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REGULARIZATION BY DENOISING FOR INVERSE

PROBLEMS IN IMAGING

In this work, a generalized scheme of regularization of inverse problems is considered, where a priori
knowledge about the smoothness of the solution is given by means of some self-adjoint operator in the
solution space. The formulation of the problem is considered, namely, in addition to the main inverse
problem, an additional problem is de�ned, in which the solution is the right-hand side of the equation.
Thus, for the regularization of the main inverse problem, an additional inverse problem is used, which
brings information about the smoothness of the solution to the initial problem. This formulation of the
problem makes it possible to use operators of high complexity for regularization of inverse problems, which
is an urgent need in modern machine learning problems, in particular, in image processing problems.
The paper examines the approximation error of the solution of the initial problem using an additional
problem.
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Introduction

Solving modern machine learning tasks requires
development of new methods of solving corre-
sponding inverse problems. Majority of real-world
inverse problems are ill-posed and therefore require
regularization. For some digital signal processing
tasks, such as image de-noising, image restoration,
super-resolution, image improvement, the choice
of regularization technique is non-trivial, whereas
signi�cantly in�uences the corresponding solution.

In our work we study generalized regularization
scheme for inversion of image transforms. For in-
verse problem

Ax = y

we consider Bayesian approach, or maximum a
posteriori probability (MAP) estimate, which �nds
such an x, that maximises the conditional proba-
bility p(x|y). According to Bayes rule

p(x|y) = p(x, y)

p(y)
=

p(y|x)p(x)∫
p(y|x)p(x)dx

∝ p(y|x)p(x),

therefore maximisation of p(x|y) corresponds to
the following problem:

argmin
x

(− log p(y|x)− log p(x)).

Obviously, real probability distribution func-
tions are unknown. Therefore instead of it we solve
the following heuristics

x̂ = argmin
x
{l(x, y) + αρ(x)}, (1)

where l(x, y) is a loss function and ρ(x) is a regu-
larization term.

Let's slightly modify (1):

x̂ = argmin
x,v

{l(x, y) + αρ(v)}, x = v.

It allows us to apply Alternating Direction Method
of Multipliers (ADMM) from the paper [2], using
Lagrangian:

Lλ(x, v, u) = l(x, y)+αρ(v)+
λ

2
∥x−v+u∥2−λ

2
∥u∥2.

It leads to iterative solving following minimiza-
tion tasks till convergence:

x̂←− argmin
x

L(x, v̂, u)

v̂ ←− argmin
x

L(x̂, v, u)

u←−u+ (x̂− v̂)

or after rede�ning variables in terms of (1)

x̂ =min
x
l(x, y) + β∥x− v∥2,

v̂ =min
v
αρ(v) + β∥x− v∥2.

In such a way, instead of one inverse problem
with regularization scheme we've got two intercon-
nected minimization problems, iterative solving of
which allows us to �nd solution for the initial prob-
lem. Having some initial x0 and v0 we iterate

xi+1 =min
x
l(x, y) + β∥x− vi∥2,

vi+1 =min
v
αρ(v) + β∥xi − v∥2.

Let's consider some operator D : X 7→ X, that
preserves x as a solution, i.e.

AD(x, σ) = y,
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for example, for super-resolution task instead of D
a de-noising operator may be used.

This allows to see all the setting from another
perspective: we have inverse problem Ax = y and
its corresponding loss-function l(x, y), and some
other problem with loss-function ρ(x).

In such a way, instead of one inverse problem
we get two interconnected problems, where second
one brings prior information to the �rst one. As
an additional problem, any prior information may
be used. For example, some external classi�er for
image generation improvement problem or denois-
ing problem as a regularization for super-resolution
problem, etc.

