be specified. On the other hand, the jump term generally introduced
to take into account certain rare phenomena observed in the financial markets. This model is a variant
of the CEV model, in the case where β = 0, and extends to cover the Slow Growth Volatility SGV
model developed by Benjaoud and al. [24]. It adds a jump term to the SGV model and removes the
restrictive cases from the other models. The main difficulty of our model is that there is no closed
form solution for European options price in our setting, due mainly to the integral term and a specific
volatility. Indeed, the mathematical modeling in the presence of jump shows that one has to resort to a
degenerate partial integro-differential equation (PIDE) where resolution gives a price of the European
option. For this reason, we propose a numerical method that approximates the solution of the PIDE
using a finite difference scheme.

The remainder of this article is organized into four sections. In Section 2, we begin by describing
the SGVJ model and the resulting PIDE for European options. We also provide a numerical resolution
using finite difference method by separating the integro-differential equation into two terms, differential
term and the integral term. Numerical experiments and conclusions are presented in Sections 3 and 4,
respectively.
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2. The slow growth volatility with jump model

The model that we propose for the price of an underlying asset (for example an interest rate) combines
the SGV model and the jump models under the hypotheses of Merton [13]. It consists of two parts,
a continuous part modeled by a geometric Brownian motion, and a jump part, with the logarithm of
the jump sizes having normal distribution and the jump times corresponding to the event times of a
Poisson process. More precisely, the below stochastic differential equation (1) is used to model the
asset price S(t), which follows a finite activity jump-diffusion process (see for more detail Cont and
Tankov [4]).

Let (Sτ )τ∈[0,T ] be the price of a financial asset modeled as a stochastic process on a filtered proba-

bility space (Ω,Ft, P ); Ft represents the history of the asset S at time t and S̃ = e−rτS the discounted
value of the asset, with r > 0 being the risk-free interest rate. We consider the simplified financial
market that can be represented in a probabilistic space (Ω,Ft, P ) by the evolution of two titles namely
risk-free asset and a risky asset. Their price, denoted by S0(t) and St respectively are represented as
follows:

dS0(t) = rS0dt,

dSt
St

= µdt+ σSα−1
t lnβ(1 + St) dWt + (ηt − 1) dqt, (2)

where Wt is a Brownian motion, qt is a Poisson process and where (α, β) are the parameters of the
model which can be defined as follows: α is the sensitivity of volatility to changes in the price of
the underlying asset, β reflects the sensitivity of volatility due to security and stability situation in a
country.

The model with the term (ηt − 1 = 0) represents the SGV model as described by [24]. It has been
reduced to the CEV model if β = 0 and ηt = 1. It goes back to the model Standard Black and Sholes
when α = 1, β = 0 and ηt = 1 and finally the classic Merton pattern is obtained by taking: α = 1,
β = 0.

This jump model where volatility is a power function of the price of the underlying conjugated
with its logarithm: either σ(t, S) = σSα−1

t lnβ(1+St) can be designed for the valuation of a European
option that has the interest rate as its underlying asset; we denote: dqt = 0 with probability 1− λdt;
dqt = 1 with probability λdt where λ is the intensity of the Poisson process dqt; (ηt − 1) is an impulse
function producing in jumps from S to Sη; κ = E(ηt − 1) is the expected relative jump size; σ is the
volatility; µ is the drift rate.

2.1. Partial integro-differential equation

From a mathematical point of view, a European contingent claim with maturity T is an arbitrary
Ft-measurable random variable H. The interpretation of this definition shall be that the contingent
claim is a contract which specifies that the stochastic amount H of money has to be paid out to the
holder of the contract at time T . The Markov property of the price allows us to express prices of
European options in terms of solutions of partial integro-differential equations (PIDE) that involve, in
addition to the second-order differential operator, a nonlocal integral term.

