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ABSTRACT. The method of ”

fit 1s described, 1ts analytical properties are discussed
1N comparison Wlth other types of fits. The method 1s
effective for the (possibly highly asymmetric) signals
with practically linear ascending and descending bran-
ches connected by relatively short transitions at maxi-
muim or minimum, e.g. for the brightness variations ot
pulsating or eclipsing variables or for the phase varia-
tions 1n stars with abrupt period changes. The method

1s 1llustrated by an application to the Mira—type star
U Her.
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Introduction

The imdividual cycles of variability of many stars
show phase intervals of abrupt changes and/or undergo
significant changes of the shape (e.g. Kholopov et al.
1985). To study these objects, several methods are
usually applied - the fitting by ordinary and trigonome-
tric polynomials, splines, (multi—) Gaussian functions
etc. A number of "running” approximations may also
be applied, the statistical properties of which for ar-
bitrary basic functions and additional weight functions
were recently discussed by Andronov (1997).

Andronov (1994) described some algorithms used in
his programs for time series analysis. In this paper we
describe a supplementary method of smoothing which
we call the method of ”asymptotic parabolae” (AP).
Its error estimates are sometimes better than the po-
lynomial or "running parabola” fits. The main
to split the observational interval near extremum into
the parts with linear (”asymptotic”) branches which
are connected by a transition curve. This also will al-
low to determine the characteristic time of a transition
from one linear branch to another.

1dea 1s

of the outburst cycle
length of some dwarf novae between two preferred va-
lues, Andronov and Shakun (1990) have used hyper-
bolic functions. However, Andronov (1995) noted that
more simple parabolic connection between the lines ta-
kes less computational time and often corresponds to
better accuracy estimate of the position of the extre-
mum. A corresponding program was developed with
an algorithm described below 1n detail.

To study abrupt "switches”

The ” Asymptotic Parabola” Fit

Assuming the signal 1s represented by the observati-

onal values y; obtained at times ¢z, &£ = 1...n, one may
obtain the coeflicients of the fit

=) Cufalt)

from the system of normal equations
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Here y.(1) 1s a value of the smoothing function at ar-
gument ¢, f,(¢) are basic functions (« = 1...m), and

(1)

(2)

Aap =" Falte) folts) (3)

is the matrix of normal equations (e.g. Whittaker and
Robinson, 1926). We repeat these well-known expres-
sions to apply them to the proposed basic functions.

Among the infinite number of functions f,(f) we
have chosen the basic functions which may be written
1n a form:

= I'(2), [3(t) = =F(2).  (4)

Here we used the transformation z = (t—1g)/At, where
tg 18 some characteristic value of the argument ¢, and

At 1s a characteristic scale of the argument (or 2At is

the ”effective duration” of the transition).

The smoothing function remains the same, 1t one will
choose the a new set of basic functions which are linear
This 1s the case e.g.
for the ordinary polynomial f,(t) = t*~! or trigono-
metric polynomial fits which are not dependent on %j.
Moreover, the ordinary polynomial fit does not depend
also on At, contrary to a trigonometric polynomual.

In the case of non—linear transtormation of the ba-
sic functions one may also include the corresponding
"non—linear” parameters to the list of unknowns and
make the optimization according to these parameters.

As an additional assumption, we introduce the fun-
ction F'(z) with asymptotes for large positive z

F(—=z) =0, F(+z) = z, with corresponding asymptotic

combinations of the 1nitial ones.
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expressions for x.(t) = CsF(—z) and CyF'(+2). Obvio-
usly, such fits with asymptotes depend both on ¢y and
At which must be determined as the values minimizing
the r.m.s. deviation from the fit. The algorithm is the
usual one: the preliminary values are determined by
choosing the minimum value at a grid of trial values
and then corrected by using some 1terations.

The asymptotic functions F(z) = 0 (z < —1) and
F(z) = z (# > +1) may be connected by a parabola
F(z) = (14 2)?/4 (=1 < z < +1) which satisfies the

conditions of continuity of the smoothing function and
its first derivative at all arguments (including the bor-
der points).

For 1llustration, the fits are computed for one 1nterval
of observations of the Mira—type star U Her from the

AFOEV database (Schweitzer 1996 ).

For this ”asymptotic parabola” (AP) fit one may

choose the borders 1n such a way that they will be
equal to .7 = o — At and t.o = top + Af. This will
correspond to the border values z; = —1 and 2z = +1.

One may note that the AP fit may be represented
by more usual functions. For example, if 1,1 < #; and
tio > 1, (where t; and t,, are the smallest and largest
arguments of the signal), than the data will be fitted
by an ordinary parabola. If t,; = t.,2 = ty, then the
duration 2At of transition 1s equal to zero, and the fit
1s an ~angle—like” broken line. It 1,1 > 1, or t.o < 4,
one will obtain a single line without any transition to
another asymptote. ”One-line” + parabola fits corre-
spond to t,1 <] and t] < .o <1, ortot; <ty <1y,
and t.o > t,. Only the case 11 < t,1 < tuo < t,, corre-
sponds to the AP with two asymptotes. These remarks
are obvious but all these cases are to be taken 1into ac-
count 1n the algorithm while computing the differential
corrections.