The idea to use image denoisers as a mecha-
nism behind the regularization term underlies the
Regularization by Denoising (RED) framework [5]

ρRED(x) ≜
1

2
⟨x, x− f(x)⟩,

where f(·) is the denoiser of choice.
This idea has been broadened to the follow-

ing setting, called Regularization by Denoising via
Fixed-Point Projection (RED-PRO) [1].

x̂RED−PRO = argmin
x

l(x, y),

s.t. ∥x− f(x)∥2 = 0.

It can be seen as a solving of inverse problem with
additional inverse problem x = f(x) as a regular-
ization.

The same framework may be seen as a regu-
larization by means of regularization term ρ(x) is
αρ(x) = αxT [x−D(x, σ)]. Under mild conditions
(di�erentiability, local homogeneity, and symmet-
ric Jacobian for D) gradient descent may be ap-
plied to get the solution:

xk+1 = xk − µ[AT (Axk − y)− α[xk −D(xk, σ)]].

In [1] it has been shown, that Plug-and-Play
Prior (PnP) proximal gradient method considered
in [4] is a special case of Regularization by Denois-
ing via Fixed-Point Projection (RED-PRO), the
convergence of both frameworks to globally opti-
mal solutions has been proven as a result of the
convergence analysis and the study of the solutions
of both PnP and RED frameworks [1].

Another classical approach to solving inverse
problem Ax = b is the method of Tikhonov-
Phillips regularization in Hilbert scales, where a
regularized approximation xδα is de�ned as the so-
lution of the minimization problem

min
x∈D(B∫ )

∥Ax− yδ∥2 + α∥Bsx∥2,

where α > 0 is the regularization parameter,
B : D(B) ⊂ X → X is an unbounded densely

de�ned self-adjoint strictly positive de�nite opera-
tor and s is some non-negative real number to be
chosen properly to in�uence the properties of the
regularized approximation xδα.

In [7] it was shown that under the assumptions

∥Bpx̂∥ ≤ E

and
m∥B−ax∥ ≤ ∥Ax∥ ≤M∥B−ax∥

with some constants E,m and M , the Tikhonov-
Phillips regularized approximation xδα of problem
Ax = y provides order optimal error bounds

∥xδα − x̂∥ = O(δp/(a+p))

for s ≥ (p − a)/2, in the case that α is chosen a
priori by α = cδ2(a+s)/(a+p) with some constant
c > 0.

In the paper we study the approach to solving
inverse problem with regularization by means of
additional inverse problem with �xed-point prob-
jection, that may be seen as a smoothing condi-
tion [6].

General Regularization Scheme

In this paper we consider ill-posed problem

Ax = y, (2)

where A : X → Y is a bounded linear operator be-
tween real Hilbert spaces X and Y with non-closed
range R(A). Let's denote the inner producy by
⟨·, ·⟩ and the corresponding norm on the Hilbert
spaces by ∥ · ∥.

We assume, that the operator A is injective and
that y belongs to R(A). It implies that (2) has a
unique solution x̂ ∈ X. Suppose that instead of
exact data y we have an available data yδ ∈ Y
such that

∥y − yδ∥ ≤ δ (3)

for some known noise level δ. Since R(A) is as-
sumed to be non-closed, the solution x̂ does not
depend continuously on the exact y and available
data yδ. Hence, the problem (2) is ill-posed and
therefore requires the regularization. Regulariza-
tion is reconstruction of the solution of problem
with inexact data using additional information, for
example, (A1) subjective information concerning
the smoothness of x̂ and (A2) objective informa-
tion concerning the smoothing property of the op-
erator A.

To formulate the smoothing properties we use
densely de�ned unbounded self-adjoint strictly
positive operator B : X → X and some index
function φ.
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De�nition 1. Function φ : R+ → R+ is called
index function if it is continuous and strictly in-
creasing with φ(0+) = 0.
Assumption A1: For some p > 0 and E < ∞,

the solution x̂ of the problem (2) satis�es
∥Bp(x)∥ ≤ E.