As Merton showed in [13], Wt and qt are independent and by using Itô’s Lemma for the continuous
part and an analogous lemma for the jump part we concluded that the value of the derived product
υ(S, τ) satisfies the following PIDE:

(P)





∂

∂τ
υ(S, τ)− σ2S2α log2β(1 + St)

2

∂2

∂S2
υ(S, τ) −

(
r − σ2

2
− λk

)
S
∂

∂S
υ(S, τ) + rυ(S, τ)

−λ
(∫ +∞

0
υ(Sη, τ)Γ̃δ(η) dη − υ(S, τ)

)
= 0, τ ∈]0, T ], S > 0,

υ(S, 0) = υ0(S), S > 0

(3)

where T is the maturity, r is the risk-free interest rate, k = E(ηt − 1) is the expected relative jump
size and η is supposed to be a log-normally distributed jump amplitude with probability density
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Γ̃δ(η) =
exp

(
−1

2

( log(η)
δ

)2)

√
2πδη

. (4)

We recall that α and β are two parameters expressing the sensitivity of volatility respectively due to
changes in the price of the underlying asset S and the risk associated with a country stability event.
Also, we stress that the function υ(S, τ) which translates the price of European option is a solution of
the problem (P).

In the case of a Call option, the boundaries conditions are: υ(S, τ) = S−k exp(−rτ) when S → +∞;
υ(S, τ) = 0 when S → 0; υ0 = max(S −K, 0).

The problem (P) can be rewritten by changing the following variables: using the logarithmic price
x = log S ∈ R, the time to maturity t = T −τ and η = ey. Then, we call υ(S, τ) = u(x, t) and therefore
we can study the numerical approximation of

(Pαβ)





∂uαβ
∂t

=
σ2e2(α−1)x log2β(1 + ex)

2

∂2

∂x2
uαβ(x, t)

+

(
r − σ2e2(α−1)x log2β(1 + ex)

2
− λk

)
∂

∂x
uαβ(x, t)− ruαβ(x, t)

+λ

∫ +∞

−∞
ũ(x+ y; t)Γδ(y) dy, x ∈ R, t ∈]0, T ],

uαβ(x, 0) = ψ(x), x ∈ R,

(5)

where Γδ is the Gaussian probability density:

Γδ(y) =
1√
2πδ

exp

(
− y2

2δ2

)
, ∀δ > 0.

From (5) we denote Γδ(y) = Γ̃δ(e
y), ũ(x + y, t) = u(ex+y, t) and the initial data ψ(x) is the payoff

function of the European options. Now, let the exercise price K be given, for the Call and the Put
option we have respectively: ψ(x) = max(ex −K, 0) and ψ(x) = max(K − ex, 0).

2.2. Numerical solution

To apply a numerical scheme, we must truncate the space domain by considering Ω ⊂ R, the interval,
where we want to compute the numerical solution, on one hand, and the integral domain on the other.
To compute the non-local term, we simplify the integral by considering a finite interval instead of the
whole real line. The particularity of the shape of the density function Γδ allows us to choose only the
points for which the density has a significant value and with acceptable error (the error is not big).

We truncate the integral domain of our problem. We choose a parameter ε > 0 and select the finite
interval [−Yε, Yε] as the set of all the points y that verify:

Γδ(y) > ε⇔ 1√
2πδ

exp

(
− y2

2δ2

)
> ε. (6)

Therefore we can easily extract −Yε and Yε as is shown below:√
−2δ2 log

(
εδ
√
2π
)
6 y 6

√
−2δ2 log

(
εδ
√
2π
)
.

As Γδ is a symmetric function with respect to its axis that can be defined as:

Yε =

√
−2δ2 log

(
εδ
√
2π
)
; Yε = −Yε.

We introduce a uniform mesh on [0, T ] × Ω and we start by dividing Ω = [Xmin,Xmax] into z̄ equal
intervals of length h = △S, and let considering the integer part of p = [Yε/h] then we divide the time
domain into N equally spaced nodes, separated by a distance K = △t. We solve the problem Pαβ in
large numerical domain Ω̄ = [Xmin − ph,Xmax + ph]. We call M = z̄+1+ 2p the total number of grid
points {xm,m = 0, . . . ,M − 1}, where x0 = Xmin − ph, M − 1 = Xmax + ph and P = 2p+ 1 the total
number of points used for integral approximation. We shall define by z− and z+ the two grid indices
as: z− = Xmin and z+ = Xmax and by p the integer number p = [Yε/h]. Let us set unm = uαβ(xm, nk)
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and denote by Ih(unm) the integral approximation and represent it as:

Ih(u
n
m) = h

p∑

l=−p
αl(Γ)l(u

n
m+l),

where αl indicates the weights of a quadrature rule. After defining our numerical problem on Ω, we
need a limiting form for the solution u on the external set ΩC = R \Ω.