In the computer program we have checked also the
condition t.1 < 9. If needed, these values were swap-
ped to obtain the ascending order.

If .1 = tuo = 1y, then we decreased the number of
unknowns leaving only #y. In this case the parabolic
connection of the asymptotes 1s equal to zero, and one
should use the modified function F(z) = 0, if 2z < 0
and F'(z) = z, if z > 0, where in this case z = ¢ — 1,
without d1v1dmg by At.

Determination of the " Non—Linear”
Parameters

The root mean squared error oly [3]( t)] of the smo-
othing function (s = 0 th
order 1n respect to the

and 1ts derivatives ot the s

parameter 1

Y ALl

aif=1

), (5)

o[y (t)] =

where oy 1s the error estimate corresponding to an

“unit weight” (e.g. Whittaker and Robinson 1926) and

may be computed according to the equation

T
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where A;é— 1s the matrix, inverse to A,3.

The values of oy are dependent on the mon—linear’
parameters — the pairs {5 and At or {,; and t.. From
the computational point of view, the grid should be
computed for different data sets on similar number of
points. Thus one may recommend to use the scaled ar-
guments, e.g. x = (t—%1)/(t,—1%1). In our program, the
function o(xq,x2) 1s computed for 0 < 21 < x5 — s,
s, < x9 < 1 with an adopted step s, = 0.05. Here
r1 and xs correspond to the times ¢t equal to t,; and
t«o. This dependence 1s shown 1n Fig.l. To compute

the surface, we have used also the values z1 > x5 sw-

apping them for computation. Thus, 1n our definition,
o(xg,21) = o(xy1,22) and the surface 1s symmetrical
1n respect to the line ;1 = x9. One may see a wide
“valley” with a single minimum 1n a region x; < xs.
The contour map of the smaller region near the mini-
mum 0 < x; < 0.4 and 0 < 29 < 0.4 computed with a
smaller step s, = 0.01 1s shown 1n Fig.2.

The lines of constant ¢ are elliptic only 1n the vici-
nities of the minmimum with a major semi-axis directed
nearly along the line {3 =const and a minor semi—axis
along the line At =const. With increasing o, the lines
o(x1,x9) =const are strongly deformed having a joint
point at x1 = x9 = x,,0. However, this value corre-
sponds to the minimum of o(xy — At, xo + At) for the
fixed value of At = 0, but the true mimmimum may be
found by determination of the optimal value of At.

For symmetrical input signal (same observational va-
lues for # and 1 — ), one may expect that the function
o(x1,x2) will be symmetrical not only in respect to the
line 1 — x5 = 0, but 1n respect to the line 1 + x5 =1
as well. In this case x9g = x,,0 = 0.5 and one has
to find At only, 1.e.
line 1 + 2 = 1. For asymmetric signals the function
o(xg — At, xg + At) will reach its minimum along the
line At =const at the values of g being dependent on
At. The possible consequence of this curvature 1s that
the minimization of o(xy — At, o + At) may be obta-
ined by preliminary determination of x,,q for At = 0,
then minimization in respect to At for the fixed z,,0,
then for the fixed At in respect to xg etc. This method

of "cyclic” optimization was described e.g. by Korn

and Korn (1970, p. 576).

the mmimum will occur on the

Differential Corrections

The differential corrections 6C',, ov, oz, at each 1te-
ration may be determined by using the system of ” con-
ditional” equations

Tr
Ox.

Zfﬂ(tk)éca | I

a—1

Ox .

OV -
g 020

bzog = @ — . (tg). (7)
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Here we introduced new variables v = At~! and z5 =
vtg, thus z = vt — z9. One may note that the partial
derivative of the smoothing function i1n respect to the
“non—linear” parameter p 1s

ai?c(t) B - 8fr:r — af{r
w2 T T o

After some 1terations one may determine m + 2 pa-
rameters C',, v, 6zp and corresponding error estimates.

Andronov and Shakun (1990) have used an analytic
function

(8)

F(z) = 1(,zr In(e” +e77)) =z ; In(1

2 ) (9)

The

corresponding derivative of the smoothing function 1s
generally equal to

Oz (1)
Ot

which 1s differentiable infinite number of times.

— Z C, of gt(t) (10)

and 1n our case

Ox.(t) dF'(z) dF(—2z)
or (02’ P T ) .

(11)

For the "asymptotic” fits, dF'(z)/dz — 0 for large ne-
gative z and — 1 for large positive z, thus dx.(t)/0t —
—(C's and — (. For the function (9) dF(z)/dz =
%(1—|— tanh z) = 1/(1+e~%%), and the fit may be called
a " hyperbolic tangent” (H'T) one. For practical purpo-

ses one may not compute the fit precisely for very large
positive or negative z making simplification by neglec-

ting the term e~!?l when compared with unity. Thus
one may conclude that the whole interval of arguments
1s splitted mnto three parts - large negative, intermedi-
ate and large positive values. However, the borders are
not single functions on At and ;.