Assumption A2: There exists some index func-
tion φ with properties:
(i) there exists a constant m > 0 with

m∥
√
φ(B−2)x∥ ≤ ∥Ax∥ for all x ∈ X

(ii) for p as in Assumption A1, the function
λφ(λ1/p) : (0, ∥B−2p]→ R+ is convex

De�nition 2. General regularization scheme in
Hilbert space is de�ned as

xα = B−sgα(T
∗T )T ∗y,

xδα = B−sgα(T
∗T )T ∗yδ

with T = AB−s for some s ≥ 0 and piece-wise
continuous gα : (0, ∥T∥2]→ R with the property

lim
α→0+

gα(λ) = 1/λ.

For further analysis we make additional as-
sumption about the function gα.
Assumption A3: There exist positive constants

γ and β such that

sup
λ>0

√
λ|gα(λ)| ≤ γ/

√
α,

sup
λ>0

λ|gα(λ)| ≤ 1,

sup
λ>0

√
λ|1− λgα(λ)| ≤ β

√
α,

sup
λ>0

λ|1− λgα(λ)| ≤ 1.

Di�erent regularization methods are character-
ized by corresponding functions gα.

For example, ordinary Tikhonov-Phillips reg-
ularization in Hilbert space is de�ned by gα =
= 1/(λ+α). In this case Assumption A3 is satis�ed
with γ = 1/2 and β = 1/2. For Tikhonov-Phillips
regularization of orderm in Hilbert space the func-
tion gα is de�ned as following:

gα =
1

λ

(
1−

(
α

λ+ α

)m)
with γ =

√
m and β = 1.

Spectral method of regularization in Hilbert
space is de�ned by gα(λ) = 1

max{λ,α} with γ = 1

and β = 2/
√
27. Asymptotical regularization in

Hilbert space is de�ned by gα(λ) =
1
λ (1− e

−λ/α),

γ = 1, β = 1/
√
2e. Finally, iterative regulariza-

tion in Hilbert space, also known as Landweber
iteration, are de�ned by

gα(λ) =
1

λ

(
1− (1− λ)1/α

)
,

for γ = 1 and β = 1/
√
2e.

In [6] it was shown that under Assumption A2
the regularized approximation xδα with s = p is
order optimal if α is chosen a priori.
Theorem 1 ([6]). Let xδα be regularized approx-
imation de�ned by general regularization scheme
(see De�nition 2) with s chosen by s = p and let
assumptions A1 and A3 be satis�ed. Then, for

α = δ2

E2 ,

∥xδα − x̂∥ ≤

(γ + 1) sup
x∈X
{∥x∥ : ∥Brx∥ ≤ E, ∥Ax∥ ≤ cδ}

with c = β+1
γ+1 . If, in addition, assumption A2 is

satis�ed, then

∥xδα − x̂∥ ≤ (γ + 1)E

√
ψ−1
p

(
c2δ2

m2E2

)
,

where ψp(·) is de�ned as ψp(λ) = λϕ(λ1/p).
It implies Mair's convergence rate result for

the method of Tikhonov-Phillips regularization. In
fact, the second error bound of Theorem 1 shows
the order optimality of the regularized approxima-
tion xδα (see [6]).

Another inverse problem as a

regularisation

Let's come back to the initial inverse problem

Ax = y.

And let's consider another inverse problem

Dq = x.

Then general regularization scheme de�nes the fol-
lowing solution:

qδα = gα(D
∗D)D∗x.

In [3] within the proof of Proposition 2.8 it was
shown that for the whole class of regularization
families the estimate of regularization error has the
form

∥q̂ − qδα∥ ≤ Rγ̂φ(α) + γ−1/2
δ√
α
.

The �rst term here depends on the smoothness of
the solution, and in the statistical spirit we agreed
to call it the bias. Then the second term is the
variance, and its order δ/

√
α is the same for all

regularization families under consideration.
Then we have

Dqδα = Dgα(D
∗D)D∗x ≈ x,
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thus let's denote the following operator:

B = Dgα(D
∗D)D∗x : X → X.