As shown by Briani [25], the integral term can be replaced (locally) by a diffusive term. We then
approximate on the external set ΩC the problem (Pαβ) by a diffusive one

∂uαβ
∂t
− aαβ

2

∂2uαβ
∂x2

−
(
r − aαβ

2
− λk

) ∂uαβ
∂x

+ ruαβ =
λδ2

2

∂2uαβ
∂x2

, (7)

where

aαβ = σ2e2(α−1)x log2β(1 + ex).

Then the approximated problem can be written as



un+1
m − unm

k
− aαβ(xm)

un+1
m+1 − 2un+1

m + un+1
m−1

2h2
−
(
r − aαβ

2
− λk

) un+1
m+1 − un+1

m−1

2h

+run+1
m =

λδ2

2

un+1
m+1 − 2un+1

m + un+1
m−1

h2
, m = 0, . . . , z− − 1;

un+1
m − unm

k
− aαβ(xm)

un+1
m+1 − 2un+1

m + un+1
m−1

2h2
−
(
r − aαβ

2
− λk

) un+1
m+1 − un+1

m−1

2h
+run+1

m = λIh(u
n
m), m = z−, . . . , z+;

un+1
m − unm

k
− aαβ(xm)

un+1
m+1 − 2un+1

m + un+1
m−1

2h2
−
(
r − aαβ

2
− λk

) un+1
m+1 − un+1

m−1

2h

+run+1
m =

λδ2

2

un+1
m+1 − 2un+1

m + un+1
m−1

h2
, m = z+ + 1, . . . ,M − 1.

(8)

For the call option, the boundary conditions are given by: uαβ(0, ·) = 0 as x −→ −∞ and uαβ(x, t) =
ex −Ke−rt as x −→ +∞.

3. Numerical experiments

Table 1. Parameter values in the SGVJ model.

λ S0 K σ r T
0.1 100 100 0.2 0.1 1

Table 2. Model types defined by the parame-
ters: λ, α and β.

λ α β Type of model
0 1 0 Black and Scholes
0 < 1 0 CEV
0 < 1 < 1 SGV
6= 0 <1 0 CEV with jump
6= 0 1 0 Merton’s model
6= 0 < 1 < 1 SGVJ

In this section, we show some numerical examples that
illustrate the performance of a European Call option
price under our model. The examples are chosen to
demonstrate that for the given values of the parameters,
the SGVJ model converges to models without jumps
and with jumps respectively for λ = 0 and λ 6= 0. We
also compare the pricing results with respect to these
varying models and we present a numerical analysis that
yields some insight into the behavior of the European
Call option price according to the parameters α, β and
the strike price K.

In our sample calculation, Tables 1 and 2 list the
default parameter values of the SGVJ model and the
different model types respectively. All our numerical examples will use this set of parameter values
unless specified differently.

3.1. European call option price under SGVJ without jumps

As the first example, we consider the case of the European Call option price under SGVJ model when
λ = 0. In this case, SGVJ is reduced to the SGV model. The results of the numerical solution of SGV
model are obtained by using centered difference approximations for the first and second derivatives.
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Figure 1 represents the behavior of the solution under SGV model toward the solutions under CEV
and BS models when (α = 0.98; β → 0) and (α = 1; β → 0) as shown in Figures 1a and 1b respectively.

a (Behavior of the solution under SGV model toward
the solution under CEV model (α = 0.98; β → 0))

b (Behavior of the solution under SGV model toward
the solution under BS model (α = 1; β → 0))

Fig. 1. Behavior of the values of European Call option under SGV model
when (α = 0.98; β → 0) (a) and (α = 0.98; β → 0) (b).

3.2. European call option price under SGVJ with jumps

In this second example, we evaluate the price of the European Call option under the SGVJ model in
which we add the jump term by considering λ 6= 0 and using the same parameters seen in Table 1.

The results of the numerical solution of SGVJ model are obtained with the same method as in
the previous case. Table 3 shows the values of the European Call option with one and twelve months
maturity under the SGVJ model with λ = 0.1.

Table 3. Values of European Call option under the
SGVJ model with λ = 0.1.