The first derivative (Which ]

1s needed for differential

corrections) is also very simple:
0 if 2 < —1
dF . T
d(Z) =< (142)/2 if —1<2<+41 (12)
- 1 if +1<z

However, the apparent stmplicity of this derivative does

not cause very simple computation of the differential
corrections, and there are some problems which have
been taken into account in the algorithm for applica-

tion of this method for the time series analysis.

At first, we have mntroduced the imdependent va-
riables g (i.e. the argument, at which the asym-
ptotic lines cross each other) and At (the complete
duration of the transition between the asymptotes).
The corresponding derivatives 0z/0t; = At~! and

0z/0At = —(t — tg)At~* are dependent on At and
tend to infinity while At — 0. However, one may

not expect any singularity when choosing the fits with
At — 0, thus this problem may be solved. Slightly
better solution 1s to use the variables v 1instead of Af,

thus z = v(t — ty) and the derivatives are equal to
0z/0ty = —v and 0z/0v = t — ty. Introducing the
parameter zp, 1.e. z = vt — zp one may simplify the
derivatives.

Moreover, the matrix of normal equations may be
degenerate because for the "bad” location of x; and
ro, the values of the fit at arguments of data may not
depend on #; and/or x5 (e.g. when no data are present
in the interval of

transition). Thus practically there
must be an automatic checking the degeneracy of the
matrix of normal equations the number of parameters
being determined. If needed, they must be changed,
e.g. from x1 and x5 to single xy; from two borders to
one border, 1if another one coincides with a data limait.

Because the intersections of the surface oo(xq, xs)
by the plane 1 = const or x» = const are parabolic
only in small vicinities of the minimum (Fig. 3), some-
times the differential corrections may not converge. In
this case we use the values of 621 and 621 multiplied by

a parameter o« <€ 1 increase the number of iterations.

Comparison with Other Methods

(venerally, the AP fit corresponds to 5 unknowns
(including #; and xs). Thus one has to com':)ute the
error estimates by using the matrix A L of order 5.
The corresponding dependence on ¢ of the accuracy of
the smoothing function ¢.(¢) 1s shown in Fig 4 and is
marked as APb5. However, the accuracy estimate of
the same fit when using the matrix 3x (assuming z;
and xo are fixed and have the best fit values; marked as
AP 3) i1s much smaller than for AP5. The correspon-
ding error estimates olt.| of the moment of extremum
differ by a factor of 3! This difference 1s natural taking
into account a high degree of degeneracy of the matrix
Anp. Even more drastic difference 1s between the AP
fits with At = 0 which are marked as BL (broken line)
with 3 and 4 parameters. For BL 3 o[t.] = 0, because

te1 < 1. < t.9, and only use of the BL 4 fit allows to
make an accuracy estimate.

For comparison, we have also computed the poly-
nomial fits (P) with 3, 4 and 5 parameters (i.e. of the
orders 2,3,4). The P 3 fit coincides with the AP fit with
t.1 = t1 and t.,» = t,, which 1s the worst 1n our sam-
ple. The fit P5 with the same number of parameters
as AP 5 has similar o|m.], but 2 times larger o|t.]. The
best order of the polynomial is 3 (AP 4). The running
parabola (RP) fit (Andronov 1990) with At = 89 has
very good value o, which 1s close to that of AP, but
large o|t.]. The cubic parabola P 4 has the best value of

o|t.] which is slightly larger than that for AP, but much
larger systematic deviations from the fit. The BL 4 fit
1s better than P 3 arguing for the "asymptotes”. Simi-

lar results were obtained for other data. Thus the AP
fit 1s optimal and may be recommended for use.
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Figure 1. The dependence o(xq,22) of the unbia- 12 — [/ Her \ -~
sed r.m.s. deviation of the observations from the AP — —
fit with the borders #; = (ty1 — t1)/(t, — t1) and NN }llll\llll\llll\l\b_
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Figure 4. The fits of the data obtained by using diffe-
rent methods (up) and the error estimate of the smo-
0.1 othing function o.(t) = o|y.(t)] (bottom).
Table 1. Characteristics of the extremum.
— method t. olt.] m. olm.] o
D AP b5 47845.68 0.60 7.338 0.004 0.257
0.0 Ml AP3 4784568 0.21 7.338 0.038 0.257
0.0 0.1 0.2 0.3 0.4 BL4 47841.02 1.24 7.095 0.057 0.263
X BL 3 47841.02 0.00 7.095 0.043 0.263
. . . P 3 47863.53 2.60 7.895 0.072 0.529
FE%;EI@ fQ T?e lines of equal o(x1, x2) near the minima P 4 1785193 0.83 7480 0.043  0.99]
O S THHEMOH. P 5 47847.22  1.60 7.505 0.041 0.283
RP 47853.12 248 7.366 0.045 0.258
B R b o I
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