Easy to see, that B is self-adjoint strictly pos-
itive de�nite operator. Then all the theoretical
results from the previous section are applicable to
this problem setting.

Conclusions

Regularization of ill-posed operator equations
in Hilbert scales is usually studied under the as-
sumption that the operator A involved in the equa-
tion and the operator B generating the Hilbert
scale are related by some operator-valued index
function ϕ. In the classical paper [7] of Natterer,
such a relation that characterizes the smooth-

ing properties of A relative to the operator B−1

has been expressed in terms of power functions
(see [6]). Extensions to general index functions
have been considered in Mair's paper [8] for the
case of high-order regularization in Tikhonov-
Phillips regularization method. In our paper we
compare classical results for a general regulariza-
tion scheme to the case of regularization by means
of denoiser operator. Another accomplishment of
this paper is the justi�cation of error bounds in the
light of general index functions ϕ. It is important
to note that the general regularization scheme re-
quires neither any knowledge of the index function
ϕ nor any knowledge of the solution smoothness
measured against the Hilbert scale. Nevertheless,
it automatically provides an order optimal solution
for the considered ill-posed problem.
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Êðàâ÷óê Î. Ì., Êðþêîâà Ã. Â.

ÐÅÃÓËßÐÈÇÀÖIß ÇÀ ÄÎÏÎÌÎÃÎÞ ÂÈÄÀËÅÍÍß

ØÓÌÓ Â ÎÁÅÐÍÅÍÈÕ ÇÀÄÀ×ÀÕ ÎÁÐÎÁÊÈ

ÇÎÁÐÀÆÅÍÜ

Ó öié ðîáîòi ðîçãëÿíóòî óçàãàëüíåíó ñõåìó ðåãóëÿðèçàöi¨ îáåðíåíèõ çàäà÷, äå àïðiîðíå çíà-
ííÿ ïðî ãëàäêiñòü ðîçâ'ÿçêó äàíî çà äîïîìîãîþ äåÿêîãî ñàìîñïðÿæåíîãî îïåðàòîðà â ïðîñòîði
ðîçâ'ÿçêiâ. Ðîçãëÿíóòî ïîñòàíîâêó çàäà÷i, êîëè îêðiì îñíîâíî¨ îáåðíåíî¨ çàäà÷i âèçíà÷åíî äîäà-
òêîâó çàäà÷ó, â ÿêié øóêàíèé ðîçâ'ÿçîê ¹ ïðàâîþ ÷àñòèíîþ ðiâíÿííÿ. Òàêèì ÷èíîì, äëÿ ðåãóëÿðè-
çàöi¨ îñíîâíî¨ îáåðíåíî¨ çàäà÷i âèêîðèñòîâó¹òüñÿ äîäàòêîâà îáåðíåíà çàäà÷à, ÿêà ïðèâíîñèòü äî
ïî÷àòêîâî¨ çàäà÷i iíôîðìàöiþ ïðî ãëàäêiñòü ðîçâ'ÿçêó. Òàêà ïîñòàíîâêà çàäà÷i äà¹ ìîæëèâiñòü
âèêîðèñòîâóâàòè îïåðàòîðè âèñîêî¨ ñêëàäíîñòi äëÿ ðåãóëÿðèçàöi¨ îáåðíåíèõ çàäà÷, ùî ¹ íàãàëü-
íîþ ïîòðåáîþ â ñó÷àñíèõ çàäà÷àõ ìàøèííîãî íàâ÷àííÿ, çîêðåìà, â çàäà÷àõ îáðîáêè çîáðàæåíü.
Â ðîáîòi äîñëiäæåíî ïîõèáêó àïðîêñèìàöi¨ ðîçâ'ÿçêó ïî÷àòêîâî¨ çàäà÷i çà äîïîìîãîþ äîäàòêîâî¨
çàäà÷i.

Êëþ÷îâi ñëîâà: îáåðíåíi çàäà÷i.
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