Parameters Time expiry
α β 1 Month 1 Year

K = 100

0.50 1.00 46.181984 93.085476
0.70 0.50 11.030160 38.433595
0.90 0.3 06.252455 23.843271
0.98 0.20 04.760329 19.180547
1.00 0.00 02.864330 13.229330

Figures 2 and 3 illustrate the price behavior of
the European Call option evaluated under the SGVJ
model for different values of parameters α and β.
This illustration of price behavior is compared to
the results obtained by the jump models of Black-
Scholes and CEV.

Figure 2 represents the behavior of the solution
under SGVJ model toward the solutions under the
Constant Elasticity of Variance with Jumps (CEVJ)

and BS with jump models when (α = 0.5; β → 0) and (α = 1; β → 0) as shown in Figures 2a and 2b
respectively.

a (Behavior of the solution under SGVJ model toward
the solution under CEVJ model (α = 0.5; β → 0))

b (Behavior of the solution under SGVJ model toward
the solution under BS model with jump (α = 1; β → 0))

Fig. 2. Convergence of the SGVJ model to the CEVJ and Black–Scholes with jump models
when (α = 0.5; β → 0) and (α = 0.1; β → 0) respectively.
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Figures 2a and 2b show that the pricing under the SGVJ model is more expensive than under the
CEVJ and BS with jump models, in case where the parameter β is positive. Conversely, when the
parameter β is negative the price of option under our model becomes less expensive than under the
models mentioned above.

Finally, we summarize these different experiences on the behavior of the European Call option and
compute the option prices for each model. Figure 3 shows the behavior of the European Call option
under the SGVJ model compared to the models of pricing with and without jump. The price of the
European Call option under the SGVJ model varies with the values of the parameter β. Indeed, when
the parameter β is positive the price of the option under SGVJ model is higher than under the other
models. Conversely, it is lower where the parameter β is negative.

Fig. 3. Behavior of European Call option under the SGVJ model compared to
the models of pricing with and without jump.

3.3. Sensitivity analysis

In this section, we present some results based on the sensitivity analysis of various key parameters. We
investigate the effects of changes in the value of the parameters α, β and the Strike K, on the price of
the European Call options under SGVJ model.

Effect of the parameter α. We study the effect of changes in the value of the parameter α on the
price of the European call options under SGVJ model. We vary the parameter α while fixing β = 0.
We use the data of Table 1.

The results are summarized in Table 4. Figure 4 illustrates the effect of the parameter α on the
value of the European Call option. When the sensitivity is expressed by α tends to 1, the price of the
option will have less effect and conversely it will be more affected when it tends to 0.
Table 4. The price of the European Call option cor-
responding to different values of α with β = 0 under

SGVJ model.

Parameter Time expiry
α 1 Month 1 Year

K = 100

0.50 2.864386 13.232837

r = 0.1

0.55 2.864372 13.232155

σ = 0.20

0.60 2.864360 13.231548

λ = 0.1

0.65 2.864350 13.231015
0.70 2.864342 13.230556
0.75 2.864336 13.230171
0.80 2.864332 13.229854
0.85 2.864329 13.229618
0.90 2.864329 13.229450
0.95 2.864330 13.229354
1.00 2.864333 13.229330

Fig. 4. Effect of the sensitivity parameter α on the
price of the European Call option under SGVJ model.

Effect of the parameter β. In the second case, we present the effect of changes in the value of
parameter β on the price of European Call options under SGVJ model. We choose r = 0.05 instead of
r = 0.1 while the other data in Table 1 remain unchanged.
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The numerical results listed in Table 5 show that when the values taken by the parameters β are
negative, the value of option price remains low even if the parameter α can take the values 0 or
1. Conversely, this value will become large when the values taken by the parameters β are positive.
Figure 5 shows that when the parameter β tends to 1, the price of the option will become very expensive
and conversely when it tends to −1 the option will have the lowest price.

Table 5. The price of the European Call option corre-
sponding to different values of β with (α = 0 or α = 1)

under SGVJ model.

Parameters Time expiry
α β 1 Month 1 Year

K = 100

1.00 −1.00 1.134149 6.915810

r = 0.05

1.00 −0.80 1.152280 7.070847

σ = 0.2

0.00 −0.60 1.211874 7.476273

λ = 0.1

0.00 −0.40 1.394378 8.347444
0.00 −0.20 1.867948 10.042045
0.00 0.00 2.8664627 13.244050
1.00 0.20 4.762119 19.269794
1.00 0.40 8.290577 30.586602
1.00 0.60 14.803199 49.552942
1.00 0.80 26.689480 70.444556
1.00 1.00 46.587708 85.143734

Fig. 5. Effect of security and stability expressed by
the parameter β on the price of the European Call

option under SGVJ model.

Effect of the strike price K. Finally, we study the effect of changes in the value of the strike
price K on the European Call option price under SGVJ model. The following scenarios are suggested
depending on the sign of the β: (1) β > 0, (α = 0.8; β = 0.5); (2) β < 0, (α = 0.8; β = −0.3) and
(α = 0.8; β = −0.5). We maintain the same parameters seen in the second case.

The numerical results which are given in Table 6 reveal the behavior of the option price under
SGVJ model with respect to the strike price K, as illustrated in Figure 6. In the first scenario, we see
that as the strike price increases, the call option value decreases with slower rate along the curve. In
the second scenario, the call option decreases in two ways: (1) with faster rate than the first scenario
when the option is In the Money (ITM) i.e., K > S; (2) and with slower rate when the option is Out
of the Money (OTM) i.e., K < S.

Table 6. Behavior of the price of the European Call option according to different values
of the strike price K and maturity T = 1.

Strike K 80 90 100 110 120
SGVJ: (α = 0.8; β = 0.5) 45.803849 41.905259 38.424048 35.304157 32.501871

SGVJ: (α = 0.8; β = −0.3) 25.006451 16.114749 09.058898 05.792229 04.903060
SGVJ: (α = 0.8; β = −0.5) 24.986766 15.856488 7.836401 5.323073 04.860452

Fig. 6. A behavior of the solution under SGVJ model in respect to strike price K.
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4. Conclusion

We have studied the pricing of the European Call option under Slow Growth Volatility with Jump
(SGVJ) model where we have formulated the asset price evolution as a partial integro-differential
equation (PIDE). Since there is not a closed solution, we solve it numerically using a finite difference
method. Due to the non-locality of the integro-differential operator, we have to restrict it to a bounded
domain and we have also truncated the domain of integration in the non-local part.

The experiment results have shown that the price of the European call option evaluated by our
model is relatively expensive compared to the pricing under the models already seen. This is explained
by the β security and stability parameter effect that characterizes our model.

Finally, we have demonstrated how the behavior of the price evolves with respect to the variations
β, α and K. Future work in this area would use deep learning inside difference equation method.
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Цiноутворення європейських опцiонiв за моделлю, яка включає
волатильнiсть повiльного зростання зi стрибком

Аатiф Е.1, Ель Муатасiм А.2
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2Полiдисциплiнарний факультет Уарзазат, Унiверситет Iбн Зор, Марокко

У статтi запропоновано нову модель для створення числового дослiдження, яке
пов’язане з проблемою цiноутворення європейських опцiонiв, де цiни активiв можна
описати стохастичним рiвнянням iз розривним шляхом (модель повiльного зростан-
ня волатильностi зi стрибком SGVJ), яка використовує нестандартну волатильнiсть.
Особливу увагу придiлено характеристикам запропонованої моделi, що полягають в
її нестандартнiй волатильностi, яка визначається параметрами α та β. Математич-
не моделювання за наявностi стрибка показує, що потрiбно вдатися до виродженого
iнтегро-диференцiального рiвняння з частинними похiдними (PIDE), розв’язок яко-
го дає цiну європейського опцiону як функцiю часу, цiну базового активу та миттєву
волатильнiсть. Однак, загалом, точного або замкненого розв’язку цiєї задачi немає. З
цiєї причини апроксимовано його за допомогою методу скiнченних рiзниць. Накiнець,
наведено деякi чисельнi результати та результати порiвняння з деякими вiдомими в
лiтературi класичними моделями.

Ключовi слова: метод скiнченних рiзниць; стрибкоподiбно-дифузiйнi процеси; цi-
ноутворення опцiонiв; iнтегро-диференцiальне рiвняння в частинних похiдних; по-
смiшка волатильностi.
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